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ABSTRACT
The speed of today’s worms demands automated detection, but
the risk of false positives poses a difficult problem. In prior work,
we proposed a host-based intrusion-detection system for worms
that leveraged collaboration among peers to lower its risk of false
positives, and we simulated this approach for a system with two
peers. In this paper, we build upon that work and evaluate our
ideas “in the wild.” We implement Wormboy 2.0, a prototype
of our vision that allows us to quantify and compare worms’ and
non-worms’ temporal consistency, similarity over time in worms’
and non-worms’ invocations of system calls. We deploy our pro-
totype to a network of 30 hosts running Windows XP with Ser-
vice Pack 2 to monitor and analyze 10,776 processes, inclusive
of 511 unique non-worms (873 if we consider unique versions to
be unique non-worms). We identify properties with which we can
distinguish non-worms from worms 99% of the time. We find that
our collaborative architecture, using patterns of system calls and
simple heuristics, can detect worms running on multiple peers.
And we find that collaboration among peers significantly reduces
our probability of false positives because of the unlikely appear-
ance on many peers simultaneously of non-worm processes with
worm-like properties.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protection—
Invasive software

General Terms
Algorithms, Experimentation, Measurement, Security

Keywords
collaborative detection, HIDS, IDS, host-based intrusion detec-
tion, native API, peers, system calls, system services, temporal
consistency, Win32, Windows, worms

1. INTRODUCTION
No longer in hours but in minutes are worms’ rates of propaga-

tion now measured [23,31,45]. So fast are the fastest that human
intervention no longer is possible [41,42].

Automated detection is necessary. But with automation comes
a risk of false positives, whereby benign applications (non-worms)
are misclassified as worms. Inherent in intrusion-detection sys-
tems (IDSes), after all, are “virtual knobs.” Settings that detect
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many behaviors (and thus many worms) also tend to produce
many false positives. Settings more tailored to known worms’
behaviors produce fewer false positives but are easier for worms’
authors to circumvent in future designs. Ideal is an IDS that
detects many behaviors without producing false positives. We
pursue that ideal in this work. With collaboration among hosts,
we are able to reduce the risk of false positives in host-based
detection of worms.

Worms can be distinguished from non-worms by their simplic-
ity and periodicity: their design is to spread, and their execution
is cyclical. Of course, even non-worms can manifest cyclical be-
havior reminiscent of worms’, but we are less likely to see such be-
havior simultaneously on networked, but otherwise independent,
hosts, unless it’s on purpose. Worms’ actions are so relatively
few that we are more likely to detect them in near lockstep on
multiple peers than the actions of more complicated applications
with many more code paths. We can therefore lower the risk of
false positives in worms’ detection by monitoring the collective
behavior of many hosts for similarities. Our goal is to avoid mis-
classifying non-worms that might otherwise look like worms from
the perspective of a single host.

To validate these claims, we proposed, in prior work [21], an
IDS for worms that leverages collaboration among hosts to lower
its risk of false positives. Specifically, we envision a network
of peers (Figure 1), each running software that takes snapshots
(i.e., produces summaries) of its processes’ behavior during some
window of time. On some schedule, peers submit those snapshots
for analysis to some snapshot server, a supernode responsible for
a network of peers. Treating snapshots like nodes in a graph,
the supernode searches those submissions for cliques of similar-
ity, whereby pairs of snapshots, if found to be “similar” according
to some measure, are treated as edges.1 If the cooperative’s su-
pernodes determine that peers’ behavior is anomalous (because
the size of a clique exceeds some threshold), a worm is assumed
present, and a response can be initiated.

Through simulations with traces of 9 variants of worms and
25 non-worms, we found in prior work [21] that two peers, upon
exchanging summaries of system calls recently executed, can de-
cide that they are, more likely than not, both executing the same
worm between 76% and 97% of the time.

In this work, we build upon those results and evaluate our
ideas “in the wild.” We implement and deploy a prototype of our
vision, Wormboy 2.0, to a network of 30 hosts running Windows
XP with Service Pack 2. We use our implementation to monitor
and analyze 10,776 processes, inclusive of 511 unique non-worms
(873 if we consider unique versions to be unique non-worms). We
investigate a host-based, collaborative architecture’s probabilities
of true positives and false positives, focusing on the latter.

As a result of this work, we identify properties that distinguish
worms from non-worms. Using those properties, our architec-
ture accurately classifies 99% of processes as non-worms. We also
find that our collaborative architecture, using patterns of system

1We propose cliques, despite their hardness, for the sake of dis-
cussion, as they perfectly capture k-wise similarity among k peers.
In practice, approximations should suffice for our purposes (Sec-
tion 5.2).



Figure 1: Our vision of collaborative detection of fast-
spreading worms using collaborative networks. Colored black
are three snapshot servers, supernodes responsible for net-
works of (gray-colored) peers. On some schedule, peers sub-
mit snapshots (i.e., summaries) of their internal behavior to a
snapshot server that then exchanges information with other
supernodes. Too many similarities within or across networks
suggest anomalous behavior (i.e., a worm’s presence). Boxed
is one such network, implemented with WORMBOY.{EXE,SYS} and
WormboyD.

calls and simple heuristics, can detect worms running on multiple
peers. And, because of the unlikely appearance on many peers
simultaneously of non-worm processes with worm-like properties,
we find that collaboration among peers significantly reduces our
probability of false positives.

