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Abstract
Upcoming multicore processors, with hundreds of cores

or more in a single chip, require a degree of parallel
scalability that is not currently available in today’s sys-
tem software. Based on prior experience in the super-
computing sector, the likely trend for multicore proces-
sors is away from shared memory and toward shared-
nothing architectures based on message passing. In light
of this, the lightweight messages and channels program-
ming model, found among other places in Erlang, is
likely the best way forward. This paper discusses what
adopting this model entails, describes the architecture of
an OS based on this model, and outlines a few likely im-
plementation challenges.

1 Introduction

The recent advent of multicore processors has changed
the rules for software development. Instead of a guaran-
teed speed boost, new hardware only provides increased
parallelism. Software only gets faster if it can take ad-
vantage, but parallel code is difficult and expensive to
write and may not produce satisfactory results. By great
effort Solaris has been made to scale to perhaps 128
cores; however, chips with hundreds of cores or more
seem likely in the moderately near future [6, 7, 17].

Some think this a crisis [10, 23, 18]. However, there is
one widely overlooked but fundamental detail: we have
been here before. From a hardware perspective, there
are assorted differences between multiple cores on a sin-
gle chip and multiple chips on a single motherboard. To
software, though, a multicore machine is nearly indistin-
guishable from a multiprocessor machine. Some cache
pressure issues arise because of different cache sharing
models [11] but otherwise, in both cases, system and ap-
plication software sees some number of apparently in-
dependent execution units. The Solaris scalability work
was largely done on multiprocessor Sparc machines prior
to the multicore era.

In particular, the parallel supercomputers of the 1980s
and 1990s exhibited all the same scaling limitations and
ensuing software issues that we expect to see in multi-
core systems. Rather than waste time repeating that his-
tory, we should look at where that work led. Parallel
supercomputers began with shared memory multiproces-
sor designs much like today’s four- and six-core boxes.
They have developed into massive shared-nothing clus-
ters that communicate by message passing, like Blue-
Gene [1]. The experience in that sector says that con-
ventional thread programming using locks and shared
memory does not scale to hundreds of cores. Moving
to the cloud, we also find that Map/Reduce is based on a
shared-nothing model. Drawing too detailed an analogy
between domains with different characteristics is danger-
ous; however, it is reasonable to assume that when ordi-
nary server machines come with cores in large numbers
that they too will be shared-nothing.

There is, consequently, no point pursuing the conven-
tional thread programming model and no point trying
to rework languages and tools to make that model more
friendly to non-experts. Instead, we should be looking to
programming models, concurrency paradigms, and lan-
guages that natively support, or are based entirely on,
messages rather than shared memory. Note that the Bar-
relfish group [5] reached essentially the same conclusion
from a somewhat different set of premises.

Given the lead times and expense associated with de-
veloping system software, we should already be doing
this. There is nonetheless no time like the present to get
started. The alternative is to give up and run a thousand
VMs in one box; that seems undesirable.

The obvious candidate for a new paradigm is the
lightweight message channels of Hoare’s communicating
sequential processes [13] and Milner’s pi calculus [16].
These lightweight channels are different from most com-
monly seen uses of messages in that they are fine grained
and low level: in this model sending a message is an
action comparable in scope to making a procedure call.



(This is lighter weight than the messages typically used
on supercomputers; however, communicating between
cores on the same die is also lighter weight than com-
municating between cluster nodes in a rack.)

This paradigm has not (yet) seen wide adoption, but
has been used successfully in demanding contexts: it
is the model behind Erlang [3], which has been used
to build real-world systems with impressive scalability
and reliability properties. The Ericsson AXD301 ATM
switch, whose software is written entirely in Erlang,
boasts nine nines of reliability [2], meaning it is down
for no more than 32 ms per year. A weaker version of
the model powered occam [14], the language used on the
Inmos Transputer. Recently Google’s Go language [12]
has made the model available to a broader audience.

The lightweight channels model is highly suitable for
upcoming multicore hardware, because it avoids the need
for shared memory. Fortunately it is also suitable as a ba-
sis for a new generation of operating systems. Because
traditional procedure or function calls are a special case
of messages, the conventional Unix system call API can
easily extend to messages. Existing single-threaded code
that is not performance critical can run unchanged. Old
shared-memory threaded code can be run on a small to
intermediate number of cores, as long as hardware sup-
ports that. New code can be written to take full advantage
of hundreds of cores at once.

The lightweight channels model can support either
a microkernel or macrokernel design. However, addi-
tional architectures are possible that share the advantages
of both traditional designs, as both are based on syn-
chronous procedure calls while messages can be asyn-
chronous. In particular a thread or core need not switch
protection domains to send system call messages. One
such architecture is discussed herein; others are possible.

