
Arabic Diacritization Using Weighted Finite-State Transducers

Rani Nelken and Stuart M. Shieber
Division of Engineering and Applied Sciences

Harvard University
33 Oxford St.

Cambridge, MA 02138
{nelken,shieber}@deas.harvard.edu

Abstract

Arabic is usually written without short
vowels and additional diacritics, which
are nevertheless important for several
applications. We present a novel al-
gorithm for restoring these symbols,
using a cascade of probabilistic finite-
state transducers trained on the Ara-
bic treebank, integrating a word-based
language model, a letter-based lan-
guage model, and an extremely simple
morphological model. This combina-
tion of probabilistic methods and sim-
ple linguistic information yields high
levels of accuracy.

Introduction

Most semitic languages in both ancient and con-
temporary times are usually written without
short vowels and other diacritic marks, often
leading to potential ambiguity. While such am-
biguity only rarely impedes proficient speakers,
it can certainly be a source of confusion for be-
ginning readers and people with learning disabil-
ities (Abu-Rabia, 1999). The problem becomes
even more acute when people are required to
actively generate diacritized script, as used for
example in poetry or children’s books. Diacriti-
zation is even more problematic for computa-
tional systems, adding another level of ambigu-
ity to both analysis and generation of text. For
example, full vocalization is required for text-
to-speech applications, and has been shown to
improve speech-recognition perplexity and error
rate (Kirchoff et al., 2002).

We present a system for Arabic diacritiza-
tion1 in Modern Standard Arabic (MSA) using
weighted finite-state transducers. The system
is constructed using standardly available finite-
state tools, and encodes only minimal morpho-
logical knowledge, yet achieves very high levels
of accuracy. While the methods described in this
paper are applicable to additional semitic lan-
guages, the choice of MSA was motivated by the
availability of the Arabic Treebank, distributed
by the Linguistic Data Consortium (LDC), a siz-
able electronic corpus of diacritized text, which
we could use for training and testing. Such re-
sources are rare for other semitic languages.

This paper is structured as follows. In Sec-
tion 1, we describe the task, including a brief in-
troduction to Arabic diacritization, and the cor-
pus we used. In Section 2, we describe the design
of our system, which consists of a trigram word-
based language model, augmented by two exten-
sions: an extremely simple morphological ana-
lyzer and a letter-based language model, which
are used to address the data sparsity problem.
In Section 3, we report the system’s experimen-
tal evaluation. We review related work in Sec-
tion 4, and close with conclusions and directions
for future research in Section 5.

1 The task

The Arabic vowel system consists of 3 short vow-
els and 3 long vowels, as summarized in Ta-

1We distinguish between vocalization—the restora-
tion of vowel symbols—and diacritization, which includes
additionally the restoration of a richer system of diacritic
marks, as explained below.



Short vowels
Vocalized Unvoc. Pronounc.

Arab. Tran. Arab. Tran.
���� u - - /u/

���� a - - /a/

���� i - - /i/

Long vowels
ñ���� uw ð w /u:/

A���� aA(1),(2) @ A /a:/

ù���� aY ø Y(3) /a:/

ù
 ���� iy ø
 y /i:/

Doubled case endings
�� N - - /un/
�� F - - /an/

A�� AF @ A /an/

�� K - - /in/
(1) aA may also appear as A even in vocalized text.
(2) In some lexical items, aA is written as ‘; in which case
it is dropped in undiacritized text.
(3) Y and y can appear interchangeably in the cor-
pus (Buckwalter, 2004).

Table 1: Arabic vowels

ble 1.2 Short vowels are written as symbols ei-
ther above or below the letter in diacritized text,
and dropped altogether in undiacritized text.
Long vowels are written as a combination of a
short vowel symbol, followed by a vowel letter;
in undiacritized text, the short vowel symbol is
dropped. Arabic also uses vowels at the end of
words to mark case distinctions, which include
both the short vowels and an additional doubled
form (“tanween”).

