# **Algorithmic Challenges in Modern Financial Markets**

Michael Kearns Computer and Information Science University of Pennsylvania and Equity Strategies Group Lehman Brothers New York

Acknowledgements: Eyal Even-Dar, Elliot Feng, Sham Kakade, Yishay Mansour, Yuriy Nevmyvaka, Luis Ortiz, Cenk Ural, Jenn Wortman

> ACM EC Tutorial Ann Arbor, MI June 12, 2006

### A Stock Market Field Guide (The "Biodiversity" of Wall Street)

- Retail traders
  - individual consumers
- "Buy" side
  - large institutional traders: portfolio managers; mutual and pension funds; endowments
  - often have precise metrics and constraints; e.g. tracking indices
  - percentage-based management fee
- "Sell" side
  - brokerages providing trading/advising/execution services
  - "program trading"  $\rightarrow$  "algorithmic trading": automated strategies for optimized execution
  - profit from commissions/fees
- Market-makers and specialists
  - risk-neutral providers of liquidity
  - highly regulated
  - profit from the "bid-ask bounce"; averse to strong directional movement
  - automated market-making strategies in electronic markets
- Hedge funds and proprietary trading
  - groups attempting to yield "outsized" returns on private capital (= beat the market)
  - can take short positions
  - highly unregulated; starting to see institutional investment
  - heavy quant consumers: "statistical arbitrage", modeling, algorithms
  - typically take management fee and 20% of profits
- All have different goals, constraints, time horizons, technology, data, connectivity...

### Where are the Algorithmic Challenges?

### • Need:

- precisely specified constraints (inputs and outputs)
- measures of performance
- data
- Two important areas:
  - Part I: Market Microstructure and Optimized Execution
  - Part II: Proprietary Trading and (Generalized) Portfolio Optimization

### Part I: Market Microstructure and Optimized Execution

# **Questions of Enduring Interest**

- How do (stock) prices "evolve"? How can we model this evolution?
  - classical random walk, diffusion models + drift
    - many recent empirical challenges [Lo & MacKinlay; Brock et al.]
  - autoregressive time series models
    - AR1, ARCH, GARCH, etc. → generalized Ito model
  - computer science: adversarial/worst-case price sequences
    - algorithms analyzed w.r.t. competitive ratios, regret
- Can we design "adaptive" or "learning" algorithms for:
  - executing difficult/large trades?
  - predicting and profiting from movements of prices?
- Models generally ignore market mechanism and liquidity issues
  - at least in part because the data was unavailable and unreliable
- This is changing rapidly... and presents challenges & opportunities



- Market Microstructure and Optimized Execution
- Competitive Analysis for VWAP and Limit Order Trading
- Reinforcement Learning for Optimized Execution
- (In)Stability Properties of Limit Order Dynamics

### Background on Market Microstructure and Optimized Trade Execution

### **Background on Market Microstructure**

- Consider a typical exchange for some specific security
- Limit order: specify price (away from the market)
- (Partially) Executable orders are filled immediately
  - prices determined by standing orders in the book
  - one order may execute at multiple prices
- Non-executable orders are placed in the buy or sell book
  - sorted by price; top prices are the bid and ask
- Market order: limit order with an extreme price
- Full order books now visible in real time
- What are they good for?

| <u>aimer  </u> | <u>help</u>                                 |
|----------------|---------------------------------------------|
| GET ST         | OCK                                         |
| MSFT           | go                                          |
| ymbol S        | <u>earch</u>                                |
|                | GET ST<br>GET ST<br>MSFT<br>V <b>mbol S</b> |

| LAST MATCH |             | TODAY  | 5 ACTIVITY |
|------------|-------------|--------|------------|
| Price      | 24.0700     | Orders | 52,983     |
| Time       | 14:57:07.72 | Volume | 10,243,212 |

