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ABSTRACT
We propose a host-based, runtime defense against worms
that achieves negligible risk of false positives through peer-
to-peer cooperation. We view correlation among otherwise
independent peers’ behavior as anomalous behavior, indi-
cation of a fast-spreading worm. We detect correlation by
exploiting worms’ temporal consistency, similarity (low tem-
poral variance) in worms’ invocations of system calls. We
evaluate our ideas on Windows XP with Service Pack 2 us-
ing traces of nine variants of worms and twenty-five non-
worms, including ten commercial applications and fifteen
processes native to the platform. We find that two peers,
upon exchanging snapshots of their internal behavior, de-
fined with frequency distributions of system calls, can de-
cide that they are, more likely than not, executing a worm
between 76% and 97% of the time. More importantly, we
find that the probability that peers might err, judging a
non-worm a worm, is negligible.

Categories and Subject Descriptors
D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Invasive software

General Terms
Algorithms, Experimentation, Measurement, Security

Keywords
native API, P2P, peer-to-peer, system calls, system services,
temporal consistency, Win32, Windows, worms

1. INTRODUCTION
The fastest of worms do not allow time for human inter-

vention [16,23,33,34,37]. Necessary is an automated defense,
the first step toward which is detection itself. But detection
must be both accurate and rapid. Defenses as high in false
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positives as they are low in overhead are perhaps just as bad
as no defenses at all: both put systems’ usability at risk.

We propose a host-based, runtime defense against worms
that leverages peer-to-peer (P2P) cooperation to lower its
risk of false positives. We claim that, by exchanging snap-
shots of their internal behavior alone (regardless of network
traffic), peers can detect actions so correlated in time as to
be more likely those of a fast-spreading worm than not.

Common today are defenses based on automated recog-
nizance of signatures, sequences of bytes indicating some
worm’s presence in memory or network traffic. Such defenses
are fast, and specificity of signatures renders false positives
unlikely. But the protections are limited: systems are safe
from only those worms for which researchers have had time
to craft signatures, and signature-based defenses can be de-
feated by metamorphic or polymorphic worms [13,36].

Behavior-based defenses, which monitor systems for
anomalous (e.g., yet unseen) behavior, are an alternative,
perhaps less susceptible to defeat by mere transformations
of text, insofar as they judge the effect of code more than
they do its appearance. But this resilience comes at a cost:
accuracy or rapidity. Faced with some anomalous action,
behavior-based defenses must either block that action, po-
tentially impeding desired behavior, or wait for the user’s
judgement. Such defenses can be defeated by users them-
selves, annoyed or confounded by too many false positives
or prompts.

Through P2P cooperation can we obviate the need for
such manual intervention and still lower our risk of false
positives. Worms stand out among other processes not so
much for their novelty but for their simplicity and periodic-
ity: their design is to spread, their execution thus cyclical.
Granted, even the most innocuous of applications can evince
cyclical behavior reminiscent of attacking worms. But less
likely are we to see such behavior in near lockstep on mul-
tiple hosts, unless triggered by some threat.1 Through P2P
cooperation, then, can we lower our risk of false positives
by requiring that individual hosts no longer decide a worm’s
presence but a cooperative instead.

We focus in this paper on precisely this problem of col-
laborative detection with few false positives. We find that
we can detect worms by leveraging collaborative analysis of

1To allow for coordinated behavior in distributed applica-
tions (e.g., Entropia [2]), it would suffice to maintain white
lists. Such applications often provide protections in their
virtual machines against ill-behaved and malicious grid pro-
grams.



peers’ runtime behavior while reducing the collective’s risk
of false positives. Specifically, we find that two peers, upon
exchanging snapshots of their internal behavior, can decide
that they are, more likely than not, both executing the same
worm between 76% and 97% of the time. Moreover, we find
that, while certain non-worms can exhibit sufficiently cycli-
cal behavior as to be potentially mistaken by peers for worms
themselves, such mistakes can be avoided. Finally, we find
that two peers are unlikely to mistake a non-worm executing
on one for a worm executing on the other.