In the section that follows, we elaborate on our vision and
earlier results. In Section 3, we formulate this work’s research
questions. In Section 4, we describe Wormboy’s role in this work
and offer implementation details. In Section 5, we validate our
vision’s efficacy: we quantify the number of non-worm processes
that might, if not handled carefully, be mistaken for worms by a
collaborative architecture; we establish empirically that a collabo-
rative network can detect processes with similar behavior running
on multiple hosts; and we demonstrate that collaboration among
peers reduces our probability of false positives. In Section 6, we
discuss threats to host-based, collaborative detection of worms.
Finally, in Sections 7 and 8, respectively, we explore related work
and conclude.

2. COLLABORATIVE DETECTION
In prior work [21], we investigated techniques for modeling and

quantizing worms’ and non-worms’ behavior. Using those tech-
niques, we proposed a new definition of anomalous behavior in a
network for collaborative detection. In this section, we summarize
our prior work. In Section 2.1, we review our model for behavior.
In Section 2.2, we restate our definition of anomalous behavior.
In Section 2.3, we recognize that a worm’s execution on one peer
will not likely be perfectly synchronized with that worm’s exe-
cution on another peer; we present our technique for recognizing
that both executions exhibit similar behavior and belong to the
same executable.

2.1 Behavior as Snapshots
We model processes’ behavior as patterns of system calls, and

we quantize it with snapshots, sets of system calls executed dur-
ing some window of time. Formally, a snapshot is an unordered
set of the form S = (s0, s1, . . . , sn−1), where each si represents
a system call that was invoked one or more times during some
window of time. In prior work [21], we found unordered sets
more tolerant of variation in worms’ execution than sets ordered
according to calls’ relative frequencies of invocation. This defi-
nition also facilitates detection of worms whose authors employ
randomization along code paths, a threat we revisit in Section 6.

Insofar as system calls circumscribe kernel space, restricting
execution’s passage from Ring-3 to Ring-0, they facilitate sum-
marization of code into low-level, but semantically cogent, build-
ing blocks. Though other models are possible, system calls offer a
useful proxy for behavior [8,16,29,39,40]. We select them for the

0

50

100

150

200

250

300

350

400

450

500

3
0

6
0

9
0

1
2
0

1
5
0

1
8
0

2
1
0

2
4
0

2
7
0

3
0
0

3
3
0

3
6
0

3
9
0

4
2
0

4
5
0

4
8
0

5
1
0

5
4
0

5
7
0

6
0
0

6
3
0

6
6
0

6
9
0

7
2
0

7
5
0

7
8
0

8
1
0

8
4
0

8
7
0

time (seconds)

n
u

m
b

e
r 

o
f 

c
a
ll

s

NtClose NtConnectPort NtCreateFile NtDeviceIoControlFile NtReadFile NtWriteFile

Figure 2: Calls into kernel space by I-Worm/Sasser.B, repre-
sentative of worms’ tendency toward simplicity and period-
icity. Point (i, j) indicates j invocations of some system call
between times i and i+30. Omitted for visual clarity are sim-
ilar patterns of invocations of other system calls. Windows
of 30 seconds are sufficient to capture this worm’s cycles [21].

sake of current exploration; our vision’s modular design allows for
substitution of them with alternative proxies in the future.

In that snapshots comprise an aggregate (i.e., window’s worth)
of system calls, they allow us to capture patterns in worms’ exe-
cution. Figure 2, for instance, illustrates I-Worm/Sasser.B’s con-
sistency over time of calls into kernel space. The figure plots the
numbers of invocations of system calls during 30-second windows
of time. We experimented in prior work [21] with windows of
5, 15, 30, and 60 seconds, ultimately finding 5 seconds too brief
to capture worms’ periodicity and 60 seconds unnecessarily long.
Neither 15 nor 30 proved consistently better than the other; we
utilize both in this paper but, for now, do not further investigate
either’s superiority.

2.2 Redefining Anomalous Behavior
We define anomalous behavior as we do snapshots: in terms of

patterns of system calls. But we promote an atypical definition
of anomalous. Host-based IDSes tend to evaluate a host’s actions
vis-à-vis prior actions or blacklisted actions: a host’s behavior is
deemed anomalous if it differs from that host’s prior actions or a
pre-determined list of blacklisted actions. We, in contrast, eschew
reliance on history and aspire instead to generalize the problem
of worms’ discovery away from recognizance of pre-determined
actions (and pre-defined signatures) toward more generalized de-
tection of widespread and coordinated behavior. We offer an al-
ternative definition of anomalous behavior: a host’s behavior is
anomalous if it correlates all too well with other networked, but
otherwise independent, hosts’ behavior. We argue that anom-
alous behavior, triggered by some worm, can be detected because
of worms’ temporal consistency, which we define as low temporal
variance (i.e., similarity) in invocations of system calls.

2.3 Similarity as Temporal Consistency
Execution of some worm might not be perfectly synchronized

within some network of peers, particularly if hosts become in-
fected at different times. Any measure of snapshots’ similarity
must therefore tolerate offsets in timing. In prior work [21], we
evaluated two such measures. We adopt for our current work the
superior of the two, which proved tolerant not only of offsets in
timing but also of differences in hosts’ speeds and configurations.

