
Privacy for the Stock Market�

Giovanni Di Crescenzo

Telcordia Technologies Inc.
445 South Street, Morristown, NJ, 07960

giovanni@research.telcordia.com

Abstract. We investigate the problem of performing Stock Market op-
erations, such as buying or selling shares of a certain stock, in a private
way, which had recently been left open.

We present a formal definition for a private stock purchase protocol,
addressing several privacy and security concerns on usual on-line stock
market operations. According to our definition, a client would not reveal
how many shares she is buying or selling (not even which of these two
cases is happening), and what price she is offering for those. We then
present an efficient protocol meeting this definition, based on the hard-
ness of the decisional Diffie–Hellman problem. Our protocol requires no
interaction between the clients, can be executed in a constant number
of rounds between the clients and the server, and requires several tech-
nical contributions, such as a new and efficient zero-knowledge protocol
for proving sum-related statements about encrypted values, which is of
independent interest.

1 Introduction

The overwhelming expansion of the internet is today being accompanied with
a large increase of financial activities and transactions that are conducted on-
line. A few minutes navigation on the internet allows to realize the existence of
electronic cash systems, payment protocols, auctions, lotteries, digital casinos
and gambing systems. The sometimes crucial importance and often large inter-
est around such transactions raises several concerns about the security and the
privacy of the information that users and organizations are willing to use on a
network.

In this paper we consider a important financial transaction: buying and selling
shares of a particular stock on the Stock Market. Such transactions seem to have
received not enough attention from the security and privacy literature, and, in
fact, an assessment of the privacy problems deriving from these transactions and
the construction of a protocol which addresses them had been left as an open
problem. We present a formal definition for what it means for a stock purchase
protocol to be secure and private, and present an efficient protocol which allows
to privately purchase and sell shares of a certain stock.

� Copyright 2001, Telcordia Technologies, Inc. All Rights Reserved.

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 269–288, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

270 Giovanni Di Crescenzo

Our Model and Definition. We consider a model composed of several clients
who intend to purchase or sell shares of a particular stock, and a server, taking
care of such operations and of the current share price and current share amount.
While the server is assumed to behave honestly (or, more precisely, as a honest-
but-curious party), the clients may behave in a malicious way. Therefore, we ask
that clients are allowed to perform their operations without revealing to all other
clients private information such as how many shares they are buying or selling,
which prize they offer for those, and not even whether they are buying or selling.
In fact, even the server cannot derive any information about these operations
other than what he needs to update the current share amount (namely, the sum
of all shares bought/sold) and the current share price (namely, some prespecified
function of external information and all private inputs of the clients). Still, at the
end, each client who behaves honestly should obtain from the server a certificate
for that particular transaction, despite the behavior of all dishonest clients.

Our Results. We present a protocol that satisfies all the mentioned proper-
ties and can be implemented in a constant number of rounds. In the important
case in which the function that updates the share price is linear in the private
amounts of the clients, our protocol has an efficient implementation based on
the hardness of the Decisional Diffie Hellman problem. We also present a general
solution for arbitrary functions, which uses any 2-party secure function evalu-
ation protocol for computing the same function. Even in this case our solution
can be implemented in a constant number of rounds; moreover, a variant of our
solution also keeps the function private from the client. Some technical contribu-
tions include novel and efficient zero-knowledge protocols for proving sum-related
statements about encrypted values, that may find applications somewhere else.
In particular, we show a protocol for proving in zero-knowledge that given three
ciphertexts, encrypted according to the El-Gamal cryptosystem, the first plain-
text is the modular sum of the remaining two. Although we only present an
efficient implementation of it, we note that our protocol can be implemented by
only assuming the existence of any oblivious transfer protocol.

Related Results . Our model of a honest-but-curious server and several clients
who do not need to interact has been already used in several investigations on the
topic of auctions [9,4,23,24,16] (other related investigations on auctions which
do not use a trusted party have been done in [26]). In particular, the paper [16]
posed the open question of investigating privacy in stock market operations. The
problem of anonymity in stock market operations has been investigated in [18].
More generally, our model and solution can be considered as belonging to the
area of designing efficient protocols for specific multi-party private computation
problems (as, for instance, for threshold cryptography [7]).

Organization of the Paper. In Section 2 we present some background on
number theory and various cryptographic primitives. In Section 3 we present a
detailed definition of the requirements that a private stock purchase protocol

Privacy for the Stock Market 271

has to satisfy, and a high-level description of our solution. The description of
the main two subcomponents of our private stock purchase protocol, is divided
into two sections: in Section 4 we present the capital update (sub)protocol and
in Section 5 we present the price update (sub)protocol.

2 Preliminaries

In this section we review some background notions and protocols as: oblivious
transfer (OT), zero-knowledge proofs, the El-Gamal encryption scheme and an
OT protocol based on it.

The El Gamal Public-Key Encryption Scheme [12]. Let p be a prime
such that p−1 has a large prime factor q, and let g be a generator of a subgroup
G of Zp of order q. The key generation algorithm of the El Gamal public-key
encryption scheme consists in uniformly choosing s ∈ Zp and computing h =
gs mod p, publishing (p, q, g, h) as a public key and keeping s as a secret key. The
encryption algorithm consists of uniformly choosing r ∈ Zp and returning (u, v),
where u = gr mod p and v = hrmmod p, and m is the message. The decryption
algorithm consists of outputting m, computed as m = v/ur mod p. The semantic
security of this proof system is equivalent to the difficulty of deciding the Diffie–
Hellman problem.

Oblivious Transfer. The notion of Oblivious Transfer (OT) protocol was in-
troduced by Rabin [21]. Informally, an OT protocol can be described as a game
between two polynomial time parties Alice and Bob, where Alice wants to send a
message to Bob in such a way that with probability 1/2 Bob will receive the same
message Alice wanted to send, and with probability 1/2 Bob will receive nothing.
Moreover, Alice does not know which of the two events really happened. There
are other equivalent formulations of Oblivious Transfer (see, e.g., [5]), such as
1-out-of-2 OT, in which Alice has two messages m0,m1, Bob has one bit c and
at the end Bob will receive mc, without receiving any information about m1−c

and without Alice guessing c. This primitive has found numerous implementa-
tions and applications in the cryptographic literature. For our constructions, we
can use any oblivious transfer protocol based on the difficulty of deciding the
Diffie–Hellman problem (a two-round protocol for this task appears in [19]).

