Performance Introspection of Graph Databases

Peter Macko
Harvard University
Cambridge, MA

Daniel Margo
Harvard University
Cambridge, MA

Margo Seltzer
Harvard University
Cambridge, MA
Conventional Benchmark

Benchmarking Graph Database X
Dataset with 2 mil. nodes, 10 mil. edges

Unidirectional BFS-based shortest path:

38.3 seconds
Performance Introspection of Graph Databases

- A black-box approach to understanding the strengths and inefficiencies of graph databases.
- A benchmarking methodology that identifies how smaller operations fit together to create bigger operations using quantitative relationships.
- A web-based tool to run the benchmarks and to visualize the results.
Outline

1. Introduction
2. Methodology
3. Implementation
4. Selected Results
5. Conclusion
Methodology

1. Recursively **decompose** a graph application into its primitive graph operations:
 - Get vertex, edge, property
 - Insert/update vertex, edge, property

2. **Measure** each operation.

3. **Model** higher level operations naively in terms of lower-level operations.

4. **Compare** actual and modeled performance to identify strengths/weaknesses of implementation.
Example – Decomposition

• Consider the BFS shortest path:

```c
Function Shortest-Path(source, target):
    Q ← new Queue { source }
    while Q is not empty:
        v ← dequeue from Q
        if v = target:
            done
        else:
            N ← Get Neighbors of v
            for n ∈ N:
                if n was not yet visited: enqueue n to Q
```

• How long should it take with no optimization?

\[(\text{Latency of Get Neighbors}) \times (\text{# of visited neighborhoods})\]
Example – Recursive Decomposition

BFS Shortest Path:

- A simple BFS shortest path algorithm decomposes into some number of “Get Neighbors” queries
- A call to “Get Neighbors” traverses on average n edges
- A “Traverse” operation gets a single edge from the database and the vertex at the other endpoint
Example – Recursive Decomposition

BFS Shortest Path:

\[\text{Latency-Model(Shortest Path)} = m \times \text{Latency(Get Neighbors)} \]

\[\text{Latency-Model(Get Neighbors)} = n \times \text{Latency(Traverse)} \]

\[\text{Latency-Model(Traverse)} = \text{Latency(Get Vertex)} + \text{Latency(Get Edge)} \]
Example – Recursive Decomposition

BFS Shortest Path – Neo4j, 2 mil. node graph:

Latency-Model(Shortest Path) = m × Latency(Get Neighbors)

Latency-Model(Get Neighbors) = n × Latency(Traverse)

Latency-Model(Traverse) = 0.5 µs + 3.4 µs
= 3.9 µs
Example – Recursive Decomposition

BFS Shortest Path – Neo4j, 2 mil. node graph:

Latency-Model(Shortest Path) = m × Latency(Get Neighbors)

Latency-Model(Get Neighbors) = 10 × 3.9 µs = 39 µs
Actual: 32 µs

Latency-Model(Traverse) = 0.5 µs + 3.4 µs
= 3.9 µs
Example – Recursive Decomposition

BFS Shortest Path – Neo4j, 2 mil. node graph:

Latency-Model(Shortest Path) = 523,000 \times 32 \mu s = 35.6 s
Actual: 38.3 s

Latency-Model(Get Neighbors) = 10 \times 3.9 \mu s = 39 \mu s
Actual: 32 \mu s

Latency-Model(Traverse) = 0.5 \mu s + 3.4 \mu s = 3.9 \mu s
Types of Operations

BFS Shortest Path:

- **Algorithms:** Higher-level operations; often not part of the graph API.

- **Graph Operations:** Common building blocks for higher level operations.

- **Micro-Operations:** Low-level operations that do not further decompose or that cannot be measured directly (and thus must be modeled).
Another Decomposition Example

Clustering Coefficients:

- Computing a clustering coefficients (i.e., triangle counting) involves getting k-hop neighborhoods for $k = 2$
- “Get k-hop neighbors” gets all neighbors that are at most k hops away from a given starting vertex
- (We have already seen “Get Neighbors” before)
Inserting a subgraph into a database is a combination of add vertex, add edge, and set edge or vertex property micro-operations.

Performing one ingest at a time is often inefficient, so databases frequently provide optimized bulk ingest.
Operation Decomposition Summary

Algorithms

- Compute clustering coeff.
- Hop-plot analysis
- Max flow
- BFS Shortest Path
- Single-source SP
- All-pairs SP

Graph operations

- INS subgraph
- Bulk Ingest
- SET prop
- ADD vertex
- ADD edge

Micro-operations

- GET vertex
- GET edge
- GET prop

Applications

- Compute PageRank
- Identify small world

Operations

- Get neighbors
- Get (cond) neighbors
- Get k-hop neighbors
- Traverse
- Get

- Add
- Set
- Ins
Outline

1. Introduction
2. Methodology
3. Implementation
4. Selected Results
5. Conclusion
Implementation

• Started with choosing the Blueprints API – a uniform Java API for accessing property graphs (graphs with properties on nodes and edges)

• Benchmark and all tools implemented in Java
Interfacing with Databases

- **Blueprints** – The benchmark framework and the reference implementation for each operation

- For each graph database:
 - Required: Implement a few methods (150 LOC on average)
 - Optional: Re-implement each operation in the database’s native API for improved performance