We judge the similarity of two snapshots, S1 and S2, by way
of S1 ∩ S2. Specifically, we define the percentage of similarity

between two snapshots as
|S1∩S2|

max(|S1|,|S2|)
, which is effectively a

measure of the number of system calls common to both snapshots.

If
|S1∩S2|

max(|S1|,|S2|)
≥ 0.5 for τ percent of pairs of snapshots over

time, the process to which the snapshots pertain is said to be
temporally consistent with degree τ . Informally, τ ≥ 0.5 implies
that two processes behave “mostly the same most of the time.”
This rate, τ , is thus the probability with which two peers, upon



15 s 30 s

I-Worm/Bagle.Q 76% 81%

I-Worm/Bagle.S 76% 73%

I-Worm/Mydoom.D 97% 93%

I-Worm/Mydoom.F 97% 93%

I-Worm/Jobaka.A 97% 93%

I-Worm/Sasser.B 97% 93%

I-Worm/Sasser.D 97% 93%

Worm/Lovesan.A 97% 93%

Worm/Lovesan.H 97% 93%

Table 1: Probability, τ , with which two peers, upon exchang-
ing snapshots of their internal behavior, can decide using in-
tersection of snapshots that they are, more likely than not,
both executing the same worm during some window of time,
for windows of 15 and 30 seconds, per our prior work [21].
In other words, percentages of all possible pairs of samples

from some worm for which
|S1∩S2|

max(|S1|,|S2|)
≥ 0.5, where S1

and S2 are snapshots, unordered sets of system calls ex-
ecuted during some window of time. Consider, for exam-
ple, Worm/Lovesan.H: 97% of its snapshots look “mostly the
same,” using 15-second windows.

exchanging snapshots of their internal behavior, can decide using
intersection of snapshots that they are, more likely than not, both
executing the same worm during some window of time.

Blind as this measure of similarity is to system calls’ order of
invocation, it allows for the emergence of patterns despite slight
differences in execution. It was with this measure that we de-
tected with near certainty (τ = 97%) in prior work [21], using
windows of 15 or 30 seconds, every one of the worms in our ear-
lier study save one (Table 1), but even the latter’s τ was 76%.2

Moreover, of the 25 non-worms in that study, only two boasted
traces with τ > 90%; for both did we propose simple filtration to
avoid the false positives.

3. RESEARCH QUESTIONS
To validate the efficacy of host-based, collaborative detection

“in the wild,” we focus in this work on these questions.

1. Are non-worms, like worms, temporally consistent? If so,
we must identify properties that distinguish the two.

2. Can we detect processes with similar behavior on multi-
ple hosts? If so, we can detect the outbreak of a worm,
the behavior of which across hosts is likely to be similar:
bounded by time as are fast-spreading worms by definition,
there are only so many ways for them to achieve some effect
on a host quickly. A worm’s filename and executable, by
contrast, can be too easily altered during propagation (as
through metamorphosis) and are, thus, less reliable than
more dynamic techniques. Presumably, the more “worm-
like” a process (i.e., the more temporally consistent), the
more likely we are to detect it if running on multiple hosts.

3. Can we avoid mistaking popular non-worms for worms?
We cannot assume that processes common to many hosts
(e.g., explorer.exe) are necessarily worms, lest we infer
incorrectly that an attack is in progress. And we should
not confuse a non-worm running on one host with a worm
running on another, even if behaving similarly, lest we over-
state an outbreak’s severity.

To answer these questions, we transition from simulation to
actual implementation of a prototype of our vision: Wormboy 2.0.
We deploy this prototype to dozens of hosts running hundreds of
non-worms in order to evaluate collaborative detection’s efficacy
“in the wild” through collection and analysis of real-world data.
In the section that follows, we offer implementation details for
Wormboy 2.0 to make clear our data’s origins and manner of
collection.

2We called the worms by their names according to AVG Free
Edition 7.0.322 [9].

4. IMPLEMENTATION
Having defined hosts’ behavior in terms of snapshots, we im-

plemented Wormboy, a prototype of our host-based, collaborative
system with one purpose: to collect and analyze snapshots. Ulti-
mately the foundation for a worm-focused IDS, Wormboy includes
both client and server sides that, together, implement a network
of peers per our vision (Figure 1). With one such network alone,
we are able to collect and analyze data from real-world hosts.

Wormboy’s target is Windows, as the platform offers a richness
of available worms and is a perpetual recipient of new attacks. As
its proxy for processes’ behavior, Wormboy uses Windows’s sys-
tem services (its “native API”), the nearest equivalents of Linux’s
and UNIX’s system calls.3

A link to Wormboy’s source code appears at this paper’s end.

4.1 Wormboy on the Client Side
On the client side, Wormboy is implemented as a cooperation

between a kernel-mode driver (WORMBOY.SYS) and a user-mode ap-
plication (WORMBOY.EXE), both written in C. Inspired by work by
Sabin [34], Nebbett [24], Harris [12], and Dabak et al. [5], Worm-
boy’s client currently supports Windows XP with Service Pack 2.4

Upon load, WORMBOY.SYS hooks all but three system services.5,6

These hooks effectively log (to unpaged memory) each invocation
of a system service during some window of time, capturing not
only the call’s service ID but also the caller’s PID and path. At
the end of each window, WORMBOY.EXE polls WORMBOY.SYS for that
window’s snapshots, the structure of which appears in Figure 3.
The application then transmits those snapshots to Wormboy’s
snapshot server via XML-RPC [13,47].