In the next section we discuss related work, then in
Section 3, we discuss the lightweight message model in
more detail. Section 4 presents our proposed OS archi-
tecture. Section 5 discusses some challenges that arise
when implementing this design, and Section 6 summa-
rizes and concludes.

2 Related Work

Messages as a concept are found in many places, includ-
ing most distributed OSes and such highly obscure soft-
ware constructs as TCP/IP. Attempting to list even the
highlights would be futile. Lightweight messages and
lightweight message channels as discussed in this paper
are less common. Most messages seen in systems are
middleweight, comparable to a system call or network
packet: most microkernel messages and distributed OS
messages fall into this category. Mach [20] is the canon-
ical example. (Note however that in some systems, such

as L4 [15], messages are synchronous; the caller is sus-
pended until a response arrives. These are really proce-
dure calls, not messages in the general sense.) The mes-
sage systems commonly used in cluster supercomputers
are roughly this weight also.

Lightweight messages, comparable to a local proce-
dure call, mostly appear only when provided by a pro-
gramming language. The Amiga OS [8] was a notable
exception; it was structured entirely upon messages in
a C-based shared memory environment. Barnes et al.
have a message-oriented operating system under devel-
opment [4]. It is written in an extended variant of occam;
though intended for embedded systems the broad design
outline is (unsurprisingly) similar to that proposed here.

As noted earlier, Erlang [3] provides lightweight mes-
sages. Many real-world systems have been written in Er-
lang, but it remains outside the mainstream of systems
development. Rob Pike developed Newsqueak [19] more
than twenty years ago, specifically to bring the structural
advantages of the message model to GUI programming;
this technology has been carried forward to Go [12].

The work of Hoare [13] and Milner [16] forms the the-
oretical foundation of the model, with other important
work being done by Reppy [21].

Conventional macrokernel OSes (BSD, Linux, So-
laris, UNIX, CP/M, whatever) are not message-based
at all and do not enter into this discussion, although
FlexSC [22] proposes message-based system calls for
Linux. The relationship of the proposed architecture to
the conventional microkernel and macrokernel architec-
tures is discussed at the end of Section 4.

3 A Model of Messages and Channels

The lightweight channel and message model is a differ-
ent programming paradigm from traditional procedure-
based or even object-based code. This section provides a
brief outline of the model, explaining the new constructs
and operations and how they relate to more familiar code.

The lightweight channel and message model adds a
new type (the channel) and two new statements (send
and receive). Channels are the objects through which
messages are sent; they identify endpoints for commu-
nication. Messages can typically be any language value.
The statement c <- i; sends the value i to the chan-
nel c. The statement i <- c; reads a value out of
the channel c and stores it in the variable i. Depend-
ing on the implementation, send can be blocking or non-
blocking. A blocking send waits until a receiver is avail-
able; a non-blocking send queues values for later. Block-
ing send is easier to implement in a low-level environ-
ment (no buffering) and is more powerful [21]; however,
non-blocking send tends to be easier to use and, being
less synchronous, is probably faster.



A function call r = f(a, b); is equivalent, given
a listener thread on channel c that evaluates f, to writ-
ing c <- (a, b, c1); r <- c1;, where c1 is a
fresh channel used to send the return value back. This is
the basis of all network RPC systems, of course, but it
remains true at this level as well, and illustrates how the
lightweight channels model is a generalization of con-
ventional procedure calls. (Of course, nothing prevents
supporting ordinary procedure calls and implementing
them in the usual way.) Note that channels can be sent
through channels. This makes it possible to, for exam-
ple, plumb a connection by passing around a channel to
be used to carry data, and then afterwards move the data
directly to its destination by a single send operation.

The model also adds a new control structure, choice.
For example, the syntax

choose {
option r1 <- c1: action1(r1); break;
option r2 <- c2: action2(r2); break;
option r3 <- c3: action3(r3); break;

};

executes exactly one of the option lines, choosing to re-
ceive from whichever channel becomes ready first and
then executing the associated action code. In environ-
ments with blocking send, choice typically allows op-
tions that send as well as options that receive. Choice
provides functionality akin to the Unix select system
call (but on program objects rather than open files) and is
one of the things that makes the model powerful.

In this model threads are also lightweight, so typically
starting one is easy. The syntax start { foo(); }
launches a new thread to call the procedure foo.

Channels provide synchronization as well as commu-
nication. Strict implementations, such as Erlang, use no
shared memory; threads send messages through channels
by copying. This buys scalability at the cost of some
memory bandwidth overhead.