| BUY OF |              | DRDERS  | SELL         | ORDERS  |  |
|--------|--------------|---------|--------------|---------|--|
|        | SHARES       | PRICE   | SHARES       | PRICE   |  |
|        | <u>500</u>   | 24.0620 | <u>500</u>   | 24.0690 |  |
|        | <u>6,000</u> | 24.0610 | <u> </u>     | 24.0690 |  |
|        | <u>5,000</u> | 24.0600 | <u> </u>     | 24.0700 |  |
|        | <u>100</u>   | 24.0600 | <u>200</u>   | 24.0800 |  |
|        | <u>1,100</u> | 24.0550 | <u>1,981</u> | 24.0900 |  |
|        | <u>100</u>   | 24.0500 | <u>412</u>   | 24.0900 |  |
|        | <u>5,000</u> | 24.0500 | <u>3,000</u> | 24.0980 |  |
|        | <u>200</u>   | 24.0500 | <u> </u>     | 24.1000 |  |
|        | <u>3,294</u> | 24.0500 | <u>100</u>   | 24.1200 |  |
|        | <u>1,000</u> | 24.0500 | <u>2,800</u> | 24.1400 |  |
|        | <u>3,000</u> | 24.0430 | <u>5,000</u> | 24.1400 |  |
|        | <u>100</u>   | 24.0400 | <u>1,000</u> | 24.1400 |  |
|        | <u>5,503</u> | 24.0400 | <u>5,000</u> | 24.1500 |  |
|        | 2,100        | 24.0300 | <u>400</u>   | 24.1600 |  |
|        | 2,800        | 24.0300 | <u>1,000</u> | 24.1700 |  |
|        | (412         | more)   | (694         | more)   |  |

### **Optimized Trade Execution**

- Canonical execution problem: sell V shares in T time steps
  - must place market order for any unexecuted shares at time T
  - also known as "one-way trading" (OWT)
  - trade-off between price, time... and liquidity
- Problem is ubiquitous
- Multiple performance criteria:
  - Maximum Price:
    - compare revenue to max execution price
    - O(log(R)) competitive ratios in infinite liquidity, adversarial price model
      - R = a priori bound on ratio of max to min execution price
      - [El-Yaniv, Fiat, Karp & Turpin]
  - Volume Weighted Average Price (VWAP):
    - compare to per-share average price of executions
    - widely used on Wall Street; reduces risk sources to execution
    - by definition, must track prices and volumes
  - Implementation Shortfall:
    - compare per-share price to mid-spread price at start of trading interval
    - an unrealizable ideal

Algorithms for VWAP and Limit Order Trading [Kakade, K., Mansour, Ortiz ACM EC 2004]

### **An Online Microstructure Model**

- Market places a sequence of price-volume limit orders:
  - $M = (p_1,v_1),(p_2,v_2),...,(p_T,v_T)$  (+ order types)
  - possibly adversarial; also consider various restrictions
- Algorithm is allowed to interleave its own limit orders:
  - $A = (q_1,w_1),(q_2,w_2),...,(q_T,w_T)$  (+ order types)
- Merged sequence determines executions and order books:
  - $merge(M,A) = (p_1,v_1), (q_1,w_1),..., (p_T,v_T), (q_T,w_T) \longrightarrow$
  - now have complex, high-dimensional state
    - how to simplify?

| <u>reireah</u> | island home | t disclai | mer   help |
|----------------|-------------|-----------|------------|
| 0              | ISFT        | [M<br>Syn | 15FT go    |
| LAST           | MATCH       | TODAY     | S ACTIVITY |
| Price          | 24.0700     | Orders    | 52,983     |
| Time           | 14:57:07.72 | Volume    | 10,243,212 |
| BUV            | DEDERS      | SELL      | OBDERS     |
| SHARES         | PRICE       | SHARES    | PRICE      |
| 500            | 24.0620     | 500       | 24.0690    |
| 6,000          | 24.0610     | 500       | 24.0690    |
| 5,000          | 24.0600     | 500       | 24.0700    |
| 100            | 24.0600     | 200       | 24.0800    |
| 1,100          | 24.0550     | 1,981     | 24.0900    |
| 100            | 24.0500     | 412       | 24.0900    |
| 5,000          | 24.0500     | 3,000     | 24.0980    |
| 200            | 24.0500     | 500       | 24.1000    |
| 3,294          | 24.0500     | 100       | 24.1200    |
| 1,000          | 24.0500     | 2,800     | 24.1400    |
| 3,000          | 24.0430     | 5,000     | 24.1400    |
| 100            | 24.0400     | 1,000     | 24.1400    |
| 5,503          | 24.0400     | 5,000     | 24.1500    |
| 2,100          | 24.0300     | 400       | 24.1600    |
| 2,800          | 24.0300     | 1,000     | 24.1700    |
| (412           | (anom       | /694      | more)      |