4.2 Wormboy on the Server Side
On the server side, Wormboy’s snapshot server is implemented

in Java as a XML-RPC listener (WormboyD). Upon receipt of a
window’s worth of snapshots from Wormboy clients, WormboyD
analyzes the structures for similarities exceeding specified thresh-
olds of interest (Section 5). At present, the server simply logs
the results of its analysis to disk for human review. In our work’s
next phase will we add support for the exchange of snapshots with
other supernodes in order to investigate questions of scalability
and efficiency based on the current work’s results.

3Depending on the version of Windows, Windows’s native API
comprises between 211 and 295 system services [28], implemented
in kernel space by NTOSKRL.EXE and exposed with stubs in user
space by NTDLL.DLL, against which most higher-level Win32 APIs
are dynamically linked. When called to invoke a system service, a
stub in NTDLL.DLL invokes SharedUserData!SystemCallStub after
moving into register EAX the service’s service ID and into regis-
ter EDX a pointer to the call’s arguments. To trap from user-
mode to kernel-mode, SharedUserData!SystemCallStub then ex-
ecutes Intel’s SYSENTER instruction (for the Pentium II and newer)
or AMD’s SYSCALL instruction (for the K7 or newer); on older
CPUs, SharedUserData!SystemCallStub executes a slower INT
2e instruction. Control is ultimately passed to _KiSystemService,
which dispatches control to the appropriate service by indexing
into _KeServiceDescriptorTable for the service’s address and
number of parameters using the value in EAX. [5, 10,11,14,27,32]
4With minor modifications could Wormboy’s client also support
Windows NT (with and without Service Packs 3 through 6), Win-
dows 2000 (with and without Service Packs 1 through 4), Win-
dows XP (with and without Service Packs 1 and 2), and Windows
2003 Server (with and without Service Pack 1).
5Wormboy inserts trampolines into _KeServiceDescriptorTable;
by default, _KeServiceDescriptorTable is read-only, so the
driver first disables the WP bit in register CR0 [30,38].
6Windows seems to make certain assumptions about system ser-
vices NtContinue and NtRaiseException, whereby it attempts
to manipulate the stack frame based on register EBP [33]; inas-
much as our hooks insert a frame of their own, we do not
hook these services to avoid blue screens. Nor do we hook
NtQueryInformationProcess, as our other hooks invoke undoc-
umented features of this service themselves.



Benchmark Calls
Runtime

Overhead
w/o w/

Adobe Photoshop 7.0.1 258,549 1574 s 1589 s 0.95%

Adobe Premiere 6.5 13,379,755 1830 s 1864 s 1.9%

Ahead Software Nero Express 6.0.0.3 46,869,089 2536 s 2610 s 2.9%

Microsoft Office XP SP2 2,317,059 1054 s 1065 s 1.0%

Microsoft Windows Media Encoder 9.0 1,672,449 2141 s 2164 s 1.1%

Mozilla 1.4 51,956,045 2883 s 3002 s 4.1%

MusicMatch Jukebox 7.10 308,793 2680 s 2699 s 0.71%

Roxio VideoWave Movie Creator 1.5 2,287,867 1553 s 1569 s 1.0%

WinZip Computing WinZip 8.1 4,775,630 1704 s 1717 s 0.76%

Table 2: Results of executing PC World’s WorldBench 5 [26] benchmarking suite without (w/o) and with (w/) Wormboy running
on a 550MHz Pentium III with 384MB RAM atop Windows XP with Service Pack 2, averaged over ten runs of the suite, the
standard deviations for which varied from 4 to 23 seconds. Wormboy’s average impact on runtime did not exceed 4.1%.

typedef struct {
ULONG counts[NUM_SERVICES];
ULONG pid;
CHAR path[MAX_PATH];

} snapshot;

Figure 3: Wormboy’s definition of a snapshot. On the client-
side, Wormboy’s kernel-mode driver maintains in non-paged
memory one of these structures for each live process. On
some schedule, Wormboy’s user-mode application polls the
driver for those structures (after which the driver zeroes
counts) and marshals them over XML-RPC to Wormboy’s
snapshot server for analysis.

4.3 Performance
Though further optimization of our implementation is possible,

current performance is promising. Wormboy’s client-side impact
on peers’ runtime does not exceed 4.1% (Table 2).

With calls into kernel space as our proxy for behavior, per-
formance of Wormboy’s client is of particular import, lest our
hooking of as many as thousands of calls per second interfere
with hosts’ actual work. Not only, then, does Wormboy log calls
to unpaged memory, it also executes few instructions to perform
its logging.

In future work will we consider the performance of Wormboy
on the server side. In particular, we will investigate the efficiency
with which supernodes can analyze snapshots for similarities.

5. RESULTS
We present in this section the results of Section 3’s inquiries. To

answer those questions using real-world data, we deployed Worm-
boy to a network of 30 heavily-used, independent hosts (spread
across domains throughout North America) running Windows XP
with Service Pack 2 for 24 hours. With this deployment were we
ultimately able to monitor and analyze 10,776 processes, inclusive
of 511 unique non-worms (873 if we consider unique versions to
be unique non-worms).