Diacritized text also contains two syllabifica-
tion marks: �H. (trans.: ∼) denoting doubling of

the preceding consonant (in this case, H. ), and
�H. (trans.: o), denoting the lack of a vowel.

The Arabic glottal stop (“hamza”) deserves
special mention, as it can appear in several dif-
ferent forms in diacritized text, enumerated in

2Throughout the paper we follow Buckwalter’s
transliteration of Arabic into 7-bit ASCII charac-
ters (2002a).

Arab. Tran. Arab. Tran.

@ >

�
@ |

@ < � ’
ð' &

�
@ {

ø' }

Table 2: Arabic glottal stop

Table 2. In undiacritized text, it appears either
as A or as one of the forms in the table.

We used the LDC’s Arabic Treebank of dia-
critized news stories (Part 2). The corpus con-
sists of 501 news stories collected from Al-Hayat
for a total of 144,199 words. In addition to dia-
critization, the corpus contains several types of
annotations. After being transliterated, it was
morphologically analyzed using the Buckwalter
morphological analyzer (2002b). Buckwalter’s
system provides a list of all possible analyses of
each word, including a full diacritization, and
a part-of-speech (POS) tag. From this candi-
date list, annotators chose a single analysis. Af-
terwards, clitics, which are prevalent in Arabic
were separated and marked, and a full parse-
tree was manually generated. For our purposes,
we have stripped all the POS tagging, to retain
two versions of each file—diacritized and undi-
acritized, which we use for both training and
evaluation as will be explained below.

An example sentence fragment in Arabic is
given in Figure 1 in three forms: undiacritized,
diacritized without case endings, and with case
endings.

. . . úæ�ñÓ ðQÔ« �éJ
K. QªË@ ÈðYË@ �éªÓAm.Ì ÐAªË @ 	á�
Ó

B@ XP

. . . úæ��ñ�Ó ðQ�Ô
�« �é��J
K.�

�Q �ªË@ È �ð �YË@ �é �ªÓ� A
�m.Ì�

�ÐA �ªË @ 	á�
Ó�
�
B@

��X �P

. . . úæ��ñ�Ó ðQ�Ô
�« �é�

��J
K.�
�Q �ªË@ È�

�ð �YË@ �é�
�ªÓ� A

�m.Ì�
��ÐA �ªË @

�	á�
Ó�
�
B@

��X �P

Figure 1: Example sentence fragment

The transliteration and translation are given
in Figure 2. We follow precisely the form that
appears in the Arabic treebank.3

3The diacritization of this example is (strictly speak-
ing) incomplete with respect to the diacritization of the



rd
rad∼a
rad∼a

Al>myn
Al>amiyn
Al>amiynu

AlEAm
AlEAm∼
AlEAm∼u

ljAmEp
lijAmiEap
lijAmiEapi

Aldwl
Alduwal
Alduwali

AlErbyp
AlEarabiy∼ap
AlEarabiy∼api

Emrw
Eamorw
Eamorw

mwsY
muwsaY
muwsaY

“Arab League Secretary General Amr Mussa replied. . . ”

Figure 2: Transliteration and translation of the sentence fragment

2 System design

To restore diacritization, we have created a gen-
erative probabilistic model of the process of los-
ing diacritics, expressed as a finite-state trans-
ducer. The model transduces fully diacritized
Arabic text, weighted according to a language
model, into undiacritized text. To restore dia-
critics, we use Viterbi decoding, a standard al-
gorithm for efficiently computing the best path
through an automaton, to reconstruct the max-
imum likelihood diacritized word sequence that
would generate a given undiacritized word se-
quence.

The model is constructed as a composi-
tion of several weighted finite-state transduc-
ers (Pereira and Riley, 1997). Transducers are
extremely well-suited for this task as their clo-
sure under composition allows complex models
to be efficiently and elegantly constructed from
modular implementations of simpler models.

The system is implemented using the AT&T
FSM and GRM libraries (Mohri et al., 2000; Al-
lauzen et al., 2003), which provide a collection
of useful tools for constructing weighted finite-
state transducers implementing language mod-
els.