As of 14:57:16.176

### What Can Be Done?

- Maximum Price:
  - $O(\log(R))$  inf. liquidity model  $\rightarrow O(\log(R)\log(V))$  in microstructure model
  - quantifies worst-case market impact of large trades
  - if p\_1 > p\_2 >... are execution prices, randomly "guess" max{kp\_k}
  - note: optimal offline algorithm unknown!
- VWAP:
  - O(log(Q)) in microstructure
    - Q = ratio of max to min total executed volume on sequence
    - Q often small empirically; can exploit (entropic) distributional features
  - Better: trade V shares over  $\gamma$ V executed shares,  $\gamma > 1$ 
    - VWAP "with volume" instead of "with time"
  - Can approach competitive ratio of 1 for large V !
  - Sketch of algorithm/analysis:
    - divide time into equal (executed) volume intervals I\_1, I\_2,...
    - place sell order for 1 share at ~  $(1-\epsilon)^k$  nearest VWAP\_j
    - if all orders executed, are within  $(1-\epsilon)$  of overall VWAP
    - can't "strand" more than one order at any given price level
    - optimize ε
- None of these algorithms "look" in the order books!

### Reinforcement Learning for Optimized Trade Execution [Nevmyvaka, Feng, K. ICML 2006]

## **RL for Optimized Execution**

- Basic idea: execution as state-based stochastic optimal control
  - state: time and shares remaining... what else?
  - actions: position(s) of orders within the book
  - rewards: prices received for executions
  - stochastic: because same state may evolve differently in time
- This work: large-scale application of RL to microstructure
- Related work:
  - Bertsimas and Lo
  - Coggins, Blazejewski, Aitken

### "No Impact" State Factorization



### **Experimental Details**

- Stocks: AMZN, NVDA, QCOM (varying liquidities)
- V = 5K and 10K shares
  - divided into 1, 4 or 8 levels of observed discretization
- T = 2 and 8 mins
  - divided into 4 or 8 decision points
- Explored a variety of OB state features
- Learned optimal strategy on 1 year of INET training data
- Tested strategy on subsequent 6 months of test data
- Objective function:
  - basis points compared to all shares at initial spread midpoint
    - implementation shortfall; an unattainable ideal (infinite liquidity assumption)
- Same basic RL framework can be applied much more broadly
  - e.g. "market-making" strategies [Chan, Kim, Shelton, Poggio]

### A Baseline Strategy: Optimized Submit-and-Leave



[Nevmyvaka, K., Papandreou, Sycara IEEE CEC 2005]

# **Experimental Results**

#### Private State Variables Only: Time and Inventory Remaining



#### Average Improvement Over Optimized Submit-and-Leave

| T=4 I=1 | 27.16% | T=8 I=1 | 31.15% |
|---------|--------|---------|--------|
| T=4 I=4 | 30.99% | T=8 I=4 | 34.90% |
| T=4 I=8 | 31.59% | T=8 I=8 | 35.50% |

#### Strategy Visualization (10K, 2min)



General shape is intuitive, but (stock-specific) numerical optimization matters!

#### Q-Values: Trading Costs vs. Actions (10K, 2min)



#### Improvement From Order Book Features

| Bid Volume                | -0.06% | Ask Volume                  | -0.28% |
|---------------------------|--------|-----------------------------|--------|
| Bid-Ask Volume Misbalance | 0.13%  | Bid-Ask Spread              | 7.97%  |
| Price Level               | 0.26%  | Immediate Market Order Cost | 4.26%  |
| Signed Transaction Volume | 2.81%  | Price Volatility            | -0.55% |
| Spread Volatility         | 1.89%  | Signed Incoming Volume      | 0.59%  |
| Spread + Immediate Cost   | 8.69%  | Spread+ImmCost+Signed Vol   | 12.85% |

#### **Strategy Visualization II**



#### Q-Values: Trading Costs vs. Actions



predictive and actionable

predictive but not actionable

(In)Stability Properties of Limit Order Dynamics [Even-Dar, Kakade, K., Mansour ACM EC 2006]

### **"Backtesting" of Trading Strategies**

- Theory and experiments describe so far:
  - assume access to limit order data (historical or "live")
  - reconstruct complete order books at each point in time
  - insert hypothetical limit orders into the stream
    - competitive analysis: sequence of "market" limit orders arbitrary but fixed in advance
    - RL experiments: limit order data was historical
  - simulate forward the execution of the hypothetical orders
- Faithfully simulate the mechanical aspects of market impact
- What about the reactive or "psychological" aspects?
- Formalize as a question about dynamical stability:
  - Make various assumptions about how future orders do or do not react to the past
    - Can tiny perturbations of the limit order sequence cause dramatic future change?
  - Butterfly Effects and Chaos
- Of basic interest to any backtesting process... and thus to ML in finance

### **Two Models of Market Impact**

- Both models deal with arbitrary, fixed sequences... but of what?
- Absolute model:
  - the model assumed so far
  - market given by a sequence of "absolute" limit order prices (one share each)
  - e.g. M = (p\_1,buy),(p\_2,buy),(p\_3,sell),...
  - order books constructed from sequence M
  - "mechanical" impact only
  - motivation:
    - traders with "inherent" valuations
    - traders with slow time scales, long investment horizons, poor microstructure access
- Relative model:
  - market given by a sequence of limit order prices relative to current bid & ask
  - e.g. M' = (d\_1,buy),(d\_2,buy),(d\_3,sell),...
  - construct order books & actual prices in concert with each other
    - e.g. limit price p\_2 = current bid + d\_2; limit price p\_3 = current ask + d\_3; etc.
  - crude form of "psychological" or "reactive" impact
  - motivation:
    - traders "looking for a bargain"; trading off time for price
    - "penny-jumping", optimized execution
- How do these models differ?

## **Stability**

- Consider sequences in the two models:
  - absolute:  $M = (p_1,type_1),(p_2,type_2),...$
  - relative:  $M' = (d_1,type_1),(d_2,type_2),...$
- Now consider a small, arbitrary modification to each
  - e.g. deleting or adding a single order
    - (p\_i,type\_i) from M, (d\_i,type\_i) from M'
    - think of this as "our" action
- How much can such a change alter basic properties of the sequence?
  - stability = small change not amplified with time
  - instability = small change greatly amplified
- Absolute model: Every "reasonable" property stable!
  - volume executed, VWAP, closing price,...
  - note: must still be careful; some bounds depend on spread of M
  - generalizes to larger modifications, other types
- Relative model: Most properties highly unstable!
  - can find sequences (with bounded spread) such that single deletion causes arbitrarily large changes in volume executed, VWAP, closing price,...

### **Absolute Model Stability**

- <B,S> = original buy and sell books (at some point in simulation)
- <B',S'> = modified buy and sell books (at the same point)
- Introduce "meta-states" with small "edit distance" between simulations
- E.g. meta-state where B = B' and S U {s'} = S' U {s} for some s <> s'
- Main technical lemma establishes:



Figure 1: Diagram representing the set S of stable states and the possible movements transitions in it after the change.

## **Simulations**



#### % change in VWAP vs. #changes: Absolute model



#### % change in VWAP vs. #changes: Relative model

### **A Mixture Model**

#### fraction $\alpha$ of absolute traders, 1- $\alpha$ of relative traders



% change in VWAP vs.  $\alpha$ , single order deletion

Part II: Proprietary Trading and (Generalized) Portfolio Optimization

### A Stock Market Field Guide (The "Biodiversity" of Wall Street)

- Retail traders
  - individual consumers
- "Buy" side
  - large institutional traders: portfolio managers; mutual and pension funds; endowments
  - often have precise metrics and constraints; e.g. tracking indices
  - percentage-based management fee
- "Sell" side
  - brokerages providing trading/advising/execution services
  - "program trading"  $\rightarrow$  "algorithmic trading": automated strategies for optimized execution
  - profit from commissions/fees
- Market-makers and specialists
  - risk-neutral providers of liquidity
  - highly regulated
  - profit from the "bid-ask bounce"; averse to strong directional movement
  - automated market-making strategies in electronic markets
- Hedge funds and proprietary trading
  - groups attempting to yield "outsized" returns on private capital (= beat the market)
  - can take short positions
  - highly unregulated; starting to see institutional investment
  - heavy quant consumers: "statistical arbitrage", modeling, algorithms
  - typically take management fee and 20% of profits
- All have different goals, constraints, time horizons, technology, data, connectivity...

# **Part II Outline**

- Quant Strategies: Types, Parameters and Development
- Online Algorithms for Portfolio Optimization: Theory & Practice

## **Types of Quant Strategies**

- Technical trading
  - signals for individual stocks based on price and volume history
  - examples: breakouts, moving average crossovers
  - also used as aids to understanding for human traders (the "chartists")
- Pairs trading
  - bet on convergence of "related" stocks (e.g. Coke vs. Pepsi)
  - market-neutral
- Statistical modeling
  - regress stock on overall market returns, sector returns, other factors
  - wait for large deviations between model and empirical returns
  - PCA generalizations of pairs trading
- Event-driven
  - e.g. buy or sell a stock when analysts upgrade/downgrade
  - may be self-sizing
- Many signals have both a momentum and mean-reversion interpretation

### **Parameters for Optimization**

- Universe of stocks
  - e.g. SP500, R2000, mid-caps, specific sectors, other criteria...
  - need to be very careful here...
- Timescales: trading frequency and holding period
  - constrains execution parameters
- Hedging method
  - reducing exposure: which indices to "subtract off"? (and there are many)
  - futures vs. options
- Strategy-specific parameters
  - thresholds for trading or length of position list
  - any parameters of the stat model
- Risk-return tradeoff
  - larger PNL vs. lower variance
- Trade execution
  - T and V from Part I (stock-specific)
  - method: VWAP, implementation shortfall, market on close,...
- Even "simple" ideas require a great deal of engineering

### **Strategy Development Process**

- 1. A plausible high-level idea
  - "let's buy/sell when analysts upgrade/downgrade"
  - "let's apply Exponential Gradient to the long & short SP500"
- Quick-and dirty backtesting
  - usually make crude/optimistic assumptions about execution costs, market impact, etc.
  - e.g. assume we can get market on close +/- round-trip bid/ask estimate
  - optimize strategy parameters
  - may not be possible for high-frequency intraday strategies
- 3. Evaluate performance
  - profitability and risk
  - scalability!
- 4. Get serious
  - improved realism in backtests
  - optimize execution parameters
  - explore various hedging methods
  - analyze exposures
  - make sure you understand why it works (and is "different")
- 5. Cross fingers and begin live trading
  - usually at reduced volume initially
- 6. Monitor performance continually; adjust and resize

Online Algorithms for Portfolio Optimization: Theory and Practice [Thanks to E. Even-Dar, C. Ural, J. Wortman]

### **Basic Framework**

- An underlying universe of K assets U = {S\_1,...,S\_K}
- Goal: manage a "profitable" portfolio over U
  - each trading period S\_i grows/shrinks  $q_i = (1+r_i)$ ,  $r_i$  in [-1,infinity]
  - we maintain a distribution w of wealth, fraction w\_i in S\_i
  - all quantities indexed by time t
- Traditionally: K assets are long positions in common stocks
- Generalized: K assets are any collection of investment instruments:
  - long and short positions in common stocks, cash, futures, derivatives
  - technical trading strategies, pairs strategies, etc. (search keywords?)
  - generally need instruments to be "stateless": can be entered at any time
- How do we measure performance relative to U?
  - average return (~"the market"): place 1/K of initial wealth in each S\_i and leave it there
  - Uniform Constant Rebalanced Portfolio (UCRP): set w\_i = 1/K and rebalance every period
  - Best Single Stock (BSS) in hindsight
  - Best Constant Rebalanced Portfolio (BCRP) in hindsight
  - Note: must place some restrictions on comparison class
- What about risk?
  - Sharpe Ratio = (mean of returns)/(standard deviation of returns)
  - Mean-Variance (MV) criterion = mean variance
  - Maximum Drawdown
  - Value at Risk (VaR)
  - more refined: distinguishing "good" vs. "bad" variance

## **Online Algorithms: Theory**

- Assume nothing about sequence of returns r\_i (except maybe max loss)
- On arbitrary sequence r^1,...r^T, algorithm A dynamically adjusts portfolio w^1,...,w^t
- Compare cumulative return of BSS in hindsight to return of A
- Powerful family of no-regret algorithms: for all sequences,
  - Return(A( $r^1,...,r^T$ ))/T >= Return(BSS( $r^1,...,r^T$ ))/T O(sqrt(log(K)/T))
  - per-step regret is vanishing with T
- How is this possible?
  - note: for this to be interesting, need BSS to strongly outperform the average
- Turns out to be crucial to update weights multiplicatively, not additively
- Flavor of a typical algorithm:
  - w\_i  $\leftarrow exp(\eta * r_i)w_i$ , renormalize
- One (crucial) parameter: learning rate η
  - for the theory, need to optimize  $\eta \sim 1/sqrt(T)$
  - generally are assuming momentum rather than mean reversion
  - note:  $\eta = 0$  (no learning) is UCRP; a form of mean reversion
  - value of  $\eta$  also strongly influences portfolio concentration  $\rightarrow$  variance/risk
- Let's look at some empirical performance

#### Data Period: 1/4/1999 – 8/2/2005 Underlying Instruments: 466 stocks in S&P 500 Daily (closing) returns and trading Mark-to-market









- Current Assumption: 4 bp.
- Not a significant effect to the Original Strategies (long only)





Invest \$1 million (GMV) in the algorithm every day



|                              | EG (withTC) | S&P 500 Index |
|------------------------------|-------------|---------------|
| Annualized Arithmetic Return | 17.94%      | 12.18%        |
| Annualized Geometric Return  | 18.88%      | 12.32%        |
| Annualized Stdev             | 11.31%      | 10.62%        |
| Sharpe Ratio (Arithmetic)    | 1.59        | 1.15          |
| Sharpe Ratio (Geometric)     | 1.67        | 1.16          |

### What About Risk?

- Sharpe Ratio = (mean of returns)/(standard deviation of returns)
- Mean-Variance (MV) criterion = mean variance
- Maximum Drawdown
- Value at Risk (VaR)
- More refined: distinguishing "good" vs. "bad" variance
- One (theoretical) ideal: no regret compared to BSS in hindsight w.r.t. risk-return
  - e.g. BSS Sharpe, BSS MV,...
  - can prove any online algorithm must have constant regret!
  - nevertheless...





### Conclusions

- Many algorithmic challenges in modern finance
- Low level: optimized execution & microstructure
- High level: quant strategy design and development
- Space in between filling rapidly
- More speculative comments:
  - importation of finance methodology into emerging markets (search keywords)
  - the Optimark story