Conditional Oblivious Transfer. The notion of conditional oblivious trans-
fer was introduced in [10], where applications were given to the problem of
timed-release encryption, or ‘sending information to the future’. Informally, a
conditional oblivious transfer protocol is the following generalization of ordinary
(1-out-of-2) oblivious transfer: Alice and Bob also have a private input (call those
xA and xB , respectively), and a public predicate ρ such that if ρ(xA, xB) = 1
(resp., ρ(xA, xB) = 0) then Bob receives m0 (resp., m1), without learning any
additional information about the message he has not received. In [10] a condi-
tional oblivious transfer was given for the predicate ‘greater than or equal to’,

272 Giovanni Di Crescenzo

based on the intractability of deciding quadratic residuosity. We remark that
the same techniques used in [10] for this protocol can be used to construct an
implementation based on the difficulty of deciding the Diffie–Hellman problem.

Zero-Knowledge Proof Systems. Informally, zero-knowledge proof systems
[15] are interactive protocols allowing a possibly infinitely powerful prover to
convince a polynomial time verifier that a statement (e.g., the membership of
a string x to a language L) holds without revealing any additional information
that the verifier could not compute alone before running the protocol. Now
we expand on the definition of such protocols. First of all, an interactive proof
system for a language L is an interactive protocol satisfying the two requirements
of completeness and soundness. The completeness requirement says that if the
prover and the verifier follow the protocol, then the verifier has to accept with
probability very close to 1. The soundness requirement says that if the verifier
follow the protocol, then no matter which arbitrarily powerful strategy is used
by the prover, the verifier accepts with probability very close to 0. Then, a zero-
knowledge proof system for a language L is an interactive proof system for L
satisfying the additional requirement of zero-knowledge. This requirement states
that for any probabilistic polynomial time strategy used by the verifier, there
exists an efficient algorithm S, called the simulator, such that for all x ∈ L,
the following two distributions are “indistinguishable”: 1) the output of S on
input x, and 2) the messages seen by the verifier when interacting with the
prover on input x (including the verifier’s random tape). According to the specific
formalization of indistinguishability, we obtain different variants of the zero-
knowledge requirement, called computational, statistical and perfect. A zero-
knowledge argument [3] is a zero-knowledge proof system for which the soundness
is only required to hold under polynomial-time adversaries.

3 Private Stock Purchase Protocol: Definition and
Solution Sketch

In this section we present a definition and a high-level view of our solution for
the main protocol of interest in this paper: a private stock purchase protocol.

3.1 A Formal Definition

We start by presenting the players, the phases and the (sub)protocols involved in
an execution of such protocol, and then describe the requirements that a private
stock purchase protocol has to satisfy.

Players. The players involved in a private stock purchase protocol are the
clients, denoted as C1, C2, . . . , Cn and a server, denoted as S. A client Ci is any
individual that intends to buy stock shares. The server S is the machine (or the
individual) that takes care of handling the stock shares; including, for instance,
selling the shares, updating the number of shares, updating the share price.

Privacy for the Stock Market 273

Connectivity. Although potentially all clients are connected among them and
to the server through some communication link, for practical purposes, we are
especially interested in protocols where each client only interacts with the server,
and not necessarily at the same time.

Phases. Generally speaking, the lifetime of a stock purchase payment protocol
is divided into a large number of time intervals of fixed and known length. In
each of these intervals, a set of clients registers with the servers, requests a
number of stock shares at a certain offered price, the share price is consequently
updated, the number of available shares is properly updated as well, and clients
are eventually given the requested number of shares. Since the execution of the
protocol is conceptually the same in each interval, from now on we concentrate
our study on a single, generic, time interval, and, for simplicity, refer to the
protocol executed in this interval as the private stock purchase protocol. In this
protocol we distinguish four phases. A first phase, called the registration phase,
consists of each individual registering herself as a client by committing to the
number of stock shares that she is willing to buy or sell and to a price they she
is willing to pay for each of them, which we will call the ‘offered price’. A second
phase, called the price update phase, contains an interactive protocol in which
each client interacts with the server; at the end the price of the stock shares is
updated as a known and polynomial-time computable function of the amounts
of shares and the offered prices that clients committed to in the first phase.
A third phase, called the capital update phase, contains an interactive protocol
in which each client interacts with the server; at the end the number of stock
shares is eventually updated by subtracting the number of shares bought and by
adding the number of shares sold; we call the resulting number the ‘new price’;
note that the shares for which the offered price was lower (higher) than the
new price are not sold to (bought by) the client. In the fourth phase, called the
certification phase, each client finally obtains from the server some certification
of the transaction, namely, a certificate that a certain number of shares (if any)
have been bought or sold by that client.

Protocols. Each phase contains an interactive protocol, where the interaction
is between all clients and the server only (i.e., there is no interaction between the
clients). Specifically, the registration protocol is executed between each client and
the server, and at the end returns some keys and parameters that will be used in
the rest of the payment protocol. The price update protocol is executed between
all registered clients and the server, and at the end the server knows the output of
the price updating function over the clients’ private inputs (namely, the number
of shares they want to buy and the intended prices) without learning any new
information about such inputs; such output will be the new share price of the
stock in the new time interval. The capital update protocol is executed between
all registered clients and the server, and at the end the server knows a partial
sum of all clients’ private inputs. Here, a private input contributes a positive
(resp., negative) amount if the client wants to buy (resp., sell) that amount of
shares at an offered price larger (resp., smaller) than the new price; note that

274 Giovanni Di Crescenzo

clients intending to buy (resp., sell) shares at an offered price smaller (resp.,
larger) than the new price will contribute no value to this sum. The certification
phase is executed by the server who sends a single message to each client who
successfully executed the previous phases, containing a certification of the client’s
acquisition or deposition of shares (if any) for the amount committed to during
the registration phase, and the current share price, to later allow verification
that the purchase was valid.

Requirements. Let us denote by (bi, xi, opi), for bi ∈ {0, 1} and xi ∈ {0, 1}t,
the private input of client Ci, for i = 1, . . . , n, where bi = 0 (respectively, bi = 1)
means that the i-th client wants to buy (respectively, sell) xi stock shares at an
offered price opi. Also, let us denote by cp the current stock price per share, by
f the price updating function, by np the new stock price per share at the end of
the protocol and by k a security parameter. Finally, let us denote by certi the
time-stamped certificate eventually issued by S to client Ci at the end of the
protocol. A private stock purchase protocol for function f and for n clients has
to satisfy the following four requirements:

Correctness. If S and all clients C1, . . . , Cn follow their protocol then with prob-
ability 1 at the end of the private stock purchase protocol the following holds:
(1) np = f((b1, x1, op1), . . . , (bn, xn, opn)), and (2) each client receives a certifi-
cate certi containing its private input (bi, xi, opi) and the new price np, which
is verifiable to be valid by S.