Though these hosts, as real systems on the Internet, were by
nature exposed to worms, we did not inject worms into this net-
work ourselves. Nor did we set out to detect actual worms for
this paper; we focus herein on non-worms and the avoidance of
false positives. In earlier work [21], we examined the temporal
consistency of actual worms and our probability of true positives.

We present this work’s results in turn. We first quantify the
number of non-worm processes that a collaborative network might
tend to mistake for worms, were it not for certain properties
unique to the latter (Section 5.1). We then demonstrate empir-
ically, using non-worms with worm-like properties as proxies for
worms, that a collaborative network can, in fact, detect worms
executing on multiple hosts (Section 5.2). Finally, we show how
collaboration among peers reduces our probability of false posi-
tives (Section 5.3).

5.1 Identifying τ , r, and r
′

In prior work [21], we investigated the degree to which 25 non-
worms in two benchmarking suites were temporally consistent.
Through simulation, we found that only two of those 25 (8%)
boasted traces for which τ > 90% using windows of 15 seconds;

15 s 30 s
1.EXE

aexplore.exe aexplore.exe
aolsoftware.exe aolsoftware.exe

ApntEx.exe ApntEx.exe
BESClient.exe BESClient.exe

ccApp.exe
CCPROXY.EXE CCPROXY.EXE
cvpnd.exe cvpnd.exe

explorer.exe explorer.exe
iexplore.exe iexplore.exe
ntbackup.exe ntbackup.exe
OUTLOOK.EXE OUTLOOK.EXE
QCWIZARD.EXE QCWIZARD.EXE
SNDSrvc.exe
sshd.exe sshd.exe

ViewMgr.exe ViewMgr.exe
war3.exe war3.exe

wmplayer.exe
WRSSSDK.exe

Table 3: Nineteen non-worms that exhibit worm-like behav-
ior, for windows of 15 and 30 seconds. Of the 511 unique non-
worms in our study, we might mistakenly classify as worms
just 15 (2.9%) using windows of 15 seconds and 18 (3.5%)
using windows of 30 seconds. Processes common to both
windows are aligned for visual clarity.

only one of the 25 boasted a trace for which τ > 90% using win-
dows of 30 seconds. With simple heuristics did we then distin-
guish those non-worms from worms, despite their apparent sim-
ilarity. For instance, we considered for each process not only
its τ but also its rate of calls, r, into kernel space. In partic-
ular, one potential false positive averaged no more than r = 1
call into kernel space per second, whereas even our “slowest”
of worms, I-Worm/Jobaka.A, averaged r = 64 calls per second.
Insofar as processes averaging nearly zero calls per second do
not likely belong to fast-spreading worms, we required that large
τ , to be worrisome, be accompanied by non-negligible rates of
calls (e.g., r ≥ 64).

By way of analysis with Wormboy 2.0 of not 25 but thousands
of processes, we have since found it advantageous to identify an
additional property besides τ and r that distinguishes worms from
non-worms. For each of the processes for which WormboyD re-
ceived snapshots over the course of 24 hours, we reviewed up to
an hour’s worth of data, exhaustively measuring the similarity
of each snapshot received during that frame against every other
snapshot received during the same. No matter our windows’ size,
we find that at least 315 of the 10,776 non-worm processes boast
τ ≥ 76% and r ≥ 64. Those 315 processes belong to 85 (17%) of
our 511 unique non-worms.

But if we further require that some process actually utilize the
network at a rate, r′, no slower than that of our slowest of worms,
we fare even better. (For reasons of privacy, Wormboy 2.0 does
not capture hooked calls’ parameters, the implication of which is
that we can only estimate r′ for now during automated analy-
sis.7) We now find, using a window of 15 seconds, that only
145/10, 776 ≈ 1% of processes appear to be worms and, equiv-

7Because Wormboy 2.0 does not capture hooked calls’ parame-
ters, we cannot detect network activity with certainty using ser-



15 s 30 s

Non-Worm Processes 10,776 (511) 10,776 (511)

. . . w/ τ ≥ 76%, r ≥ 64 351 (77) 315 (85)

. . . w/ τ ≥ 76%, r ≥ 64, r
′

> δ 145 (15) 112 (18)

Table 4: Results of exhaustive, worst-case examination of
10,776 non-worm processes for worm-like behavior, where
τ denotes a process’s degree of temporal consistency, r de-
notes a process’s rate of calls to system services, r′ denotes a
process’s rate of network activity, and δ denotes a threshold
(the slowest rate of network activity witnessed among our
9 worms). Listed parenthetically are the numbers of unique

non-worms (irrespective of version) to which processes be-
long. With intelligent filtration, as few as 15 (2.9%) of 511
unique non-worms resemble worms.

alently, that 99% of processes appear not to be worms. And
those 145 processes belong to just 15 (2.9%) of our 511 unique
non-worms (Table 3). We summarize these results in Table 4.
Though we earlier found through simulation 8% (2 of 25) non-
worms to resemble worms, we now lower that bound to 1%, using
real-world data filtered not only by τ and r but also by r′. Other
filters are certainly possible. But that only 15 of 511 remain
after these filters alone reinforces the potential of collaborative
detection, insofar as so few out of hundreds of non-worms might
potentially evince worm-like behavior on many hosts at once.