2.1 Basic model

Our cascade consists of the following transduc-
ers, illustrated in Figure 3.

Language model (LM) A standard trigram
language model of Arabic diacritized words. For
smoothing purposes, we use Katz backoff (Katz,
1987). We learn weights for the model from a
training set of diacritized words. This is the

determiner Al and the letter immediately following it.
For instance, in Alduwal, the d should actually have been
doubled, yielding Ald∼uwal. The treebank consistently
does not diacritize Al, and we adhere to its conventions
in both training and testing.

LM SP DD UNK

Figure 3: Basic model

only component of the basic model for which
we learn such weights. During decoding, these
weights are utilized to choose the most prob-
able word sequence that could have generated
the undiacritized text. The model also includes
special symbols for unknown words, 〈unk〉, and
for numbers, 〈num〉, as explained below.

Spelling (SP) A spelling transducer that
transduces a word into its component letters.
This is a technical necessity since the language
model operates on word tokens and the follow-
ing components operate on letter tokens. For in-
stance the single token Al>amiyn is transduced
to the sequence of tokens A,l,>,a,m,i,y,n.

Diacritic drop (DD) A transducer for drop-
ping vowels and other diacritics. The transducer
simply replaces all short vowel symbols and syl-
labification marks with the empty string, ε. In
addition, this transducer also handles the mul-
tiple forms of the glottal stop (see Section 1).
Rather than encoding any morphological rules
on when the glottal stop receives each form, we
merely encode the generic availability of these
various alternatives, as transductions. For in-
stance, DD includes the option of transducing
{ to A, without any information on when such
transduction should take place.

Unknowns (UNK) Due to data sparsity, a
test input may include words that did not ap-
pear in the training data, and will thus be un-
known to the language model. To handle such
words, we add a transducer, UNK, that trans-
duces 〈unk〉, into a stochastic sequence of ar-



bitrary letters. During decoding, the letter se-
quence is fixed, and since it has no possible dia-
critization in the model, Viterbi decoding would
choose 〈unk〉 as its most likely generator.

UNK plays a similar purpose in handling
numbers. UNK transduces 〈num〉 to a stochasti-
cally generated sequence of digits. In the train-
ing data, we replace all numbers with 〈num〉. On
encountering a number in a test input, the de-
coding algorithm would replace the number with
〈num〉. As a post-processing step, we replace all
occurrences of 〈unk〉 and 〈num〉 with the original
input word/number.

2.2 Handling clitics

Arabic contains numerous clitics, which are ap-
pended to words, either as prefixes or as suf-
fixes, including the determiner, conjunctions,
some prepositions, and pronouns. Clitics pose
an important challenge for an n-gram model,
since the same word with a different clitic combi-
nation would appear to the model as a separate
token. We thus augment our basic model with
a transducer for handling clitics.

Handling clitics using a rule-based approach is
a non-trivial undertaking (Buckwalter, 2002b).
In addition to cases of potential ambiguity be-
tween letters belonging to a clitic and letters be-
longing to a word, clitics might be iteratively
appended, but only in some combinations and
some orderings. Buckwalter maintains a dictio-
nary not only of all prefixes, stems, and suffixes,
but also keeps a separate dictionary entry for
each allowed combination of diacritized clitics.
Since, unlike Buckwalter’s system, we are inter-
ested just in the most probable clitic separation
rather than the full set of analyses, we imple-
ment only a very simple transducer, and rely on
the probabilistic model to handle such ambigu-
ities and complexities.

From a generative perspective, we assume
that the hypothetical original text from which
the model starts is not only diacritized, but
also has clitics separated. We augment the
model with a transducer, Clitic Concatenation
(CC), which non-deterministically concatenates
clitics to words. CC scans the letter stream;
on encountering a potential prefix, CC can

PRE MID SUF

� �

��

Figure 4: Clitic concatenation

non-deterministically append it to the following
word, merely by transducing the space follow-
ing it to ε. This is done iteratively for each pre-
fix. After concatenating prefixes, CC can non-
deterministically decide that it has reached the
main word, which it copies. Finally, it concate-
nates suffixes symmetrically to prefixes. For in-
stance, on encountering the letter string w Al
>myn, CC might drop the spaces to generate
wAl>myn (“and the secretary”).