3.1 Peer vs. Hierarchical Structure
One of the benefits of the lightweight channels model is
that it allows moving away from procedure calls as the
dominant mechanism for structuring programs. Proce-
dure calls are asymmetric: the caller and callee are fun-
damentally different. This produces a hierarchical struc-
ture where the caller runs on top of the callee. Bidirec-
tional calling among peer subsystems tends to become
messy in languages that require a caller/callee relation-
ship. Typically one subsystem must artificially sit atop
the other, with reverse-direction calls set up as callbacks.

In the lightweight channels model, the relationship be-
tween sender and receiver is symmetric, because mes-
sages go from one running thread to another with no

control transfer. Peer subsystems can be structured to
send messages back and forth on a peer basis, instead of
requiring a false hierarchical relationship. This is par-
ticularly desirable for GUI programming, where the ap-
plication and display send messages back and forth. As
mentioned earlier, Newsqueak [19] offered this model.

There are a number of other cases in operating system
design where events or data flow naturally in the oppo-
site order to the normal subsystem layering. For exam-
ple, thermal, power, and hot-plug events necessarily orig-
inate in the kernel and flow upward to user space. Han-
dling these in a traditional nested kernel design is always
somewhat problematic. Similarly, in current Unix sys-
tems, asynchronous I/O completion notices are handled
via signals. If the process or thread receiving a signal is
working in the kernel, it must abandon and unwind ev-
erything that was in progress in the kernel to deliver the
signal. Then, typically, the process must restart the sys-
tem call and redo all the work it just unwound. This is un-
necessarily wasteful; most systems today have some spe-
cial purpose channel-like system to allow receiving these
and other notices more effectively. In an environment de-
signed around message channels this is not needed.

Note that hierarchical nesting of abstractions is still a
perfectly fine design principle, message channels or not,
when it makes sense [9]. However, it is neither necessary
nor desirable to shoehorn all problems into such a design.

4 Architecture

The foremost design choice for adopting the lightweight
channels model is the implementation language. The
system should be structured around the implementation
language the same way Unix is structured around C. Be-
cause this system is needed in the mainstream, and there-
fore must run old code easily, the language should be a
concurrent dialect of C and not Erlang. This language
must retain as many of the advantages of Erlang as pos-
sible (e.g. small thread stacks) without adopting Erlang’s
less desirable features (e.g. dynamic typing, sharing for-
bidden) and also not compromising the value of C as
a systems implementation language. However, detailed
language design is beyond the scope of this paper.

The key point from an operating system design per-
spective is that it is no longer necessary to transition to
kernel mode to make system calls, and no longer neces-
sary to use the cumbersome signal delivery mechanism
to send messages asynchronously from the kernel to an
application. Instead, we assume that some number of
kernel components are running on some cores and some
number of application components are running on other
cores. Making a system call involves sending a message
from an application thread running on an application core
to a kernel thread running on a kernel core. This can be



done without any mode transitions even without any par-
ticular hardware support [22]. We can, however, reason-
ably suppose that future hardware will have native sup-
port for sending and receiving messages.

In an aggressive design one might well run applica-
tions directly on a bare core with no system services at
all underneath. If an application wants e.g. virtual mem-
ory services or handlers for hardware exceptions it can
provide them itself or link with system-provided code in
libOS fashion. This is perfectly reasonable in a shared-
nothing environment where applications cannot scribble
on each other. A more conservative design, or one that
works given shared physical memory, would still have
to provide virtual memory and similar low-level services
underneath the application, but the size of the “kernel”
layer underneath the application would be minimal. In
either case it does not matter if the kernel components
that receive system call messages are running the proces-
sor in supervisor or user mode. Also note that in either
case legacy code can be linked against a compatibility
library and used unchanged.

The kernel components that receive system call mes-
sages are only the outer interface, of course. Changing
the system call interface around in a similar manner, just
to run the kernel and applications on different cores, has
been proposed before but will not itself make the ker-
nel scalable. Indeed, the whole kernel can and should be
structured to use lightweight channels in place of proce-
dure calls. Any abstraction found in a standard kernel
design can and probably should be converted to an au-
tonomous thread sending and receiving messages. These
can then be placed across a large number of cores as de-
sired. For example, the file system could be structured
so that every vnode is its own thread, which communi-
cates with other threads that administer cylinder groups
and free-maps and so forth. The premise of the model is
that messages (and threads) are made lightweight enough
for this kind of structure to be possible with only small
overhead that is made up by scaling.