5.2 Detecting Processes across Peers
Prior work [21] suggests that worms can be detected on mul-

tiple hosts because of worms’ degrees of temporal consistency
(e.g., τ > 90%), and current work suggests that certain “worm-
like” non-worms, if not properly filtered, might be detected as
well. We confirm that hypothesis in this section. In particular,
we look for positive correlation between some process’s τ and the
probability with which our collaborative network recognizes that
process’s execution on multiple peers. Rather than inject worms
into our network of 30 hosts, we look to our most worm-like of
non-worms (Section 5.1) as proxies for worms. For the purposes
of this inquiry, we treat those non-worms with particularly high τ
as representative of worms. We expect that large τ should imply
high rates of recognition, whereas the smallest of τ should imply
few, if any, matches in snapshots from peers.

If we examine each of our 30 peers’ non-worms over 24 hours,
we find that only for large τ are multiple peers likely to recog-
nize a common process. Figure 4 depicts this result, plotting
non-worms’ rates of recognition against non-worms’ degrees of
temporal consistency. We define rate of recognition as follows:
if some non-worm is executing during some window on n ≥ 2
peers, and we determine that m such instances are similar, then
that non-worm’s rate of recognition for that window is said to be
m/n. By similar, we mean that, for each pair of processes among

the m,
|S1∩S2|

max(|S1|,|S2|)
≥ 0.5, where S1 and S2 are snapshots, for

at least 76% (our prior work’s least worrisome τ) of the snapshots
submitted for the processes (over the course of an hour). Infor-
mally, we deem two non-worms similar if at least 76% of their
snapshots look “mostly the same.” In terms of cliques, a rate of
recognition of m/n for some process during some window implies
recognition of an m-clique of similarity among snapshots from all
of our peers, n of which are actually executing that process. (It
is not necessarily the case that an n-clique also exists during that
window, as processes with τ < 100% might not “look the same”
across all peers during some window.) Because no cliques in our
study exceeded m = 6, we compiled our results for Figs. 4 and 5
using brute-force analysis. Cooperative networks boasting larger
n (and, in turn, larger m) will demand more efficient approaches;

vice IDs alone. We thus infer possible network activity from fre-
quent calls to NtOpenFile (the service involved in sockets’ cre-
ation), NtDeviceIoControlFile (the service involved in packets’
transmission), and NtCloseFile (the service involved in sockets’
termination) [17]. With the value of these three services in fil-
tration now clear, we will examine arguments at least to those
services in future implementations to detect with certainty net-
work (as opposed to, say, file) activity.

Figure 4: Rates of recognition of non-worms as a function
of those non-worms’ degrees, τ , of temporal consistency, av-
eraged over up an hour’s worth of activity during 24 hours
of analysis using windows of 30 seconds. If some non-worm
is executing during some window on n peers, and we de-
termine that m such instances are similar, then that non-
worm’s rate of recognition is said to be m/n. All non-worms
depicted boasted rates of calls into kernel space, r, greater
than 64 per second (the rate of our slowest of worms). As
we would hope for actual worms, only processes with large
τ are detected with non-negligible probability. Dots repre-
senting large τ but low rates of detection tend to belong to
short-lived processes that, because of their brevity, tend not
to appear among our 30 hosts simultaneously, unlike worms.
Shaded is this figure’s upper-right quadrant, which includes
six non-worms with τ ≥ 76% that were detected at least
10% of the time. We expect actual worms to fall within this
quadrant as well, per prior work [21].

we expect, as in other domains, that approximations (as with
Bloom filters or randomization) will suffice in future work.

To be clear, n is not necessarily our network’s size but, rather,
the number of hosts on the network executing some non-worm. As
such, m/n is simply a rate of recognition, not a rate of infection.

Though peers’ average rates of recognition are not strictly cor-
related with rising τ , in no 30-second window during our 24 hours
of data do multiple peers detect processes common to them if
those processes’ τ are below 65%. For τ ≥ 65%, we detect
common processes at non-negligible rates, except for short-lived
processes (whose points fall on Figure 4’s x-axis) that, because of
their brevity, tend not to appear among our 30 hosts simultane-
ously. Our goal, though, is to detect fast-spreading worms, whose
activity, by nature, is more likely to be ongoing than brief. That
processes with τ ≥ 65% are, in fact, recognized across peers re-
inforces host-based, collaborative detection’s potential, inasmuch
as τ for every one of our worms in prior work [21] was at least
76%. Because of worms’ relatively high degrees of temporal con-
sistency, we expect they will fall within Figure 4’s shaded, upper-
right quadrant, as do six of our most worm-like non-worms.

5.3 Avoiding False Positives
Because our goal is to detect worms rapidly (e.g., within a

single, 30-second window), it is necessary to examine not only
non-worms’ average rates of recognition but also their worst-case,
maximal rate of recognition (i.e., the maximum of m/n seen over
time). After all, even if some non-worm goes undetected most
of the time, a single window’s worth of similar behavior across
many peers might induce a false positive, whereby we judge that
non-worm a worm. Figure 5 contrasts average and maximal rates
of recognition for those non-worms whose average rates of recog-
nition exceed 1%.