Security against Clients. If S follows its protocol, then for all i and for all prob-
abilistic polynomial time algorithms C′

1, . . . , C
′
i−1, C

′
i+1, . . . , C

′
n, the probability

that at the end of the private stock purchase protocol the client Ci does not
output certi, a valid certificate associated with input (bi, xi, opi) and new price
np, is exponentially small (in k). Moreover, for any coalition of clients running
in probabilistic polynomial time, the probability that at the end of the private
stock purchase protocol, they are able to convince S to have a valid certificate
cert associated with an input different from all (bi, xi, opi), np, for i = 1, . . . , n,
is negligible (in k).

Privacy against Clients. Let i1, . . . , ij ∈ {1, . . . , n}; if S follows its protocol, then
for any probabilistic polynomial-time algorithms C′

i1
, . . . , C′

ij
, the distribution of

the view of such clients during an execution of the entire protocol is independent
from the value of (bi, xi, opi), for each i ∈ {1, . . . , n} \ {i1, . . . , ij}.

Privacy against the Server. Assume S follows its protocol; for any polynomial
time strategy s1 used by S at the end of the protocol, there exists a poly-
nomial time strategy s2 that can be used by S before the protocol starts,
such that the probability that s1 allows S to obtain some information about
(b1, x1, op1), . . . , (bn, xn, opn) differs by the probability that s2 allows S to do the
same before the protocol only by a negligible (in k) amount, where both proba-
bilities are conditioned by the fact that np = f((b1, x1, op1), . . . , (bn, xn, opn)).

Privacy for the Stock Market 275

Remarks. We note that typically the first and the fourth phase of a private
stock purchase protocol would require standard registration, certification and
verification protocols to be executed, also varying according to non-cryptographic
issues deriving from the specific application setting; instead, the second and third
phases are supposed to contain the main cryptographic novelties of the proto-
col. We also note that private stock purchase protocols are very much related to
private multi-party computation [27,14], for which no agreement on the ‘right no-
tions’ of security or privacy has been reached yet, after several research efforts.
Finding the ‘right notions’ of privacy and security for private stock purchase
protocols is therefore beyond the scope of this work. Still, we believe that the
above definition (following most principles in the current best definitions of pri-
vate multi-party computation) describes a satisfactory notion of security and
privacy for the application of interest in this paper and that the protocol that
we present would essentially satisfy alternative notions, eventually claimed to
be the ‘right notion’. Let us point out however two main differences between
the setting considered here and private multi-party computation. In terms of
connectivity among the participants, here we only consider solutions in which
the clients only talk to the server, and do not need to talk to each other. In
terms of adversarial setting, here the server is assumed to be honest-but-curious
(rather than being possibly malicious); moreover, we require and achieve security
against arbitrary coalitions of up to all-but-one malicious clients (rather than
only bounded-size coalitions). These differences are motivated by practical con-
siderations and significantly differentiate our investigation from those in private
multi-party computation. In particular, as a consequence, protocols given in the
literature within the area of private multi-party computation do not solve the
problems considered in this paper (and vice versa).

3.2 A High-Level View of Our Solution

As done for the definition, we describe our solution as divided into four phases:
a registration phase, a price update phase, a capital update phase and a certifi-
cation phase. Recall that we are describing a generic interval of the lifetime of
the stock purchase protocol; therefore, we can assume that permanent informa-
tion such as the current share price and the capital (or the number of available
shares) are publicly available. Moreover, here and in the rest of the paper, for
simplicity, we will assume that the parties are connected through private chan-
nels (that can be implemented, for instance, using a non-malleable encryption
scheme).

Registration Phase. First of all the server publishes two public keys: one for an
encryption scheme, and one for a signature scheme. Now, a client that wants to
take part in the stock purchase protocol makes a commitment to its private input
(representing the amount of shares to be bought or sold and the offered price
for those) and sends this commitment to the server. Then the server signs such
a commitment and sends the resulting signature to the client. Now, the client

276 Giovanni Di Crescenzo

publishes his commitment, the signature received from the server, a public-key
of an encryption scheme, and standard information such as his identity.

Implementation of this Phase. We require that the commitment by the client is
implemented as an El-Gamal encryption of the input to be committed to (this
choice is for efficiency and compatibility with the remaining protocols in the
paper). No particular implementation is required for the signature scheme.

Price Update Phase. In this phase the server and all clients who successfully
completed the previous phase run a protocol, called UPDATE, and described
in Section 5, which has the following properties. At the end, the server obtains
the value output by an evaluation of a known function over all private inputs of
clients, (such value being the new share price) but no other information about
all private inputs of the clients. Even for this protocol each client only interacts
with the server and is also guaranteed that no coalition of malicious clients can
receive any information about her private input. At the end of this phase, the
server publishes the new share price.
Implementation of this Phase. We note that the efficiency of the implementation
of this protocol may depend on how complicated the function for updating the
share price is. In the particular case in which the function is linear (which is
really an important case since it captures typical functions such as the average),
we can use a simple extension of the protocol SUM also used in the following
phase; the resulting implementation would therefore be efficient and constant-
round. In order to cover the more general case of an arbitrary (and therefore,
non-linear) function, in Section 5, we present an implementation for protocol
UPDATE, by reducing the private computation of a function in this model to
the private computation of a function in the two-party model (which is of inde-
pendent interest). We note two attractive properties of our solution: it can be
run in a constant number of rounds, and it reveals no information about func-
tion f to the clients (although we did not explicitly require this property in the
definition of previous section, we believe it may still be an interesting property
to achieve). The protocol UPDATE can be implemented under the assumption
of the hardness of deciding the Diffie–Hellman problem (or, more generally, of
the existence of any oblivious transfer).

Capital Update Phase. In this phase the server and all clients who suc-
cessfully completed the previous two phases run a protocol, called PSUM, and
described in Section 4, which has the following properties. At the end, the server
obtains a partial sum of the private inputs of clients. Specifically, clients who in-
tended to buy (resp., sell) shares contribute a positive (resp., negative) amount if
their offered price was larger (resp., smaller) than the new price. In this protocol,
each client only interacts with the server and is guaranteed that no additional
information about her private input is revealed to the server or to any coalition
of malicious clients (precisely, the server only obtains the partial sum of the
share amounts and the other clients obtain no information at all). At the end of
this phase, the server publishes the new capital (or amount of available shares).

Privacy for the Stock Market 277

Implementation of this Phase. In Section 4 we present an efficient and constant-
round implementation for protocol PSUM, under the assumption of the hardness
of deciding the Diffie–Hellman problem.

Certification Phase. In this phase the server only interacts with all clients
who successfully completed the previous three phases and sends to each of them
another signature of her commitment, of the new price, and of a special message
indicating that she has completed her transaction.
Implementation of this Phase. No specific implementation for the signature
scheme is required.

Properties of Our Protocol. Given the simplicity of the registration and cer-
tification phase, and the stated properties of subprotocols PSUM and UPDATE,
it is not hard to verify that the protocol described in this section satisfies the
definition of Section 3.