The transducer implementation of CC con-
sists of three components, depicted schemati-
cally in Figure 4. The first component itera-
tively appends prefixes. For each of a fixed set
of prefixes, it has a set of states for identify-
ing the prefix and dropping the trailing space.
A non-deterministic jump moves the transducer
to the middle component, which implements the
identity function on letters, copying the putative
main word to the output. Finally, CC can non-
deterministically jump to the final component,
which appends suffixes by dropping the preced-
ing space.

By design, CC provides a very simple model
of Arabic clitics. It maintains just a list of pos-
sible prefixes and suffixes, but encodes no in-
formation about stems or possible clitic order-
ings, potentially allowing many ungrammatical
combinations. We rely on the probabilistic lan-
guage model to assign such combinations very
low probabilities.4

We use the following list of (undiacritized) cl-
itics: (cf. Diab et al. (2004) who use the same
set with the omission of s, and ny):

prefixes: b (by/with), l (to), k (as), w (and),
f (and), Al (the), s (future);

suffixes: y (my/mine), ny (me), nA

4The only special case of multiple prefix combinations
that we explicitly encode is the combination of l+Al (to
+ the) which becomes ll, by dropping the A.



(our/ours), k (your/yours), kmA (your/yours
masc. dual), km (your/yours masc. pl.),
knA (your/yours fem. dual), kn (your/yours
fem. pl.), h (him/his), hA (her/hers), hmA
(their/theirs masc. dual), hnA (their/theirs
fem. dual), hm (their/theirs masc. pl.), hn
(their/theirs fem. pl).

We integrate CC into the cascade by compos-
ing it after DD, and before UNK. Thus, clitics
appear in their undiacritized form. Our model
now assumes that the diacritized input text has
clitics separated. This requires two changes to
our method. First, training must now be per-
formed on text in which clitics are separated.
This is straightforward since clitics are tagged
in the corpus. Second, in the undiacritized test
data, we keep clitics intact. Running Viterbi de-
coding on the augmented model would not only
diacritize it, but also separate clitics. To gener-
ate grammatical Arabic, we reconnect the clitics
as a post-processing step. We use a greedy strat-
egy of connecting each prefix to the following
word, and each suffix to the preceding word.5

While our handling of clitics helps overcome
data sparsity, there is also a potential cost for
decoding. Clitics, which are, intuitively speak-
ing, less informative than regular words, are now
treated as lexical items of “equal stature”. For
instance, a bigram model may include the col-
location Al>amiyn AlEAm∼ (the secretary gen-
eral). Once clitics are separated this becomes
Al >amiyn Al EAm∼. A bigram model would
no longer retain the connection between each of
the main words, >amiyn and EAm∼, but only
between them and the determiner Al, which is
potentially less informative.

Figure 5 shows an example transduction
through the word-based model, where for illus-
tration purposes, we assume that Aldwl is an
unknown word.

5The only case that requires special attention is ka
which can be either a prefix (meaning “as”) or a suf-
fix (meaning “your/yours” masc.). The greedy strategy
always chooses the suffix meaning. We correct it by com-
parison with the input text.

2.3 Letter model for unknown words

To diacritize unknown words, we trained a
letter-based 4-gram language model of Arabic
words, LLM, on the letter sequences of words
in the training set. Composing LLM with the
vowel-drop transducer, DD, yields a probabilis-
tic generative model of Arabic letter and di-
acritization patterns, including for words that
were never encountered in training.