Particularly worrisome are those non-worms whose maximal
rates of recognition are 50% < m/n ≤ 100%, the result of which
is that, on occasion, those non-worms were detected on most, if
not all, of the hosts on which they were running. But in none of
those cases were the non-worms running on most of the peers in
our network. In fact, in none of these cases was m (or n) greater
than 4, whereas our network consisted of 30 peers, an apparent
“infection” rate, ι, of 4/30 ≈ 13%. Accordingly, provided we set
our threshold for detection at 13% (i.e., require, for a worm to be
assumed present, that some process appear similar on ι > 13%
of peers), our cooperative of 30 peers avoids a false positive. In
other words, a high rate of recognition (m/n) does not imply
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Figure 5: Average and maximal rates of recognition for non-worms whose average rates of recognition exceed 1%. Figure 4 plots
these same average rates against non-worms’ degrees of temporal consistency. Only three of these non-worms (*) are worrisome
in that they also appear in Table 3, boasting worm-like τ , r, and r′.

a high rate of infection or, rather, in the case of non-worms, a
likelihood of false positives.

Based on these results, we propose, for now, ι = 13% as a
threshold for host-based, collaborative detection: if a worm-like
process (i.e., with worrisome r and r′) appears on more than 13%
of peers in a network, a worm shall be assumed present. We will
vet this parameter’s reliability in future work.

Our collaborative network’s potential for false positives is in-
deed less than Figure 5 suggests. If we cross-reference those non-
worms in Figure 5 with those in Table 3, we find that only three
are “worm-like,” insofar as they appear in both: ApntEx.exe,
explorer.exe, and OUTLOOK.EXE. Filtration by τ , r, and r′ there-
fore limits our risk of false positives to the actions of just three of
511 non-worms. At least two of these non-worms (iexplore.exe
and OUTLOOK.EXE) do involve frequent network activity, but not
so frequent as our fastest of worms [21]. Moreover, it may, in fact,
prove feasible to whitelist these most popular of non-worms (as
with read-only hashes of their executables). Our focus for now is
on our more generalized techniques.

Of course, not only might false positives induce an IDS to infer
incorrectly that an attack is in progress, they might also induce
an IDS to overstate an actual outbreak’s severity. By confusing
non-worms with actual worms, an IDS might conclude that more
hosts are infected than actually are, the result of which might be
a premature or unnecessarily severe reaction, depending on the
IDS’s mechanism for response.

To determine the likelihood with which non-worms resemble
might actual worms, we performed an exhaustive comparison of
snapshots from our 19 most worm-like non-worms (15 of which
appeared worm-like using windows of 15 seconds and 18 of which
appeared worm-like using windows of 30 seconds) among our 511
unique non-worms (Table 3) with snapshots from our first study’s
9 worms. The results are striking: 14 of the 19 non-worms are
similar to actual worms. More formally, the percentage of all

possible pairs of snapshots for which
|S1∩S2|

max(|S1|,|S2|)
≥ 0.5 itself

exceeds 50% for these 14 non-worms and is even as high as 100%
for one (Table 5).

Closer examination of these non-worms’ and worms’ snapshots
offers some insight. If we consider, for instance, the most striking
of these matches, sshd.exe vis-à-vis I-Worm/Mydoom.F, we see
that, while the two manifest remarkable overlap in services uti-
lized, their frequency distributions are markedly different (Fig-
ure 6), the implication of which is that consideration of either in
filtration might, in fact, prove useful in such cases.

But far simpler it is to filter based on non-worms’ rates, r′, of
network activity. Because Wormboy 2.0 does not capture hooked
calls’ parameters (again, for reasons of privacy), our current im-
plementation can only estimate those rates. In future deploy-
ments will we accurately assess processes’ r′. For the work at
hand, we resort to manual analysis of these worrisome matches
and find that none boasts as high rates of sockets’ creation, uti-
lization, and termination as do their matched worms.

Non-Worm Worm(s) Similarity

1.EXE I-Worm/Mydoom.F 58%

aolsoftware.exe I-Worm/Sasser.D 74%

apntex.exe Worm/Lovesan.A 56%

besclient.exe I-Worm/Mydoom.F 97%

ccproxy.exe I-Worm/Mydoom.F 77%

cvpnd.exe
I-Worm/Sasser.D 73%

I-Worm/Jobaka.A 66%

I-Worm/Sasser.B 64%

explorer.exe

I-Worm/Mydoom.F 85%

I-Worm/Bagle.S 61%

I-Worm/Bagle.Q 60%

Worm/Lovesan.H 58%

iexplore.exe
I-Worm/Mydoom.F 85%

Worm/Lovesan.A 71%

I-Worm/Mydoom.D 54%

OUTLOOK.EXE I-Worm/Mydoom.F 64%

SNDSrvc.exe
Worm/Lovesan.H 97%

I-Worm/Sasser.D 72%

sshd.exe I-Worm/Mydoom.F 100%

ViewMgr.exe
I-Worm/Sasser.D 74%

I-Worm/Mydoom.F 67%

wmplayer.exe I-Worm/Mydoom.F 51%

WRSSSDK.exe I-Worm/Mydoom.F 89%

Table 5: Similarity over time of 14 worm-like non-worms (Ta-
ble 3) with actual worms, determined using windows of 30
seconds. The striking similarities suggest that further reduc-
tion of a collaborative system’s probability of false positives
requires further refinements in filtration (e.g., some consid-
eration of calls’ order or relative frequencies).

