Provenance-Aware Sensor Data Storage Systems

Jonathan Ledlie, Chaki Ng, David Holland, Kiran-Kumar Muniswamy-Redy, Uri Braun, Margo Seltzer
April 9, 2005
Outline

• Provenance: It’s not just about Science
• Provenance-Aware Storage Systems
• Approaches and Research Challenges in PASS
• Conclusions
More than Science

- Homeland security: from what did I derive this conclusion?
- Archival: what is the record of ownership of this document?
- Business: will this document stand up in a court of law?
- Science: how did I (they) get this result?
A Technical Definition of Provenance

- Attribute-value pairs.
 - Some attributes are standard (OS, CPU, process, parameters)
 - Some attributes are application-specific (BLAST query)
 - Some attributes may be domain-specific (astronomy coordinate precision)

This is an instance of a general problem: some data has meta-data that is as important as the data itself.
The State of Provenance Today

• Most provenance is entered manually.
• Provenance is a parallel, but separate data set from the actual data.
• In many fields, provenance is simply lacking.

There must be a better way!
Outline

• Provenance: It’s not just about Science
• Provenance-Aware Storage Systems
• Approaches and Research Challenges in PASS
• Conclusions
Provenance-Aware Storage Systems (PASS)

- Storage systems (e.g., file systems) in which provenance is a first class object (meta-data).
 - Maintained by the file system.
 - Kept consistent with the data itself.
 - Maintained in the presence of deletion of the data.

- Provenance is generated and maintained as automatically as possible.

- Support for rich indexing of provenance.
Automatic Provenance Generation

- There are four types of data:
 1. New data: provenance is inside a user’s head.
 2. Data from a device: sensor network, microarray data, images, etc.
 3. Derived data: results from a transformation of existing data.
 4. Databases
- Type 1: requires manual intervention.
- Type 2: requires semi-automatic translation.
- Type 3: fully automated maintenance.
- Type 4: need specific DB-style solution.
- Operating system tracks and generates provenance for all transformations.
Index and Query

- Users will want to query on provenance
 - Show me everything derived from my file
 - Show me everything upon which I depend
 - How did I get here?
- Provenance schema is not fixed
 - My experiment will have different parameters from yours; parameters are part of the provenance of the result.
- This is the intersection of databases and file systems.
Outline

• Provenance: It’s not just about Science
• Provenance-Aware Storage Systems
• Approaches and Research Challenges in PASS
• Conclusions
The PASS Agenda

• PASS-I: Integrate provenance with the file system.
• PASS-II: Automatically generate and maintain provenance on a local system.
• PASS-III: Automatically generate and maintain provenance in a network file system or other distributed environment.
• PASS-IV: Support distributed query across a collection of PASS devices.
Research Challenges

• Provenance Issues
• Systems Issues
• Data Management Issues
Provenance Issues

- Integrity
 - Trusting OS vs app-generated provenance?
- Security
- Cycles
 \[
 \begin{align*}
 P1 & \quad W(a) \\
 W(a) & \quad R(a) \\
 R(b) & \quad W(b) \\
 \end{align*}
 \]
- Pruning
Systems Issues

• When is provenance created?
• When does it become queriable?
• How do you enforce provenance across a wire?
• Do we need a new network file system protocol?
• What do you do about distributed provenance?
Data Management Issues

- Efficient ancestor/descendant queries in the face of multiple parents, and potentially long ancestry chains.
- Rapid queries on schema-less data.
- Attribute names mean different things to different people.
Outline

• Provenance: It’s not just about Science
• Provenance-Aware Storage Systems
• Approaches and Research Challenges in PASS
• Conclusions
Status

- Focusing on scientific users.
 - Willing users in biology, physics, astronomy.
 - First PASS: command-line programs.
 - Second PASS: interface with application tools (e.g., Matlab, packaged software)
- We have a solution for transformations, device interfaces need to be customized.
- Put the system in the hands of users in April.
Conclusions

• Provenance is vital for research reproducibility.
• It is also vital in a number of other fields.
• The storage system is the right place to manage provenance.
• I believe that provenance is the next “big thing” in storage systems.
• Ten years from now, PASS will be as ubiquitous as RAID is today.