In the section that follows, we motivate our inquiry into
the viability of collaborative detection by expounding on our
proposal for a host-based, runtime defense leveraging P2P
cooperation. In Section 3, we describe the methodology with
which we explore the matter, and, in Section 4, we present
results on the efficacy of our approach. In Section 5, we
discuss threats to P2P cooperation. Finally, in Sections 6
and 7, respectively, we explore related work and conclude.

2. TEMPORAL CONSISTENCY
Conventional host- and behavior-based defenses dictate

that hosts evaluate some current action vis-à-vis prior ac-
tions; a host’s behavior is deemed anomalous if it differs
from that host’s prior behavior. We offer an alternative def-
inition of anomalous behavior. We propose that a host eval-
uate some current action vis-à-vis its peers’ current actions;
a host’s behavior is deemed anomalous if it correlates all too
well with other, otherwise independent, hosts’ behavior. We
argue that anomalous behavior, induced by some worm, can
be detected because of temporal consistency, similarity (low
temporal variance) in invocations of system calls.

We exploit the reality that worms’ behavior tends toward
simplicity and periodicity. Of course, non-worms’ behavior,
on occasion, can resemble that of worms’, as we discuss in
Section 4. But so relatively few are a worms’ actions, more
likely are we to detect them in lockstep on multiple peers
than those of larger, more complicated applications with
more code paths. Through P2P cooperation, then, can we
harness the power of combinatorics to lower our risk of false
positives.

Specifically, we propose a network of peers (Figure 1), each
running software designed to take snapshots of processes’
calls into kernel space. On some schedule do peers exchange
the relative frequencies of these calls during some window
of time (Figure 2). If the cooperative finds too many simi-
larities among snapshots, a worm is assumed present and a
response initiated.

Out of this vision comes a number of problems: how best
to detect similarities, how best to exchange snapshots, and
how best to respond. We address in this work the first of
these challenges: the problem of detection. We assume, for
the purposes of this inquiry, that communication among
peers is not only instantaneous and infinite but also cen-
tralized at some node. We bound, through experimenta-
tion with both worms and non-worms, the probabilities with
which peers might detect and mistake worms. We leave, for
subsequent work, relaxation of these assumptions, focusing
now on whether peers might detect worms at all with few
false positives.

We recognize that execution of some worm within a net-
work of hosts might not be perfectly synchronized, as hosts
might not have become infected at the same moment in time.
We must therefore tolerate some difference in timing, even

Figure 1: Our vision of collaborative detection of
fast-spreading worms using P2P networks. On some
schedule, peers exchange snapshots of their internal
behavior; too many similarities suggest anomalous
behavior, a worm’s presence.

Figure 2: Hypothetical trace of a process’s invoca-
tion over time of three system calls, each of which is
plotted as a separate line. Point (i, j) indicates j in-
vocations of some system call around time i. Shaded
are two samples, representative of snapshots that
might be exchanged by two peers. The more peers
that exchange snapshots similar to these, the more
correlated is their behavior, and the more likely are
they infected by some worm.

though hosts are to exchange snapshots of their behavior on
some schedule.

We offer two effective measures of similarity, both of which
are tolerant of offsets in timing. Neither measure expects
perfect matches in peers’ sequences of system calls, lest it
be too sensitive to slight variance in worms’ execution and to
randomization along code paths by the stealthiest of worms.

2.1 Measuring Similarity with Edit Distance
Our first measure of similarity treats snapshots of hosts’

behavior as ordered sets of system calls, enumerated accord-
ing to their frequencies of execution during some window of
time. Each such set is of the form S = (s0, s1, . . . , sn−1),
where each si is a unique token representing some system
call, and the relative frequency of si within the snapshot is
greater than or equal to that of sj , for i < j. A process is
said to be temporally consistent if a majority of snapshots
of its execution over time are similar.

We judge the similarity of two snapshots by way of the



edit distance between them, which we define here as the
number of insertions, deletions, and substitutions required
to transform one set of tokens into the other. Inasmuch as
this distance, d, is thus bounded by the larger of |S1| and
|S2|, for two snapshots, S1 and S2, we define the percentage
of similarity between the snapshots as 1 − d

max(|S1|,|S2|) . If

1 − d
max(|S1|,|S2|) ≥ 0.5 for a majority of pairs of snapshots

over time, the process to which those snapshots pertain is
said to be temporally consistent.

In that it considers invocations of system calls in the ag-
gregate, this measure finds similarity where mere pattern
matching (to which edit distance is conventionally applied)
might fail. But it is particularly sensitive to fluctuations in
system calls’ order (as might be induced by branches in a
worm’s call graph).

2.2 Measuring Similarity with Intersection
Our second measure of similarity treats snapshots of hosts’

behavior as unordered sets of system calls invoked during
some window of time. Each such set is again of the form
S = (s0, s1, . . . , sn−1), where each si is a unique token
representing some system call, but no ordering is imposed on
the set. A process is still said to be temporally consistent if a
majority of snapshots of its execution over time are similar.

But we judge the similarity of two snapshots, S1 and S2,
by way of S1∩S2. We define the percentage of similarity be-

tween two snapshots as |S1∩S2|
max(|S1|,|S2|) . If |S1∩S2|

max(|S1|,|S2|) ≥ 0.5

for a majority of pairs of snapshots over time, the process
to which the snapshots pertain is said to be temporally con-
sistent.

Blind as this version is to order, it allows for the emergence
of patterns despite slight differences in execution.

3. METHODOLOGY
We target Windows XP with Service Pack 2 (WinXP SP2)

for our proposed defense, as the platform offers a richness
of available worms (important in any behavioral study) and
is a perpetual recipient of innovative attacks. We look, as
have others before us [5, 10, 21, 31, 32], albeit on Linux and
UNIX, to system calls as a proxy for hosts’ behavior. And
we deploy our two measures of similarity to quantify the
probability that snapshots of calls into kernel space do, in
fact, belong to the same executable.

As our approach to detection does not require synchro-
nization among peers, we are able to evaluate our proposal’s
viability with traces of hosts’ behavior; we do not require the
experimental overhead of an actual network of peers. With
such traces, we simulate snapshots’ instantaneous exchange
between pairs of peers and compute the probabilities with
which those peers can decide that they are, more likely than
not, both executing the same worm.

As part of this work, we have implemented Wormboy 1.0,
software with which to gather these traces. And we have
traced the behavior of WinXP SP2’s fastest worms and
commonest non-worms. We elaborate here on our choice
of system calls (Section 3.1), our implementation of Worm-
boy (Section 3.2), and our experimentation on WinXP SP2
(Section 3.3). And we frame our inquiry into the efficacy
of collaborative detection as a set research questions (Sec-
tion 3.4).

3.1 A Proxy for Hosts’ Behavior
To the extent that they circumscribe kernel space, restrict-

ing execution’s passage from Ring-3 to Ring-0, system calls
enable summarization of code into low-level, but still seman-
tically cogent, building blocks. Other summaries might be
useful, particularly bytes received or even sent. But, covered
in literature as is the behavior of worms’ network traffic al-
ready [12,18, 29], we focus instead for temporal consistency
on worms’ utilization of WinXP SP2’s native API, the near-
est equivalent of Linux’s and UNIX’s system calls.

This native API comprises 284 functions, known also as
system services, implemented in kernel space by
NTOSKRL.EXE and exposed with stubs in user space by
NTDLL.DLL, against which most higher-level Win32 APIs are
linked. When called to invoke a system service, a stub in
NTDLL.DLL invokes SharedUserData!SystemCallStub after
moving into register EAX the service’s service ID and into
register EDX a pointer to the call’s arguments. To trap from
user- to kernel-mode, SharedUserData!SystemCallStub

then executes Intel’s SYSENTER instruction (for the
Pentium II and newer) or AMD’s SYSCALL instruction (for
the K7 or newer).2 Control is ultimately passed to
_KiSystemService, which dispatches control to the appro-
priate service by indexing into _KeServiceDescriptorTable

for the service’s address and number of parameters using the
value in EAX. [3, 7–9,20,24]