4 A Private Stock Purchase Protocol: Capital Update
Phase

In this section we present the protocol that will be executed by the participants
in the capital update phase. At the beginning of this phase each client Ci has
already committed to her desired amount of shares to be sold and bought and
to the offered price for each of those shares. Then the goal of this phase is to
update the capital of stock shares, by transferring to the server S a partial sum
of these committed amounts of shares. Specifically, each client who intended to
buy (resp., sell) some amount of shares will contribute a positive (resp., negative)
amount to the final sum if her offered price opi was larger (resp., smaller) than
the new price. The new capital is then obtained by the server by subtracting the
final sum from the current capital.

More precisely, the protocol we would like to construct, called PSUM, is run
by a server S and n clients C1, . . . , Cn, where each client Ci has, as private input,
an integer xi, that may be positive or negative (let bi = 1 denote a negative sign
for xi and bi = 0 denote a positive one) and an integer opi. We require that at
the end of the protocol S obtains a partial sum of the clients’ committed amount
of shares (i.e., the value z =

∑
i∈T (−1)bixi, where T = {i : ((bi = 0) ∧ (opi ≥

np)) ∨ ((bi = 1) ∧ (opi < np))} ⊆ {1, . . . , n}). We also require that the server’s
view is independent on the values of the xi’s, given the value z of the final sum,
and that each coalition of clients, no matter how it behaves, receives a view that
is independent on the other clients’ private inputs.

The description of this construction is divided as follows. First, in Section 4.1
we describe a zero-knowledge protocol for proving a sum-related statement on
El-Gamal encryptions. Then, in Section 4.2 we show how to use this protocol in
order to obtain protocols for proving more elaborated statements. In Section 4.3
a protocol for privately computing the sum of several El-Gamal encryption, thus
solving a slightly simpler version of our problem. Finally, in Section 4.4 we extend

278 Giovanni Di Crescenzo

the protocol of previous section to privately computing a partial sum, as defined
above.

4.1 A Novel Zero-Knowledge Protocol

In this section we present a zero-knowledge protocol for the language EG-SUM,
defined as follows. Given (p, q, g, h) such that p = 2q + 1, p, q are primes, g
generates a subgroup of order q, and h is a member of this subgroup, the lan-
guage EG-SUM is the set of tuples ((u1, v2), (u2, v2), (u, v)) for which there exist
r1, r2, r,m1,m2,m such that
1. u1 = gr1 mod p, v1 = hr1m1 mod p;
2. u2 = gr2 mod p, v2 = hr2m2 mod p;
3. u = gr mod p, v = hrmmod p, m1 + m2 = mmod p.

We now describe an efficient perfect zero-knowledge argument (A,B) for lan-
guage EG-SUM, where the soundness property holds under the assumption that
computing discrete logarithms is hard. The proof system is efficient in two ways:
first, it does not require reductions of the statement to be proven to an NP-
complete statement; second, the prover A, given values r1, r2, r,m1,m2,m, can
run in probabilistic polynomial time.

An Informal Description. The zero-knowledge protocol we propose uses the
cut-and-choose technique of [15,11]. A first idea in constructing our protocol
is that of combining the linearity of the equation to be proved (namely, that
m1 +m2 = mmod p) with the fact that the encryption function of the El-Gamal
cryptosystem satisfies some (weak) sum-homomorphism property (specifically, if
encryptions (u1, v1) of m1 and (u1, q2) of d1 are computed using the same ran-
domness, then the pair (u1, v1 + q2 mod p) is an encryption of (d1 +m1) mod p).
Using this idea alone, a (still incorrect) protocol could consist of showing that ei-
ther the equality d1 +d2 = dmod p holds, or the equality (m1 +d1)+(m2+d2) =
(m+d) mod p holds, for random values d1, d2. This protocol reveals the random-
ness used to encrypt d1, which is the same as that used to encrypt m1, and
therefore is not zero-knowledge. To solve this problem, we use the fact that
the encryption function of the El-Gamal cryptosystem is product-homomorphic
with respect to componentwise product modulo p, (specifically, given encryp-
tions (u1, v1) of m1 and (c, e) of a, then the pair (cu1 mod p, ev1 mod p) is an
encryption of am1 mod p). Using this property, we can modify the protocol so
that it consists of showing that either the equality am1+am2 = ammod p holds,
or the equality (am1 + d1) + (am2 + d2) = (am + d) mod p holds, where the en-
cryptions of d1, d2, d have to be computed using the same randomness as the
encryption of am1, am2, am, respectively. This modified protocol still does not
work since all these encryptions, when sent by the prover to the verifier, would
not be simultaneously secure. To solve this last problem, we hide the encryptions
by committing to them using a non-interactive commitment protocol that is also
sum-homomorphic (namely, given commitments com1 of m1 and com2 of m2,
it is possible to efficiently compute a commitment com of m). An example of a
commitment scheme that satisfies this property is the one in [20]; this scheme, in

Privacy for the Stock Market 279

the honest-receiver version, can be implemented in one round of communication,
is perfectly-secure (namely, not even a computationally-unbounded receiver can
obtain any information about the committed value), and is computationally-
binding (namely, assuming that computing discrete logarithms is hard, the com-
mitter can reveal the committed value in a unique way). Moreover, given com-
mitments com1 of m1, com2 of m2, the value com = com1 · com2 mod p is a
commitment to m1 + m2 mod p. In the description of our proof system, we will
refer to this scheme as Pedersen’s commitment scheme.

A More Formal Description. We proceed by first describing an atomic protocol
(A,B), having soundness error 3/4.

1. A uniformly chooses r′1, r
′
2, r

′, a, d1, d2, d ∈ Zp such that d1 + d2 = dmod p;
A computes the following El-Gamal-encryptions:

an encryption (u′
1, v

′
1) of am1 using r′1 + r1 as randomness;

an encryption (u′
2, v

′
2) of am2 using r′2 + r2 as randomness;

an encryption (u′, v′) of am using r′ + r as randomness;
an encryption (p1, q1) of d1 using r′1 + r1 as randomness;
an encryption (p2, q2) of d2 using r′2 + r2 as randomness;
an encryption (p, q) of d using r′ + r as randomness;

A computes two commitments using Pedersen’s commitment scheme: com1

of (u′
1, v

′
1, u

′
2, v

′
2, u

′, v′) and com2 of (p1, q1, p2, q2, p, q);
A sends com1, com2 to B

2. B uniformly chooses b ∈ {1, 2, 3} and sends it to A
3. If b = 1 then

A decommits com1 as (u′
1, v

′
1, u

′
2, v

′
2, u

′, v′) and sends r′1, r
′
2, r

′, a to B;
using the above, B checks that (u′

1/u1, v
′
1/v1), (u′

2/u2, v
′
2/v2), (u′/u, v′/v)

are all encryptions of a;
if b = 2 then

A decommits com2 as (p1, q1, p2, q2, p, q) and sends r1 + r′1, r2 + r′2, r + r′;
using the above, B checks that com2 is correctly decommitted, decrypts