In principle, we could use the letter model
as an alternative model of the full text, but we
found it more effective to use it selectively, only
on unknown words. Thus, after running the
word-based language model, we extract all the
words tagged as 〈unk〉 and run the letter-based
model on them. Here is an example transduc-
tion:

Diacritized Alduwal
LLM (Weighted)
DD (Diacritics dropped) Aldwl

We chose not to apply any special clitic han-
dling for the letter-based model. To see why,
consider the alternative model that would in-
clude CC. Since LLM is unaware of word tokens,
there is no pressure on the decoding algorithm
to split the clitics from the word, and clitics may
therefore be incorrectly vocalized.

3 Experiments

We randomly split the set of news articles in
each of the two parts of the Arabic treebank
into a training and held-out testing set of sizes
90% and 10% respectively. We trained both
the word-based and the letter-based language
models on the diacritized version of the train-
ing set. We then ran Viterbi decoding on the
undiacritized version of the testing set, which
consists of a total of over 14,000 words. As a
baseline, we used a unigram word model with-
out clitic handling, constructed using the same
transducer technology. We ran two batches of
experiments—one in which case endings were
stripped throughout the training and testing
data, and we did not attempt to restore them,
and one in which case markings were included.

Results are reported in Table 3. For each
model, we report two measures: the word er-



Diacritized rad∼a Al >amiyn Al EAm∼ li jAmiEap 〈unk〉
LM (Weighted, but otherwise unchanged)
SP (Change in token resolution from words to letters)
DD (Diacritics dropped) rd Al >myn Al EAm l jAmEp
CC (Clitics concatenated) rd Al>myn AlEAm ljAmEp
UNK (〈unk〉 becomes Aldwl) rd Al>myn AlEAm ljAmEp Aldwl

Figure 5: Example transduction

ror rate (WER), and the diacritization error
rate (DER), i.e., the proportion of incorrectly
restored diacritics.

Surprisingly, a trigram word-based language
model yields only a modest improvement over
the baseline unigram model. The addition of a
clitic connection model and a letter-based lan-
guage model leads to a marked improvement in
both WER and DER. This trend is repeated for
both variants of the task—either with or without
case endings. Including case information natu-
rally yields proportionally worse accuracy. Since
case markings encode higher-order grammatical
information, they would require a more power-
ful grammatical model than offered by finite-
state methods. To illustrate the system’s per-
formance, here are some decodings made by the
different versions of the model.

Basic model

• An, <in∼a, and >an∼a, three versions of
the word “that”, which may all appear as
An in undiacritized text, are often confused.
As Buckwalter (2004) notes, the corpus it-
self is sometimes inconsistent about the use
of <in∼a and >an∼a.

• Several of the third-person possessive pro-
noun clitics can appear either with a u or
an i, for instance, the third person singu-
lar masculine possessive can appear as ei-
ther hu or hi. The correct form depends
on the preceding letter and vowel (includ-
ing the case vowels). Part of the tradeoff of
treating clitics as independent lexical items
is that the word-based model is ignorant of
the letter preceding a suffix clitic.

Clitic model

• wstkwn was correctly decoded to wa sa
takuwnu, which after post-processing be-
comes wasatakuwnu (“and [it] shall be”).

Letter model

• AstfzAz correctly decoded to {isotifozAz
(“instigation”). This example is interest-
ing, since a morphological analysis would
deterministically predict this diacritization.
The probabilistic letter model was able to
correctly decode it even though it has no
explicit encoding of such knowledge.

• Non-Arabic names are obviously problem-
atic for the model. For instance bwrtlAnd
was incorrectly decoded to buwrotilAnoda
rather than buwrotlAnod (Portland), but
note that some of the diacritics were cor-
rectly restored. Al-Onaizan and Knight
(2002) proposed a transducer for modeling
the Arabic spelling of such names for the
purpose of translating from Arabic. Such a
model could be seamlessly integrated into
our architecture, for improved accuracy.