3.2 Wormboy 1.0
To capture the behavior of WinXP SP2 with respect to

its system services, we have implemented Wormboy 1.0,
a kernel-mode driver that inserts hooks into
_KeServiceDescriptorTable before and after all but two
system services.3,4 Inspired by Strace for NT [26], as well
as by work by Nebbett [17] and Dabak et al. [3], Wormboy
not only captures a call’s service ID and input parameters,
but also its output parameters and return value, along with
a caller’s name, process ID, thread ID, and mode. Though
Wormboy will ultimately serve as the core of a real-time de-
fense, the driver, for now, captures all such data to disk,
timestamping and sequencing each entry per trace, so that
we might experiment offline with different approaches to de-
tection. A link to Wormboy’s source code is offered at this
paper’s end.

2On older CPUs, SharedUserData!SystemCallStub exe-
cutes a slower INT 2e instruction.
3By default, _KeServiceDescriptorTable is read-
only, so Wormboy first disables the WP bit in regis-
ter CR0 [22, 30]. Alternatively, protection of kernel
memory itself could be relaxed, albeit dangerously,
by creating registry key HKEY LOCAL MACHINE\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory
Management\EnforceWriteProtection with a DWORD value
of 0x0 [26].
4WinXP SP2 appears to make certain assumptions
about system services NtContinue and NtRaiseException,
whereby it attempts to manipulate the stack frame based
on register EBP [25]; inasmuch as our hooks insert a frame
of their own, we do not hook these services to avoid system
crashes.



Worms
Non-Worms

Commercial Applications WinXP SP2 Processes

I-Worm/Bagle.Q Adobe Photoshop 7.0.1 alg.exe

I-Worm/Bagle.S Microsoft Access XP SP2 csrss.exe

I-Worm/Jobaka.A Microsoft Excel XP SP2 defrag.exe

I-Worm/Mydoom.D Microsoft Outlook XP SP2 dfrgntfs.exe

I-Worm/Mydoom.F Microsoft Powerpoint XP SP2 explorer.exe

I-Worm/Sasser.B Microsoft Word XP SP2 helpsvc.exe

I-Worm/Sasser.D Network Benchmark Client 1.0.3 lsass.exe

Worm/Lovesan.A Nullsoft Winamp 5.094 msmsgs.exe

Worm/Lovesan.H Windows Media Encoder 9.0 services.exe

WinZip 8.1 spoolsv.exe

svchost.exe

wmiprvse.exe

winlogon.exe

wscntfy.exe

wuauclt.exe

Table 1: Worms and non-worms whose traces we analyzed.

3.3 Traces of Worms and Non-Worms
To validate our claim of collaborative detection’s efficacy,

we look to some of WinXP SP2’s fastest worms and com-
monest non-worms to date. We base our results, put forth
in Section 4, on traces of nine variants of worms and twenty-
five non-worms, including ten commercial applications and
fifteen processes native to WinXP SP2 (Table 1).5

For each worm, we have traced its live activity for fif-
teen minutes, more than enough for its recurrent behavior to
surface. For each commercial application save one, we have
traced its execution under PC Magazine’s WebBench 5.0 [14]
or PC World’s WorldBench 5 [19] benchmarking suites.6 For
each native process, we have traced its execution during
twenty-four hours of user-free intervention.

Of course, none of these traces, save those of the worms,
may be representative of normal activity, if such can even
be said to exist. But, insofar as these traces have been
gathered in environments as deterministic as possible, we
argue that they actually allow us to estimate lower bounds
on peers’ ability to detect or mistake worms; it’s hard to
imagine programs more cyclical (and thus worm-like) than
those executing repeated tests or taking no input.

3.4 Research Questions
To detect novel worms by leveraging collaborative analysis

of peers’ runtime behavior, we must demonstrate that worms
tend to stand out in traces of system behavior based on calls
to system services. Given two or more samples from those
very same traces (i.e., snapshots of behavior), distinguishing
an attacking worm from an otherwise benevolent application
reduces to the following three questions, each irrespective of
our timing of samples.

5We call the worms by their names according to AVG Free
Edition 7.0.322 [6].
6We traced Nullsoft Winamp 5.094 as it played an MP3 of
James Horner’s 19-minute “Titanic Suite,” encoded at 160
kbps.