(p1, q1) as d1, (p2, q2) as d2, and (p, q) as d, and checks that d1+d2 = dmod p;
if b = 3 then

using com1, com2, A computes commitment com to (u′
1 + p1, v

′
1 + q1, u

′
2 +

p2, v
′
2 + q2, u

′ + p, v′ + q);
A decommits com as (u′

1 + p1, v
′
1 + q1, u

′
2 + p2, v

′
2 + q2, u

′ + p, v′ + q);
A computes z1 = am1 + b1, z2 = am2 + b2, z = am + b and sends

(z1, z2, z,1 +r′1, r2 + r′2, r + r′) to B
B checks that com is correctly computed from com1, com2, that com is

correctly decommitted, that u′
1 + p1 is an encryption of z1, u′

2 + p2 is an
encryption of z2, u′ + p is an encryption of z, and that z1 + z2 = z mod p.
if at least one verification is not satisfied then B returns: REJECT else B
returns: ACCEPT.

We now show that the above protocol satisfies the three properties of complete-
ness, soundness and perfect zero-knowledge.

280 Giovanni Di Crescenzo

Completeness. Assume that the input is in the language; then, A, who is given
r1, r2, r,m1,m2,m, can meet B’s verifications with probability 1.

Soundness. Note that any tuple ((u1, v1), (u2, v2), (u, v)) can be written as a
triple of El-Gamal encryptions for some m1,m2,m. Therefore, if the input is
not in the language it must happen that m1 + m2 �= mmod p. Thus, let us
assume that the latter inequality holds. As a consequence either (a) the inequality
(am1 + d1) + (am2 + d2) �= (am+ d) mod p holds, or (b) the inequality d1 + d2 �=
dmod p holds, for any a, d1, d2, d ∈ Zp. By the binding property of the Pedersen
commitment scheme, we have that: in case (b), A cannot meet the question
b = 2, and, in case (a), A cannot meet at least one of the questions b = 1
and b = 3. Therefore the probability that A can cheat is at most 2/3 plus the
probability that he can cheat in any of the decommitment, which is negligible
(assuming the hardness of computing discrete logarithms); therefore, the overall
probability that A can cheat is at most, say, 3/4.

Perfect Zero-Knowledge. We construct a simulator S that, using a potentially
dishonest verifier B′, generates a transcript having distribution computationally
indistinguishable from that of a transcript generated after a real execution of
the protocol between A and B′. The algorithm S uses the usual trial-and-error
strategy, with rewinding. Specifically, S randomly chooses b′ ∈ {1, 2, 3} and
computed a simulated transcript assuming that the challenge b sent by B′ is
equal to b′; if yes, S outputs the computed transcript; if not, S rewinds B′ and
tries again. The computation of a simulated transcript for each value of b is done
as follows. In the case b = 1 it is easy to efficiently simulate the second message
from A and the commitment com1; the commitment com2 is simulated as a
commitment to a random value of the same length. The case b = 2 is analogue
to the case b = 1. In the case b = 3 it is easy to efficiently simulate the second
message from A and the commitment com; the commitment com1 is simulated as
a commitment to a random value of the same length, and the commitment com2

is computed as com/com1. By using the perfect security property of Pedersen’s
commitment scheme we can show that the simulation is perfect.

Remark. We remark that the soundness error of the above protocol can be
decreased to exponentially small by running several parallel repetitions of it,
and then having the verifier commit to his random bits by using a discrete-log
based information-theoretically secure commitment scheme (see, e.g., [2]) and
give a 3-round witness-indistinguishable proof of knowledge of the discrete log
of the message sent during the execution of Pedersen’s commitment scheme.
The resulting protocol is a perfect zero-knowledge argument for language EG-
SUM that has exponentially small soundness error and can be implemented in
a constant number of rounds.

Privacy for the Stock Market 281

4.2 More Zero-Knowledge Protocols

We show how to use the protocol in previous section to obtain zero-knowledge
protocols for more elaborated statements, that will be used later, in the con-
struction of our capital update protocol.

Linear Equalities over El-Gamal-Encrypted Values. We note that in
the protocol in previous section, for simplicity, we have considered the case
of the equality between a value and two addends. However, the same tech-
nique naturally extends to the case of n addends, for any n. More generally,
the same technique can be used to give an efficient and constant-round perfect
zero-knowledge argument for the language n-EG-LIN1, defined as follows. Given
(p, q, g, h) such that p = 2q + 1, p, q are primes, g generates a subgroup of order
q, and h is a member of this subgroup, the language n-EG-LIN1 is the set of
tuples ((α1, u1, v1), . . . , (αn, un, vn), (α, u, v)) for which there exist r1, . . . , rn, r
and m1, . . . ,mn,m such that
1. ui = gri mod p, vi = hrimi mod p, for i = 1, . . . , n;
2. u = gr mod p, v = hrmmod p, α1m1 + . . . + αnmn = αmmod p.

We also note that by combining this protocol with techniques in [8], we obtain
a protocol for proving any monotone formula over membership statements to
language n-EG-LIN1.

Linear Equalities with Unencrypted Known Term. In our main construc-
tion we will need a zero-knowledge protocol for a language similar to language
n-EG-LIN1, the only difference being in that the known term of the linear equal-
ity is in clear (rather than encrypted). By simply encrypting the known term and
revealing the randomness used to compute this encryption, one can use the same
protocol, thus obtaining an efficient and constant-round perfect zero-knowledge
argument for the language n-EG-LIN2, defined as follows. Given (p, q, g, h) such
that p = 2q + 1, p, q are primes, g generates a subgroup of order q, and h
is a member of this subgroup, the language n-EG-LIN2 is the set of tuples
((α1, u1, v1), . . . , (αn, un, vn), α,m) for which there exist r1, . . . , rn,m1, . . . ,mn

such that
1. ui = gri mod p, vi = hrimi mod p, for i = 1, . . . , n;
2. α1m1 + . . . + αnmn = αmmod p.