4 Related work

Gal (2002) constructed an HMM-based bigram
model for restoring vowels (but not additional
diacritics) in Arabic and Hebrew. For Arabic,
the model was applied to the Qur’an, a corpus of
about 90,000 words, achieving 14% WER. The
word-based language model component of our
system is very similar to Gal’s HMM. The very
flexible framework of transducers allows us to
easily enhance the model with our simple but ef-
fective morphology handler and letter-based lan-
guage model.

Several commercial tools are available for
Arabic diacritization, which unfortunately we



Model without case with case
WER DER WER DER

Baseline 15.48% 17.33% 30.39% 24.03%
3-gram word 14.64% 16.9% 28.42% 23.34%
3-gram word + CC 8.49% 9.32% 24.22% 15.36%
3-gram word + CC + 4-gram letter 7.33% 6.35% 23.61% 12.79%

Table 3: Results on the Al-Hayat corpus

did not have access to. Vergyri and Kirchhoff
(2004) evaluated one (unspecified) system on
two MSA texts, reporting a 9% DER without
case information, and 28% DER with case end-
ings.

Kirchoff et al. (2002) focuses on vocalizing
transcripts of oral conversational Arabic. Since
conversational Arabic is much more free-flowing,
and prone to dialect and speaker differences,
diacritization of such transcripts proves much
more difficult. Kirchoff et al. started from a
unigram model, and augmented it with the fol-
lowing heuristic. For each unknown word, they
search for the closest known unvocalized word to
it according to Levenshtein distance, and apply
whatever transformation that word undergoes,
yielding 16.5% WER. Our letter-based model
provides an alternative method of generalizing
the diacritization from known words to unknown
ones.

Vergyri and Kirchhoff (2004) also handled
conversational Arabic, and showed that some of
the complexity inherent in vocalizing such text
can be offset by combining information on the
acoustic signal with morphological and contex-
tual information. They treat the latter problem
as an unsupervised tagging problem, where each
word is assigned a tag representing one of its
possible diacritizations according to Buckwal-
ter’s morphological analyzer (2002b). They use
Expectation Maximization (EM) to train a tri-
gram model of tag sequences. The evaluation
shows that the combined model yields a signifi-
cant improvement over just the acoustic model.

5 Conclusions and future directions

We have presented an effective probabilistic
finite-state architecture for Arabic diacritiza-

tion. The modular design of the system, based
on a composition of simple and compact trans-
ducers allows us to achieve high levels of accu-
racy while encoding extremely limited morpho-
logical knowledge. In particular, while our sys-
tem is aware of the existence of Arabic clitics,
it has no explicit knowledge of how they can
be combined. Such patterns are automatically
learned from the training data. Likewise, while
the system is aware of different orthographic
variants of the glottal stop, it encodes no ex-
plicit rules to predict their distribution.

The main resource that our method relies on
is the existence of sufficient quantities of dia-
critized text. Since semitic languages are typ-
ically written without vowels, it is rare to find
sizable collections of diacritized text in digital
form. The alternative is to diacritize text using
a combination of manual annotation and compu-
tational tools. This is precisely the process that
was followed in the compilation of the Arabic
treebank, and similar efforts are now underway
for Hebrew (Wintner and Yona, 2003).

In contrast to morphological analyzers, which
usually provide only an unranked list of all pos-
sible analyses, our method provides the most
probable analysis, and with a trivial extension,
could provide a ranked n-best list. Reducing and
ranking the possible analyses may help simplify
the annotator’s job. The burden of requiring
large quantities of diacritized text could be as-
suaged by iterative bootstrapping—training the
system and manually correcting it on corpora of
increasing size.

As another future direction, we note that oc-
casionally one may find a vowel or two, even
in otherwise undiacritized text fragments. This
is especially true for extremely short text frag-



ments, where ambiguity is undesirable, as in
banners or advertisements. This raises an inter-
esting optimization problem—what is the least
number of vowel symbols that are required in
order to ensure an unambiguous reading, and
where should they be placed? Assuming that
the errors of the probabilistic model are indica-
tive of the types of errors that a human might
make, we can use this model to predict where
disambiguating vowels would be most informa-
tive. A simple change to the model described
in this paper would make vowel drop optional
rather than obligatory. Such a model would
then be able to generate not only fully unvocal-
ized text, but also partially vocalized variants
of it. The optimization problem would then be-
come one of finding the partially diacritized text
with the minimal number of vowels that would
be least ambiguous.