1. How likely is a worm to look like itself? The more sim-
ilar a worm’s execution during some window of time
to its execution during any other, the more capable
should peers be to correlate actions. Moreover, the
more similar a worm with respect to itself, the less it
should matter when peers sample their behavior. We
thus inquire as to whether worms are temporally con-
sistent.

2. How likely is a non-worm to look like itself? The more
similar a non-worm’s execution during some window of
time to its execution during any other, the more likely
might peers be to think it a worm. We thus inquire as
to whether non-worms are temporally consistent.

3. How likely is a non-worm to look like a worm? The
more similar a non-worm’s execution to that of a worm,
the more likely might peers be to mistake the benign
for the malevolent. We thus inquire as to whether
worms manifest similarities with non-worms.

4. RESULTS
We present in this section our results for the research ques-

tions of Section 3.4.

4.1 How likely is a worm to look like itself?
A worm is remarkably likely to look like itself, though it

depends on the measure of similarity. We find that, while
edit distance allows us to notice with near certainty (at
least 95%) the similarity, with respect to themselves, of
I-Worm/Sasser.D, Worm/Lovesan.A, and Worm/Lovesan.H,
using a window size of 15 seconds, the metric proves less
effective on other variants (Table 2), even for windows as
wide as 30 seconds. Bagle’s variants, in particular, appear
resistant to classification as temporally consistent using the
metric, with no more than 14% of possible pairs of snap-
shots resembling each other. The disparity, though signifi-
cant, is not surprising, if we consider the traces themselves.



5 15 30

I-Worm/Bagle.Q 14% 11% 10%

I-Worm/Bagle.S 14% 11% 11%

I-Worm/Jobaka.A 59% 50% 69%

I-Worm/Mydoom.D 92% 81% 73%

I-Worm/Mydoom.F 17% 31% 41%

I-Worm/Sasser.B 60% 54% 72%

I-Worm/Sasser.D 95% 97% 93%

Worm/Lovesan.A 99% 98% 93%

Worm/Lovesan.H 47% 95% 93%

Table 2: Probability with which two peers, upon ex-
changing snapshots of their internal behavior, can
decide using edit distance alone that they are, more
likely than not, both executing the same worm dur-
ing some window of time, for window sizes of 5, 15,
and 30 seconds. In other words, percentages of all
possible pairs of samples from some worm for which
1 − d

max(|S1|,|S2|) ≥ 0.5, where S1 and S2 are snap-

shots, treated as ordered sets, and d is the edit dis-
tance between them.

For instance, whereas Worm/Lovesan.A (Figure 3) mani-
fests an obvious, nearly constant, pattern, I-Worm/Bagle.Q
(Figure 4) boasts a less obvious pattern, clouded by over-
lapping frequencies.

With less precise measures, though, we can filter such
noise. If we consider only calls’ intersection but not relative
frequencies, we notice more trends. We now notice with near
certainty (97%), using a window size of 15 seconds, every
one of our worms save Bagle; but now even Bagle appears
temporally consistent (Table 3).

Still worthy of note, though not unexpected, is
Worm/Lovesan.H, which resists detection, no matter our
metric, using a window size of 5 seconds. Such narrow win-
dows simply fail to capture this worm’s periodicity (Fig-
ure 5); wider windows do capture its periodicity (Figure 6).

4.2 How likely is a non-worm to look like it-
self?

A non-worm is not nearly as likely to resemble itself as is
a worm to resemble itself. Of all our non-worms examined,
only Nullsoft Winamp and alg.exe boasted traces for which
more than 90% of 15-second snapshots resembled each other,
no matter the metric. And only alg.exe boasted a trace for
which more than 90% of 30-second snapshots resembled each
other, no matter the metric.

But alg.exe, during our twenty-four-hour run, made only
2295 calls to system services, an average of no more than
one per second. By contrast, even our “slowest” of worms,
I-Worm/Jobaka.A, averaged sixty-four such calls per sec-
ond. Insofar as processes averaging nearly zero calls per
second do not likely belong to fast-spreading worms, we sim-
ply require for temporal consistency that snapshots not be
so empty.