Linear Equalities with Encryptions under Different Public Keys. An-
other variation over language n-EG-LIN1 that we will need in our main con-
struction is that in which the addends in the linear equality are decryptions of
El-Gamal ciphertexts computed according to different public keys (but using
the same parameters; namely, the same prime p and generator g). A protocol for
this variation can be obtained by using multiple applications of the protocol in
Section 4.1, as follows. For each ciphertext ci computed according to a different
public key, the prover computes a ciphertext c′i computed according to a single,
fixed, public key, and sends c′i to the verifier. Then the prover proves that the

282 Giovanni Di Crescenzo

plaintext associated with c′i and the plaintext associated with ci are the same,
for each i (note that this can be proved by using a simplified version of the
protocol in Section 4.1). Finally, the prover proves that the linear equality holds
by using all ciphertexts c′i that are computed according to the same public key,
and therefore she can use the protocol for language n-EG-LIN2. This gives an
efficient and constant-round zero-knowledge protocol for language n-EG-LIN3,
defined as the set of tuples ((α1, u1, v1, h1), . . . , (αn, un, vn, hn), (α, u, v, h)) for
which there exist r1, . . . , rn, r,m1, . . . ,mn,m such that
1. ui = gri mod p, vi = hri

i mi mod p, for i = 1, . . . , n;
2. u = gr mod p, v = hrmmod p, α1m1 + . . . + αnmn = αmmod p.

4.3 Privately Computing the Sum of Encrypted Values

In this section we describe a protocol for privately computing the sum of all
share amounts committed by clients, regardless of whether their offered price
was larger or smaller than the new stock price. We call this protocol SUM.

Description of Protocol SUM. Let p be a prime given by S to each of the
clients, that is much larger than any of the xi’s (e.g., |p| > 2n|xi| for any i
would suffice). Assume that at the beginning of the protocol each client Ci has
published a public key pki generated using algorithm KG and an encryption ci

of private input (bi, xi, opi), and let yi = (−1)bixi mod p. Then protocol SUM
goes as follows:

1. Each client Ci writes his input as yi = si,1 + · · ·+ si,n mod p for si,j ’s chosen
randomly in Zp and such that the equality holds;

2. each client Ci encrypts each si,j according to algorithm E and using the j-th
client’s public key, thus obtaining encryptions ci,j , for j = 1, . . . , n;

3. each client Ci sends all ci,j to S together with a zero-knowledge proof that
the encryptions ci,1, . . . , ci,n have been correctly computed; that is, proving
that yi = si,1 + · · · + si,n mod p (using the zero-knowledge protocol from
Section 4.2 for language n-EG-LIN3);

4. for i = 1, . . . , n, server S verifies the proof from client Ci; if this proof is
rejected, client Ci is discarded and the computation continues with the re-
maining clients; if this proof is accepted, S sends all encryptions c1,j , . . . , cn,j

to client Cj , for j = 1, . . . , n;
5. for j = 1, . . . , n, client Cj decrypts all encryptions c1,j , . . . , cn,j as s1,j, . . . ,

sn,j and sends tj = s1,j + · · · + sn,j mod p to S along with a zero-knowledge
proof that tj has been correctly computed; that is, proving that tj = s1,j +
· · ·+ sn,j mod p (using the zero-knowledge protocol from Section 4.2 for lan-
guage n-EG-LIN2);

6. for j = 1, . . . , n, server S verifies the proof from client Cj ; if this proof
is rejected, client Cj is discarded and the computation continues with the
remaining clients;

7. S computes sum as the sum modulo p of all tj ’s corresponding to clients
Cj which have not been discarded from the protocol. If |sum| ≤ |x1| then S
returns (0, sum) else S returns (1, p− sum).

Privacy for the Stock Market 283

Properties of Protocol SUM. We show that protocol SUM satisfies several
properties, such as correctness, security against clients, privacy against clients
and privacy against server (although we have not exactly defined such proper-
ties in this context, their semantic meaning is along the lines of the definition
of private stock purchase protocols and will be made clearer in the following
discussion). We also show that SUM can be implemented in a constant number
of rounds.

Correctness. First of all we note that it is possible to implement protocol SUM,
as described above, since it is possible to implement the zero-knowledge protocols
in steps 3 and 5 because of the protocols proposed in Section 4.2. Moreover, we
note that if all parties follow their protocol then the output of server S is exactly
equal to the sum of the clients’ private inputs.

Security against Clients. Here we consider the case of clients who may deviate
from the protocol and try to compromise the server’s final computation. We
see from the construction of protocol SUM that clients always have to provide
proofs of correctness of their computations to the server (specifically, in both
step 3 and step 5), or they are discarded from the execution. Therefore, at the
end of protocol SUM, the server is always able to compute the sum of the private
inputs of the clients who have not been discarded.

Privacy against Clients. Here we consider the case of clients who may deviate
from the protocol and try to obtain information from the other clients’ private
inputs. We see from the construction of protocol SUM that each private input
of a client is shared among all the clients using an n-out-of-n secret sharing
(implemented using sum modulo p of the n values) and therefore even a coalition
of n − 1 values does not obtain any information at all (namely, even if clients
are not computationally limited) from the values sent by the server in step 4.

Privacy against Server. Here we consider the question of whether the view of
the server reveals any information at all about the client’s private inputs (other
than their sum). We see that in step 3 of protocol SUM the server only obtains
encryptions of shares of the clients’ private inputs, along with zero-knowledge
proofs of correctness of the computation of such shares, and therefore, since the
encryption scheme used is assumed to be semantically secure, no information is
revealed to the server in this step. Then we note that in step 5 of protocol SUM
the server only obtains values t1, . . . , tn, along with a zero-knowledge proof of
correctness of their computation, and we can see that the distribution of such
values is that of n random values in Zp such that their sum modulo p is equal
to the sum of all the yi’s.

Round-Complexity. The number of rounds of protocol SUM is constant provided
the zero-knowledge proofs in step 3 and 5 can both be executed in a constant
number of rounds. This fact has been established already in Section 4.1.

284 Giovanni Di Crescenzo

4.4 Privately Computing the Partial Sum of Encrypted Values

In this section we show how to extend the protocol of previous section for pri-
vately computing a sum of values into computing a ‘partial’ sum of values. The
resulting protocol can be directly used as a capital update protocol in our private
stock purchase protocol.

More specifically, recall that we denote by (bi, xi, opi) the private input to
client Ci, where bi ∈ {0, 1} is the sign denoting whether Ci wants to buy or
sell the share amount xi and opi is the offered price for each of these shares.
Moreover, by np we denote the new share price computed at the end of the price
updating phase. We note that the protocol SUM can be used by the server to
privately compute the value

∑n
i=1(−1)bixi; however, this value does not take

into account the offered prices committed by the clients. In other words, in our
capital update protocol, we would like the server to retrieve the sum of the xi’s
only for those clients whose offered prices are valid (i.e., larger than the new
price np if they are buying shares or smaller otherwise). Therefore, we need to
modify the protocol SUM into a protocol for computing a partial sum; namely, a
sum over all clients satisfying the above property (i.e., S will be able to compute
sum =

∑
i∈T (−1)bixi, where T = {i : ((bi = 0)∧(opi ≥ np)) ∨ ((bi = 1)∧(opi <

np))} ⊆ {1, . . . , n}).
Our protocol PSUM uses as a tool a ‘conditional oblivious transfer’ [10]. More

formally, this is a protocol used by S to transfer to client Ci one of two strings
s0, s1 such that client Ci will obtain s0 if opi ≥ np or s1 otherwise, without S
learning any information about the value of opi, including whether Ci received
s0 or s1.