Dispatch to different objects via a common interface,
which is conventionally done with tables of function
pointers, is done in this environment by sending to a
channel (or family of related channels) using a common
message protocol. The code receiving the messages can
be different for different channel instances.

It is also almost certainly desirable to give each device
driver its own, single, thread. Drivers would receive and
queue requests from elsewhere in the kernel; the code to
process the requests can then be written as simple active
procedural code, with no need for further synchroniza-
tion except to wait for interrupts. This eliminates a fer-
tile source of driver bugs. Note that as most hardware has
limited if any ability to do more than one thing at once,
there is little drawback to making any individual device

driver single-threaded. This is not a novel idea but the
lightweight channels model makes it easy to implement.

It is also worth noting that while verification of con-
current programs is difficult and verification of highly
concurrent programs is even more difficult, the use of
messages, channels, and defined protocols offers some
potential for static verification using techniques devel-
oped for networking software.

This design is neither a macrokernel nor a microkernel
in the conventional sense, but exhibits properties of both.
For example, it is like a microkernel in that the kernel is
divided into components that communicate among them-
selves but do not share memory or explicit state. It is
like a macrokernel in that the kernel is one body of code
and anything in the kernel can “call” (send messages to)
anything else if the language-level interfaces (channels
rather than external functions) are suitably exposed. It is
unlike a microkernel because the central function of a mi-
crokernel, conveying IPCs from one process to another,
is relegated to hardware. And it is unlike a macrokernel
because any individual thread operating any individual
internal object can be set up to run with the processor
in user mode rather than supervisor mode. The VM ser-
vices of the conservative design could be considered to
be a vestigial microkernel; however, in the aggressive de-
sign this code disappears completely.

This point may be somewhat controversial; it is worth
noting but probably not worth belaboring. The design
proposed is structurally more similar to a client/server
network application or to a cluster environment than to
either traditional kernel design.

5 Implementation Issues

There are doubtless a large number of challenges and dif-
ficulties that will appear while implementing this design.
Most probably can only be discovered in the course of
development; this is characteristic of building research
systems. However, some can be foreseen ahead of time.

Implementing choice effectively is always somewhat
difficult; implementing it effectively for hardware-based
channels can be expected to be a challenge.

Waiting for channels to become ready will likely be a
source of hassles. This has been seen already with Infini-
band and similar technologies, where waiting for opera-
tions to complete causes significant complications.

It is not entirely clear how virtual memory should op-
erate in this environment. In the aggressive design de-
scribed in the previous section virtual memory for pro-
tection is abandoned, and support for memory-mapped
files and other uses of the MMU can be handled by a
libOS. (And it is not entirely clear whether memory-
mapped files are desirable or even workable in a shared-
nothing environment.) In the conservative design, the



virtual memory system is retained, but its internal design
will be necessarily much different from today’s central-
ized model, and it is not yet clear exactly how.

The search for parallelism to enable scalability can
yield too much. With lightweight and fine-grained chan-
nels and threads it is easy to write code that uses vast
numbers of threads. For example, one might build a vir-
tual memory system with a thread for every page of phys-
ical memory in the system; that would produce too many
threads no matter how many cores are available. The risk
is that there may be no clean intermediate design points
between too many and too few threads and design com-
promises may be needed.

Partial failure, in which some components of a sys-
tem fail but others keep operating, leaving the system
inoperable and not easily recovered, becomes a problem
whenever there are multiple nontrivial autonomous en-
tities. Making a kernel built with lightweight channels
fully fail-stop is likely to be a challenge. On the other
hand, given some of the experience with Erlang [2] it
may be feasible to aim for not failing as an alternative.

Scheduling in general, and the specific problem of de-
ciding which threads to place on which cores, and which
groups of threads to place together on the same core, is
likely to present a new range of difficulties as the number
of threads and cores goes up.

And, of course, scaling in this world is only easier,
not free or automatic; it will take work, and will be diffi-
cult early in the development cycle before the hardware
is available.

6 Conclusions

This paper argues for the operating system level adop-
tion of a lightweight messages and channels program-
ming model. It outlines a novel OS architecture based on
this model and identifies some areas in which the imple-
mentation will likely be challenging.

Adopting the model and this or a similar architecture
will allow building operating systems that run effectively
on upcoming processors offering hundreds of cores or
more on a single chip. The likely alternative is the thor-
oughly unsatisfying and inefficient approach of turning
such a chip into a cluster of hundreds of apparently sepa-
rate virtual machines, with a few cores each, running un-
modified existing OSes. If the world becomes forced to
adopt such an approach, we, the systems research com-
munity, will have failed.

We would prefer not to have to say that in fifteen years.
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