Nullsoft Winamp, by contrast, averaged 896 calls to sys-
tem services per second, so its temporal consistency neces-
sitates more intelligent filtration. To discourage false posi-
tives, whereby we classify non-worms as worms, we propose

5 15 30

I-Worm/Bagle.Q 80% 76% 81%

I-Worm/Bagle.S 82% 76% 73%

I-Worm/Jobaka.A 99% 97% 93%

I-Worm/Mydoom.D 99% 97% 93%

I-Worm/Mydoom.F 99% 97% 93%

I-Worm/Sasser.B 99% 97% 93%

I-Worm/Sasser.D 99% 97% 93%

Worm/Lovesan.A 99% 97% 93%

Worm/Lovesan.H 49% 97% 93%

Table 3: Probability with which two peers, upon ex-
changing snapshots of their internal behavior, can
decide using intersection alone that they are, more
likely than not, both executing the same worm dur-
ing some window of time, for window sizes of 5, 15,
and 30 seconds. In other words, percentages of all
possible pairs of samples from some worm for which

|S1∩S2|
max(|S1|,|S2|) ≥ 0.5, where S1 and S2 are snapshots,

treated as unordered sets.

to ignore binaries for which we have ample history or read-
only hashes (as we might for an application like Nullsoft
Winamp, if installed and executed with consent), against
which we might compare processes executing in memory. If
a process’s behavior or text is as we expect, it is not likely
a worm. Worms are by nature, after all, binaries foreign
to a machine, suddenly installed without users’ consent, for
which we are unlikely to have history or hashes. In future
work will we assess this filter’s efficacy.

It is in this analysis of non-worms that the sensitivities
of our measures of similarity become apparent. If we lower
our threshold for detection, requiring only that 50% (and
not 90%) of snapshots resemble each other, we find that
edit distance deems not only Nullsoft Winamp and alg.exe

worms but seven other binaries as well. If we turn instead
to intersection, as we did to catch Bagle, we realize that
this metric’s power comes at a cost: eleven binaries besides
Nullsoft Winamp and alg.exe are deemed worms. However,
a higher threshold (90%) does avoid these false positives.

4.3 How likely is a non-worm to look like a
worm?

Through exhaustive comparison of every possible snap-
shot from each worm against every possible snapshot from
each non-worm, we find that only one non-worm’s behav-
ior resembles, more often than not, that of a worm: Net-
work Benchmark Client is similar to I-Worm/Jobaka.A,
I-Worm/Sasser.B, and I-Worm/Sasser.D, if intersection is
our metric. But the resemblance is neither surprising nor
troubling, as Network Benchmark Client is practically a
worm itself, designed to fork five threads, each of which
induces stress on a server by initiating TCP sockets in rapid
succession.

5. THREATS TO P2P COOPERATION
Threats to our proposed scheme for collaborative detec-

tion include worms designed not to exhibit similarity in their
invocations of system services, no matter our measure. Ran-
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Figure 3: Calls to system services by Worm/Lovesan.A per 30-second window of time. Point (i, j) indicates
j calls to some service between times i and i + 30. Both edit distance and intersection capture this worm’s
pattern of activity.

0

500

1000

1500

2000

2500

0 30 60 90 120
150

180
210

240
270

300
330

360
390

420
450

480
510

540
570

600
630

660
690

720
750

780
810

840

time (seconds)

n
u

m
b

e
r 

o
f 

c
a

ll
s

NtClose NtDelayExecution NtDeviceIoControlFile NtQueryDirectoryFile

NtQueryInformationFile NtSetInformationFile NtUnmapViewOfSection NtWaitForSingleObject

Figure 4: Calls to system services by I-Worm/Bagle.Q per 30-second window of time. Point (i, j) indicates j
calls to some service between times i and i + 30. For visual clarity, less frequently called system services are
not pictured. Edit distance fails to capture this worm’s pattern of activity because of overlapping frequencies;
intersection does capture the pattern.

dom calls to system services by the stealthiest of worms
could skew analysis of peers’ behavior, particularly for our
measure of similarity based on edit distance, insofar as the
metric is sensitive to changes in order. However, to mitigate
this threat, we could consider order but allow for transposi-
tions, requiring only that the bubble-sort distance between
two snapshots (the number of swaps that bubble sort would
make to transform one ordered set into the other) be within
some bound. Our measure based on intersection is similarly
vulnerable to adversarial randomness, as the stealthiest of
worms might, on occasion, invoke all possible services in se-
ries, simply to render any intersection with another peer’s
snapshot negligible, thereby masking its presence on some

host. To mitigate this threat, though, we could simply re-
quire that calls be present not necessarily in some order but
at least in some proportion.