Description of Protocol PSUM. This protocol is executed between each
client Ci and the server S. The basic idea of this protocol is that client Ci will
create two ciphertexts, one with plaintext equal to 0 and one with plaintext
equal to −xi. Server S will help Ci select one of the two based on the inequality
opi ≥ np and on the value of bi without obtaining any information about these,
so that later Ci can contribute to the final sum ciphertexts with associated
plaintexts xi, 0 if his offered price if valid (namely, if opi ≥ np and bi = 0 or
opi < np and bi = 1) or ciphertexts with associated plaintexts xi,−xi otherwise.
Note that effectively client Ci is contributing to the final sum her share amount
if her offered price is valid or zero otherwise. The actual protocol we describe
below has some additional technical complication for two reasons: first, an El-
Gamal encryption of 0 is not secure (therefore, we split it into two encryptions
of values which sum up to 0); second, we need to protect the server from possible
malicious behavior from the client.

We can assume that in the following description all encryptions and decryp-
tions will be computed according to the El-Gamal public-key cryptosystems.
Then the protocol PSUM goes as follows:

1. Client Ci uniformly chooses r1, computes z = −xi−r1 mod p and an encryp-
tion c1 of z, and sends c1, r1 to S;

Privacy for the Stock Market 285

2. S uniformly chooses r2, s1, s2, computes r3 = r1 − r2 mod p, s3 = −s1 −
s2 mod p, encryptions dj of sj , for j = 1, 2, 3, and encryptions cl of rl, for
l = 2, 3;

3. S transfers to Ci strings a0 = (c1, c2, c3) and a1 = (d1, d2, d3) using a condi-
tional oblivious transfer based on the condition (opi ≥ np AND bi = 0) OR
(opi < np AND bi = 1).

4. let ab, for some b ∈ {0, 1}, be the string obtained by Ci at the end of the
execution of the conditional oblivious transfer subprotocol;

5. Ci decrypts the 3 ciphertexts in ab, encrypts the obtained plaintexts using
independently chosen random strings, thus obtaining triple v = (e1, e2, e3)
and sends it to S;

6. S sends a0, a1 to Ci;
7. Ci sends to S a zero-knowledge proof that the plaintexts associated with v

are either the same as the plaintexts associated with a0 or the same as those
associated with a1;

8. all clients and S run the protocol SUM, where client Ci contributes to the
final sum with the plaintexts associated with ciphertexts xi, e1, e2, e3.

5 A Private Stock Purchase Protocol: Price Update
Phase

In this section we present the protocol that will be executed by the participants
in the price update phase. We consider the sufficiently general case in which the
next share price can be a function of the previous share price and of the private
inputs of the clients in the most recent time interval.

Specifically, the protocol we would like to construct, called UPDATE, is run
by a server S and n clients C1, . . . , Cn, where each client Ci has, as private input,
an integer xi, that may be positive or negative (let bi = 1 denote a negative
sign for xi and bi = 0 denote a positive one). Both S and the clients have the
description of a circuit computing function f as a common input. We require
that at the end of the protocol S obtains the output of an application of function
f over the clients’ private inputs (i.e., the value z = f((b1, x1), . . . , (bn, xn)));
that the server’s view is independent on the values of the clients’ inputs, given
that z is the output of function f over those, and that each coalition of clients,
no matter how it behaves, receives a view that is independent on the other
clients’ private inputs. We note that if f is a linear function of the xi’s, then
protocol UPDATE can be constructed by performing minor modifications to the
protocol PSUM in Section 4. This would give a very efficient construction for the
entire private stock purchase protocol. In the rest of this section, we deal with
the case f is an arbitrary (and thus possibly non-linear) function. In achieving
generality, our construction loses the attractive efficiency properties of protocol
PSUM; in particular, our protocol builds over a general protocol for 2-party
secure computation [27].

The description of this construction is divided as follows. First, in Section 5.1
we recall a protocol for 2-party secure computation [27,6] and then in Section 5.2
we show how to adapt this scheme to our model.

286 Giovanni Di Crescenzo

5.1 A 2-Party Secure Computation Protocol

The problem of 2-party secure computation, first considered by Yao in the influ-
ential paper [27], asks whether two parties Alice and Bob, having private inputs
x and y, respectively, can compute a value z = f(x, y), for some public func-
tion f , without revealing any additional information about their private input.
Recently, other protocols have been proposed (e.g., [25,6]); here we recall an
abstracted version of the protocol in [6], which makes our construction easier to
describe.

The 2-Party Secure Protocol in [6]. We describe the case in which both
Alice and Bob are honest since the case in which both can be malicious is dealt
with using well-known techniques from [14] (i.e., by compiling the honest case
with each party proving in zero-knowledge that the messages she is sending have
been correctly computed according to the protocol’s instructions). The honest
version of this protocol combines Yao’s construction [27] with oblivious transfer.
Yao’s construction consists of three procedures: an algorithm C that Bob uses to
construct an encrypted circuit, an interactive protocol T between Alice and Bob,
and an algorithm E that Bob uses to evaluate f(x, y). More precisely, algorithm
C outputs an encrypted version of function f(·, y), including a pair of k-bit
strings for each input bit xi. In order to compute f(x, y), one of these two k-bit
string is necessary for each bit xi of x (which one of the two strings it depends on
the value of xi). In [6] oblivious transfer is used by Bob to transfer to Alice the
appropriate k-bit string according to the value of xi, without Bob revealing to
Alice any information on the other string and without Alice revealing to Bob any
information on the value of xi. The rest of the computation proceeds as in Yao’s
protocol and will stay unchanged in our protocol as well. The oblivious transfer
protocol used by Bob to Alice could be the one given in Section 2, or even an
abstraction of it, as we now describe. We can consider an oblivious transfer as
the following protocol between a sender and a receiver. The receiver publishes
two channels such that he can read messages received over only one of them, but
the sender cannot tell which one; then the sender sends each of the two messages
through each of the channels.

5.2 The Adaptation to Our Setting

We now consider the possibility of adapting the protocol in [6,27] to our setting.
Recall that from a communication standpoint, in our setting we would like clients
not to talk to each other and that the server is assumed to behave honestly.
Moreover, clients want their inputs to be private not only against the server but
also against any coalition of other possibly malicious clients.