Acknowledgments

We thank Ya’akov Gal for his comments on a
previous version of this paper. This work was
supported in part by grant IIS-0329089 from the
National Science Foundation.

References

Salim Abu-Rabia. 1999. The effect of Arabic vow-
els on the reading comprehension of second- and
sixth-grade native Arab children. Journal of Psy-
cholinguist Research, 28(1):93–101, January.

Yaser Al-Onaizan and Kevin Knight. 2002. Ma-
chine transliteration of names in Arabic texts. In
Proceedings of the Workshop on Computational
Approaches to Semitic Languages, pages 34–46,
Philadelphia, July. Association for Computational
Linguistics.

Cyril Allauzen, Mehryar Mohri, and Brian Roark.
2003. Generalized algorithms for constructing sta-
tistical language models. In Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics (ACL’2003), pages 40–47.

Tim Buckwalter. 2002a. Arabic transliteration ta-
ble. http://www.qamus.org/transliteration.htm.

Tim Buckwalter. 2002b. Buckwalter Arabic mor-
phological analyzer version 1.0. Linguistic Data
Consortium, catalog number LDC2002L49 and
ISBN 1-58563-257-0.

Tim Buckwalter. 2004. Issues in Arabic orthogra-
phy and morphology analysis. In Ali Farghaly and
Karine Megerdoomian, editors, COLING 2004
Computational Approaches to Arabic Script-based
Languages, pages 31–34, Geneva, Switzerland,
August 28th. COLING.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky.
2004. Automatic tagging of Arabic text: From
raw text to base phrase chunks. In Susan Du-
mais, Daniel Marcu, and Salim Roukos, editors,
HLT-NAACL 2004: Short Papers, pages 149–152,
Boston, Massachusetts, USA, May 2 - May 7. As-
sociation for Computational Linguistics.

Ya’akov Gal. 2002. An HMM approach to vowel
restoration in Arabic and Hebrew. In Proceedings
of the Workshop on Computational Approaches
to Semitic Languages, pages 27–33, Philadelphia,
July. Association for Computational Linguistics.

Slava M. Katz. 1987. Estimation of probabilities
from sparse data for the language model com-
ponent of a speech recognizer. IEEE Transac-
tions on Acoustics, Speech and Signal Processing,
35(3):400–4001, March.

Katrin Kirchoff, Jeff Bilmes, Sourin Das, Nicolae
Duta, Melissa Egan, Gang Ji, Feng He, John
Henderson, Daben Liu, Mohamed Noamany, Pat
Schone, Richard Schwarta, and Dimitra Vergyri.
2002. Novel approaches to Arabic speech recogni-
tion: report from the 2002 Johns-Hopkins summer
workshop. Technical report, Johns Hopkins Uni-
versity.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2000. The design principles of a weighted
finite-state transducer library. Theoretical Com-
puter Science, 231(1):17–32.

Fernando C. N. Pereira and Michael Riley. 1997.
Speech recognition by composition of weighted fi-
nite automata. In Emmanuel Roche and Yves
Schabes, editors, Finite-State Devices for Natu-
ral Language Processing. MIT Press, Cambridge,
MA.

Dimitra Vergyri and Katrin Kirchhoff. 2004. Auto-
matic diacritization of Arabic for acoustic model-
ing in speech recognition. In Ali Farghaly and
Karine Megerdoomian, editors, COLING 2004
Computational Approaches to Arabic Script-based
Languages, pages 66–73, Geneva, Switzerland,
August 28th. COLING.

Shuly Wintner and Shlomo Yona. 2003. Resources
for processing Hebrew. In Proceedings of the MT
Summit IX Workshop on Machine Translation for
Semitic Languages, New Orleans, September.