Of course, the more peers in a network, the more likely we
are to discover correlations, even in the face of randomness.
There are only so many ways that fast-spreading worms
might achieve malicious effects rapidly, bounded by time
as they are by their very definition.

Just as future work will address how best to exchange
snapshots and how best to respond to worms, once detected,
it will also address additional threats, involving not only
adversarial randomness but also matters of authentication,
availability, efficiency, and integrity.
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Figure 6: Calls to system services by Worm/Lovesan.H per 15-second window of time. Point (i, j) indicates
j calls to some service between times i and i+15. For visual clarity, less frequently called system services are
not pictured; similarly are most x-axis labels omitted. 15-second windows are adequate to capture periodicity
in this worm’s behavior.

6. RELATED WORK
Insofar as our own work aspires to generalize the problem

of worms’ discovery away from recognizance of pre-defined
signatures toward detection of widespread and coordinated
behavior, it falls within an area of research more generally
focused on anomaly or intrusion detection, be it network-
or host-based. Though a dearth of published work exists
for Win32, a growing body of literature exists for Linux,
UNIX, and TCP/IP alike. Of relevance to our own work is
that of Somayaji et al. [31,32], whose Linux-based pH moni-
tors processes’ execution for unexpected sequences of system
calls, though only with respect to a host’s own prior behav-
ior. An outgrowth of the same is work by Hofmeyr [10, 11],
whose Sana Security, Inc. [27] provides “instant protection
against a targeted, emerging attack class.” Similar are prod-
ucts from Symantec Corporation [35] and McAfee, Inc. [15],
the latter of which offers “zero-day protection against new
attacks” by combining behavioral rules with signatures.

Though more network- than host-based, worthy of note
are Autograph [12] and Polygraph [18], signature-generation
systems for novel and polymorphic worms, respectively. Also
of interest are the methods for automated worm fingerprint-
ing of Singh et al. [29] as well the network application ar-
chitecture of Ellis et al. [4]. Jung et al., meanwhile, pro-
pose sequential hypothesis testing for scanning worms’ de-
tection, while Schechter et al. [28] offer improvements on the
same. Twycross and Williamson [38] propose that worms

be throttled: instead of preventing such programs from en-
tering a system, they seek to prevent them from leaving.
Weaver et al. [39] similarly advance cooperative algorithms
for worms’ containment. In progress is work by Anderson
and Li [1] on separating worm traffic from benign.

7. CONCLUSION
Host-based detection of worms through P2P cooperation

is possible with negligible risk of false positives, as we demon-
strate through analysis on WinXP SP2 of nine variants of
worms and twenty-five non-worms. Our result follows from a
definition of anomalous behavior as correlation among other-
wise independent peers’ behavior. For the set of worms and
non-worms tested, we find that two peers, upon exchang-
ing snapshots of their internal behavior, defined in terms of
frequency distributions of calls to system services, can de-
tect execution of some worm between 76% and 97% of the
time because of worms’ temporal consistency. More signif-
icantly, the probability of false positives is negligible, and,
in those rare cases in which non-worms manifest temporal
consistency, simple filters eliminate the false positives.

This paper focuses entirely on the problem of collabora-
tive detection of worms. We will relax in subsequent work
our assumptions that communication among peers is instan-
taneous, the communication bandwidth infinite, and the de-
tection centralized. We will also explore what constitutes
an appropriate response for such a cooperative defense.
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SOURCE CODE
Source code for Wormboy 1.0 is available for download from
http://www.eecs.harvard.edu/∼malan/.
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