Description. We now describe the intuitions behind our adaptation. If we
could consider all clients together as a single participant Alice and the server as
participant Bob, then any 2-party secure protocol would be enough since Bob
does not obtain any information about Alice’s private input, and in the end Bob

Privacy for the Stock Market 287

obtains the output of the function of Alice’s input. However, the setting at hand
is more complicated since Alice’s input is in fact distributed among the various
clients, who should not communicate. One fix to the lack of communication is to
ask help from the server; indeed, since the server is honest, he might as well help
the clients share their private inputs somehow. Even sharing the private inputs
has to be done carefully, since the privacy requirements that our protocol has to
satisfy ask that each client keeps her input private even if all other clients behave
maliciously. In our solution we have each client send to all other clients, through
the server, some information which is enough to allow other clients to play as
Alice but still does not reveal any information about all other client’s inputs.
Specifically, using the oblivious transfer abstraction at the end of Section 5.1,
they will send a channel that is readable (without sending the other, unreadable
channel); therefore, the other client will not be able to understand which private
bit this channel is associated with, but she will still be able to use it to run the
oblivious transfer protocol. Finally, an execution of the 2-party protocol has to
be executed for each client, and at the end the server checks that all outputs
received by these executions are the same. We note that each of these executions
can be run in parallel and therefore the resulting protocol can still be executed
in a constant number of rounds. The correctness, security and privacy properties
follow from the related properties of the 2-party protocol.

Acknowledgments

Remarks from Bob Hettinga and Ronald Rivest helped in further generalizing
the real-life setting captured by our solution.

References

1. M. Bellare and S. Micali, A Non-Interactive Oblivious Transfer Protocol and its
Applications, in Proceedings of “Advances in Cryptology – CRYPTO’88”, Lecture
Notes in Computer Science, Springer Verlag.

2. M. Bellare, S. Micali, and R. Ostrovsky, Perfect Zero-Knowledge in Constant
Rounds, in Proceedings of 22th Annual ACM Symposium on Theory of Computing
(STOC’90).

3. G. Brassard, C. Crépeau, and D. Chaum, Minimum Disclosure Proofs of Knowl-
edge, Journal of Computer and System Sciences, vol. 37, no. 2, 1988, pp. 156–189.

4. C. Cauchin, Efficient Private Bidding and Auctions with an Oblivious Third Party ,
in Proc. of ACM Conference on Computers, Communications and Security, 1999,
Springer Verlag.

5. C. Crépeau, Equivalence between Two Flavors of Oblivious Transfer , in Proceed-
ings of “Advances in Cryptology – CRYPTO’87”, Lecture Notes in Computer
Science, Springer Verlag.

6. C. Cachin, J. Camenish, J. Kilian, and J. Muller, One-Round Secure Computation
and Secure Autonomous Agents, in Proceedings of ICALP 2000, Springer Verlag.

7. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, How to Share a Function
Securely, in Proceedings of 26th Annual ACM Symposium on Theory of Computing
(STOC’87).

288 Giovanni Di Crescenzo

8. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung, On Monotone Formula
Closure of SZK, in Proceedings of 35th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’94).

9. G. Di Crescenzo, Private Selective Payment Protocols, in Proceedings of Financial
Cryptography 2000, Springer Verlag.

10. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan, Conditional Oblivious Trans-
fer and Timed-Release Encryption, in Proceedings of “Advances in Cryptology –
EUROCRYPT’99”, Lecture Notes in Computer Science, Springer Verlag.

11. U. Feige, A. Fiat, and A. Shamir, Zero-Knowledge Proofs of Identity, in Journal of
Cryptology, vol. 1, n. 2, pp. 77–94, 1988.

12. T. El Gamal, A Public key Cryptosystem abd a Signature scheme based on Discrete
Logarythms, in Proceedings of “Advances in Cryptology – CRYPTO’84”, Lecture
Notes in Computer Science, Springer Verlag.

13. M. Franklin and M. Reiter, The Desing and Implementation of a Secure Auction
Service, in IEEE Transactions on Software Engineering, vol. 22, n. 5, pp. 302–312,
1996.

14. O. Goldreich, S. Micali, and A. Wigderson, How to Play any Mental Game, in Pro-
ceedings of 19th Annual ACM Symposium on Theory of Computing (STOC’87).

15. S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive
Proof-Systems, in SIAM Journal on Computing, vol. 18, n. 1, 1989.

16. M. Harkavy, D. Tygar and H. Kikuchi, Electronic Auctions with Private Bids, in
Proceedings of 3rd USENIX Workshop on Electronic Commerce, 1998.

17. M. Jakobsson and A. Juels, Addition of El-Gamal Plaintexts, in Proceedings of
“Advances in Cryptology – ASIACRYPT 2000”, Lecture Notes in Computer Sci-
ence, Springer Verlag.

18. P. MacKenzie and J. Sorensen, Anonymous Investing: Hiding the Identities of
Stockholders, in Proceedings of Financial Cryptography 1999, Springer Verlag.

19. M. Naor and B. Pinkas, Efficient Oblivious Transfer Protocols, in Proceedings of
the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001).

20. T. Pedersen, Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing , in Proceedings of “Advances in Cryptology – CRYPTO’91”, Lecture
Notes in Computer Science, Springer Verlag.

21. M. Rabin, How to Exchange Secrets by Oblivious Transfer , TR-81 Aiken Compu-
tation Laboratory, Harvard, 1981.

22. A. Shamir, How to Share a Secret, in Communications of the ACM, vol. 22, pp.
612–613, 1979.

23. K. Sako, An Auction Protocol Which Hides Bids of Losers, in Proceedings of
Public-Key Cryptography 2000, Springer Verlag.

24. K. Sakurai and S. Miyazaki, A Bulletin-Board based Digital Auction Scheme with
Bidding Down Strategy, in Proceedings of 1999 International Workshop on Cryp-
tographic Techniques and E-Commerce.

25. T. Sander, A. Young, and M. Yung, Cryptocomputing in NC1, in Proceedings of
40th Annual IEEE Symposium on Foundations of Computer Science (FOCS’99).

26. S. Stubblebine and P. Syverson, Fair on-line Auctions without Special Trusted
Parties, in Proceedings of Financial Cryptography 1999, Springer Verlag.

27. A.C. Yao, Protocols for Secure Computations, in Proceedings of 23th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’82).

	Introduction
	Preliminaries
	Private Stock Purchase Protocol: Definition and Solution Sketch
	A Formal Definition
	A High-Level View of Our Solution

	A Private Stock Purchase Protocol: Capital Update Phase
	A Novel Zero-Knowledge Protocol
	More Zero-Knowledge Protocols
	Privately Computing the Sum of Encrypted Values
	Privately Computing the Partial Sum of Encrypted Values

	A Private Stock Purchase Protocol: Price Update Phase
	A 2-Party Secure Computation Protocol
	The Adaptation to Our Setting