6. THREATS
As with most host-based defenses, adversaries tend to adapt to

the latest heuristics. Our vision, like others, certainly comes with
its own risks. Worms designed to vary the frequencies of their
calls into kernel space are perhaps the most obvious threat to our
vision’s design. Superfluous calls to system services might render
one snapshot’s intersection with another entirely negligible, the
implication of which might be a failure to detect. To mitigate
this latter threat, we could require that calls be not only present
but perhaps in some proportion. The stealthiest of worms might
keep their executions brief but recurrent, rendering appropriate
response to already deceased processes non-obvious.

However, the strength of our proposed system rests with the
power of combinatorics. The more peers in a network, the more
likely we are to detect correlations, even in the face of adversarial
randomness. We are helped by inherent boundaries in our proxy
for behavior: with only finitely many system calls, a worm can
only vary so much, whereas networks need not be bounded by
only a few hundred peers.

However, the most virulent of worms might attack hosts’ abil-
ity to take or submit snapshots. After all, disabling software like
Wormboy tends not to be difficult, as it is not uncommon for



(a) sshd.exe (b) I-Worm/Mydoom.F

Figure 6: Snapshots from (a) sshd.exe and (b) I-Worm/Mydoom.F, using windows of 30 seconds. For each window, the frequency
of each service’s invocation is depicted as a percentage of the total number of calls into kernel space during that window. For
visual clarity, snapshots are unlabeled; distinct shades imply distinct system services. Although sshd.exe and I-Worm/Mydoom.F
appear similar to Wormboy (because the two invoke a large, common subset of system calls), the two differ in their relative
frequencies of invocations.

Windows users to log in with administrative rights (the implica-
tion of which is that worms, upon infection, might execute with
those same rights). But recent advances by Intel [4] and AMD [1]
in virtualization might mitigate this threat by allowing IDSes to
operate below worms’ radar.

Of course, our proposed architecture’s supernodes invite poten-
tial denial-of-service attacks, but no more so than other services
with any centrality (e.g., DNS). Similarly might worms attack
supernodes through submission of bogus or forged snapshots, de-
fense against will likely involve some form of authentication. We
will examine in future work these and other network-based threats
in more detail.

We will also explore in future work mechanisms for response to
worms upon detection.

7. RELATED WORK
In that we generalize the problem of worms’ discovery as a

problem of detection of widespread and coordinated behavior,
our work aligns with research generally focused on anomaly or
intrusion detection. Although literature in this space has focused
more on Linux, UNIX, and TCP/IP itself than it has on Windows,
ideas therein are of particular relevance to our own work.

Somayaji et al. [39,40] describe pH, a kernel extension for Linux
that monitors processes’ execution for unexpected sequences of
system calls, though only with respect to a host’s own prior be-
havior. An outgrowth of that research is work by Hofmeyr [15,16],
whose Sana Security, Inc. [35] provides “instant protection against
a targeted, emerging attack class.” Lee et al. [20] similarly extend
the work of Somayaji et al.

Eskin [7] focuses on anomaly detection using learned proba-
bility distributions, an approach that we might eventually adopt
for more dynamic definitions of snapshots. Of commercial rele-
vance to Wormboy are products from Symantec Corporation [44]
and McAfee, Inc. [22], the latter of which offers “zero-day pro-
tection against new attacks” by combining behavioral rules with
signatures.

Though more network- than host-based, Autograph [19] and
Polygraph [25] generate signatures for novel and polymorphic
worms, respectively. Singh et al. [37] propose methods for au-
tomated worm fingerprinting. Ellis et al. [6] propose a network
application architecture. Jung et al. [18] suggest sequential hy-
pothesis testing for scanning worms’ detection, while Schechter
et al. [36] offer improvements on the same. Weaver et al. [48]
advance cooperative algorithms for worms’ containment. Ander-
son and Li [2] endeavor to separate worm traffic from benign.
Williamson [49] proposes throttling viruses, while Twycross and
Williamson [46] explore implementation of the same.

Apap et al. [3] and Stolfo et al. [43] focus on Windows itself,
offering algorithms for anomaly detection within the Windows
registry. Hu and Mok [17], meanwhile, leverage kernel activity to
detect mass-mailing viruses.

8. CONCLUSION
Inherent in automated, behavior-based IDSes for worms is a

risk of false positives. We combat this risk with collaboration
among peers. In this paper, we vetted this idea using our imple-
mentation of Wormboy 2.0, a prototype for host-based, collabo-
rative detection available for other researchers to download and
use. We deployed our prototype to a network of 30 hosts running
Windows, where we monitored and analyzed 10,776 processes.
Using the data gathered from this network, we exposed the util-
ity of temporal consistency (similarity over time in worms’ and
non-worms’ invocations of system calls) in collaborative detec-
tion.

We identified properties with which we can distinguish non-
worms from worms 99% of the time. We found that a collabora-
tive network, using patterns of system calls and simple heuristics,
can detect worms running on multiple hosts. And we found that
collaboration among peers significantly reduces the risk of false
positives because of the unlikely, simultaneous appearance across
peers of non-worm processes with worm-like properties.

In future work, we will expand our deployment and re-evaluate
our thresholds for τ , r, r′, and ι with additional data. We will
question the scalability of our proposed supernodes, consider im-
plications of peers’ geography, and explore algorithms for rapid
analysis of peers’ snapshots. And we will consider how a host-
based, collaborative IDS should respond both to worms upon de-
tection and to attacks on its own architecture.

SOURCE CODE
Source code for Wormboy 2.0 is available for download from
http://www.eecs.harvard.edu/∼malan/.
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