- Tested with: *dex* Neo4j

- During development, also BerkeleyDB and MySQL
Benchmark structure

1. Initialize each operation
 - Pick random vertices, edges, and/or property values
 - A vertex can be selected uniformly at random or proportionally to its degree

2. Pollute the caches by a linear scan, to:
 - Warm up the caches, and
 - Ensure that cache contents do not come from initialization

3. Run each operation
 - Report results only for the last 10-25% of executions to make sure we report results from JIT-ed, not interpreted byte-code
 - Collect: time, memory usage, number of accessed vertices and neighborhoods, GC time, etc.
Using the Benchmark

1. Through a command-line:

   ```bash
   graphdb-bench$ ./runBenchmarkSuite.sh --dex -d blk_1el --get
   ```

2. Through a web interface:

 ![Web Interface Image]

 - **Instance Name**
 - `<default>`
 - `amazon0302`
 - `amazon0312`
 - `blk_1el`
 - `blk_2el`

 - **Read-Only Workloads**
 - Options: A blank operation (noop), Compute PageRank, Get, Get - micro ops only, Get - traversals only, Get k-hop, Get k-hop using edge label

 - **Number of Operations**
 - At least 1
 - Default: 100

 - **Number of K Hops**
 - A number or a range (e.g., 1:5)
 - Default: 1:5

 - **Edge Property Key for Conditional Traversal**
 - Use “none” to disable
 - Default: time

 ![Graph Loading and Generation]

 - Create index
 - Generate
 - Incremental Ingest
 - Ingest

 ![Configure the workloads]

 - Add to the Queue
Viewing the Results

Through a web interface:

<table>
<thead>
<tr>
<th>Instance Name</th>
<th>BerkeleyDB</th>
<th>DEX</th>
<th>MySQL</th>
<th>Neo4j</th>
</tr>
</thead>
<tbody>
<tr>
<td><default></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>amazon0302</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>amazon0312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1k_1el</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1k_2el</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Select operations to compare:

- AddManyEdges
- AddManyVertices
- Blank
- CreateKeyIndex
- edge-time
- vertex-age
- vertex-
- DeleteGraph
- GetAllNeighbors
- both
- in
- GetFirstNeighbor
- both
- in

![Bar chart showing execution times for DEX and Neo4j](image)
Outline

1. Introduction
2. Methodology
3. Implementation
4. Selected Results
5. Conclusion
Experimental Setup: Platform

• Databases:
 – Neo4j 1.8
 – In the paper: DEX 4.6

• Benchmarked on:
 – Intel Core i3, 3 GHz, 4 GB RAM
 – Ubuntu 12.04 LTS
 – 1 GB Cache, 1 GB JVM Heap
Experimental Setup: Datasets

• Datasets:
 – Barabasi graphs (small world networks), m=5
 – In the paper: Kronecker graphs (natural networks)
 – In the paper: Amazon co-purchasing networks (from SNAP)

• Four different sizes of Barabasi graphs:

<table>
<thead>
<tr>
<th># Nodes</th>
<th>Operating Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 K</td>
<td>Fits entirely in DB cache (Neo4j: fits entirely in the object cache)</td>
</tr>
<tr>
<td>1 mil.</td>
<td>Fits entirely in DB cache</td>
</tr>
<tr>
<td>2 mil.</td>
<td>Bigger than DB cache, but fits in memory</td>
</tr>
<tr>
<td>10 mil.</td>
<td>Bigger than memory</td>
</tr>
</tbody>
</table>
Experimental Setup: Workload

Get k-Hop Neighbors

Evaluate Get Neighbors using modeled Traverse
(We cannot evaluate Traverse, since we cannot measure it directly.)
Neo4j: Get Neighbors

Model:

\[
\text{(\# Accessed Vertices)} \times (\text{Latency(Get Vertex)} + \text{Latency(Get Edge)})
\]

![Graphs showing latency vs. number of accessed nodes for Neo4j 1m, 2m, and 10m.]
Experimental Setup: Workload

Get k-Hop Neighbors

Evaluate Get k-Hop Neighbors using actual Get Neighbors

OPTIMIZATION DETECTED

(We cannot evaluate Traverse, since we cannot measure it directly.)
Neo4j: Get k-Hop Neighbors

Model:

\[
\text{(\# Calls to Get Neighbors)} \times \text{Latency(Get Neighbors)}
\]

Using actual, not modeled latency of Get Neighbors.
Experimental Setup: Workload

Get k-Hop Neighbors

NO OPTIMIZATION DETECTED

(We cannot evaluate Traverse, since we cannot measure it directly.)
Selected Results Summary

• Neo4j’s neighborhood queries
 – Good optimization of individual neighborhood queries when the database does not fit in the cache
 – No optimization of multiple neighborhood queries, even when run in a BFS order
Outline

1. Introduction
2. Methodology
3. Implementation
4. Selected Results
5. Conclusion
Conclusion

Performance Introspection of Graph Databases

A black-box approach to understanding strengths and weaknesses of graph databases by comparing the actual and the modeled performance.

Availability: code.google.com/p/pig-bench
Contact: pmacko at eecs.harvard.edu

Thanks to: