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A Stock Market Field Guide
(The “Biodiversity” of Wall Street)

Retail traders
— individual consumers
“Buy” side
— large institutional traders: portfolio managers; mutual and pension funds; endowments
— often have precise metrics and constraints; e.g. tracking indices
— percentage-based management fee
“Sell” side
— brokerages providing trading/advising/execution services
— “program trading” - “algorithmic trading”: automated strategies for optimized execution
— profit from commissions/fees
Market-makers and specialists
— risk-neutral providers of liquidity
— highly regulated
— profit from the “bid-ask bounce”; averse to strong directional movement
— automated market-making strategies in electronic markets
Hedge funds and proprietary trading
— groups attempting to yield “outsized” returns on private capital (= beat the market)
— can take short positions
— highly unregulated; starting to see institutional investment
— heavy quant consumers: “statistical arbitrage”, modeling, algorithms
— typically take management fee and 20% of profits

All have different goals, constraints, time horizons, technology, data, connectivity...



Where are the Algorithmic Challenges?

e Need:

— precisely specified constraints (inputs and outputs)
— measures of performance
— data

 Two important areas:

— Part I: Market Microstructure and Optimized Execution
— Part Il: Proprietary Trading and (Generalized) Portfolio Optimization



Part I:
Market Microstructure
and Optimized Execution



Questions of Enduring Interest

How do (stock) prices “evolve”? How can we model this evolution?

— classical random walk, diffusion models + drift
* many recent empirical challenges [Lo & MacKinlay; Brock et al.]

— autoregressive time series models
 AR1, ARCH, GARCH, etc. - generalized Ito model

— computer science: adversarial/worst-case price sequences
« algorithms analyzed w.r.t. competitive ratios, regret

Can we design “adaptive” or “learning” algorithms for:
— executing difficult/large trades?
— predicting and profiting from movements of prices?
Models generally ignore market mechanism and liquidity issues
— at least in part because the data was unavailable and unreliable
This is changing rapidly... and presents challenges & opportunities



Part | Outline

Market Microstructure and Optimized Execution
Competitive Analysis for VWARP and Limit Order Trading
Reinforcement Learning for Optimized Execution
(In)Stability Properties of Limit Order Dynamics



Background on Market Microstructure
and Optimized Trade Execution



Background on Market Microstructure

refresh | island home | disclaimer | help

Consider a typical exchange for some specific security GETSTOCK
Limit order: specify price (away from the market) P MSFT o wl
(Partially) Executable orders are filled immediately
— prices determined by standing .orders_ In the book e on e o
— one order may execute at multlple prices Time - 14:57:07.72 Volume 10,243,212
Non-executable orders are placed in the buy or sell book
. . . BUY ORDERS SELL ORDERS
— sorted by price; top prices are the bid and ask SHARES  PRICE SHARES  PRICE
. . . . H00 24 0620 500 24 0630
Market order: limit order with an extreme price 5000 240610 500 240590
Full order books now visible in real time 2.000 F24.0600 EES08 RO
100 24 0600 200 24 0800
What are they good for? 1100 240550 1981 240900
100 24 0500 412 24 0900
5000 240500 3,000 240980
200 24 0500 500 241000
3294 240500 100 241200
1,000 240500 2800 241400
3.000 240430 5000 241400
100 240400 1,000 241400
5503 240400 5,000 241500
2100 240300 400 24.1600
2800 240300 1,000 241700
(412 more) (694 more)

Acof 14.57.18.178



Optimized Trade Execution

e Canonical execution problem: sell V shares in T time steps
— must place market order for any unexecuted shares attime T
— also known as “one-way trading” (OWT)
— trade-off between price, time... and liquidity

* Problem is ubiquitous

* Multiple performance criteria:

— Maximum Price:
e compare revenue to max execution price
* O(log(R)) competitive ratios in infinite liquidity, adversarial price model

— R =a priori bound on ratio of max to min execution price
— [El-Yaniv, Fiat, Karp & Turpin]

— Volume Weighted Average Price (VWAP):
e compare to per-share average price of executions
» widely used on Wall Street; reduces risk sources to execution
* by definition, must track prices and volumes
— Implementation Shortfall:
* compare per-share price to mid-spread price at start of trading interval
* an unrealizable ideal



Algorithms for VWAP
and Limit Order Trading

[Kakade, K., Mansour, Ortiz ACM EC 2004]



An Online Microstructure Model

Market places a sequence of price-volume limit orders:
- M=(p_1v_ 1),p 2V 2),....(p_T,v_T) (+ordertypes)
— possibly adversarial; also consider various restrictions
Algorithm is allowed to interleave its own limit orders:
— A=(q_ 1w 1,(g 2w _2),...,(q_T,w_T) (+ order types)
Merged sequence determines executions and order books:
— merge(M,A)=(p_1v 1), (1w 1),..., (P TVv.T),(qQTWT) =—>
— now have complex, high-dimensional state
* how to simplify?

SHARES PRICE SHARES  FRICE

2



What Can Be Done?

« Maximum Price:
— O(log(R)) inf. liquidity model - O(log(R)log(V)) in microstructure model
— quantifies worst-case market impact of large trades
— ifp_1>p_2>... are execution prices, randomly “guess” max{kp_k}
— note: optimal offline algorithm unknown!

« VWAP:

— O(log(Q)) in microstructure
* Q =ratio of max to min total executed volume on sequence
* Q often small empirically; can exploit (entropic) distributional features

— Better: trade V shares over YV executed shares, ¥y > 1
* VWAP “with volume” instead of “with time”

— Can approach competitive ratio of 1 for large V!

— Sketch of algorithm/analysis:
 divide time into equal (executed) volume intervals | 1,1 2,...
» place sell order for 1 share at ~ (1-€)*k nearest VWAP_j

« if all orders executed, are within (1-g) of overall VWAP
e can't “strand” more than one order at any given price level

e Optimize €
* None of these algorithms “look” in the order books!



Reinforcement Learning for

Optimized Trade Execution
[Nevmyvaka, Feng, K. ICML 2006]



RL for Optimized Execution

e Basic idea: execution as state-based stochastic optimal control
— state: time and shares remaining... what else?
— actions: position(s) of orders within the book
— rewards: prices received for executions
— stochastic: because same state may evolve differently in time

« This work: large-scale application of RL to microstructure

 Related work:
— Bertsimas and Lo
— Coggins, Blazejewski, Aitken



Full OB
State:

OB State
Features

Policy:

Private
State:

[

“No Impact” State Factorization
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Experimental Details

Stocks: AMZN, NVDA, QCOM (varying liquidities)
V = 5K and 10K shares
— divided into 1, 4 or 8 levels of observed discretization
T =2 and 8 mins
— divided into 4 or 8 decision points
Explored a variety of OB state features
Learned optimal strategy on 1 year of INET training data
Tested strategy on subsequent 6 months of test data
Obijective function:

— basis points compared to all shares at initial spread midpoint
* implementation shortfall; an unattainable ideal (infinite liquidity assumption)

Same basic RL framework can be applied much more broadly
— e.g. “market-making” strategies [Chan, Kim, Shelton, Poggio]



A Baseline Strategy: Optimized Submit-and-Leave
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Experimental Results



Private State Variables Only: Time and Inventory Remaining

AR

Trading Cost
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Average Improvement Over Optimized Submit-and-Leave

T=41=1 |27.16% |T=81=1 31.15%
T=41=4 |30.99% |T=81=4 34.90%
T=41=8 |31.59% |T=81=8 35.50%




Strategy Visualization (10K, 2min)
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General shape is intuitive, but (stock-specific) numerical optimization matters!



Trading Cost

Q-Values: Trading Costs vs. Actions (10K, 2min)
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Improvement From Order Book Features

Bid Volume -0.06% | Ask Volume -0.28%
Bid-Ask Volume Misbalance 0.13% | Bid-Ask Spread 7.97%
Price Level 0.26% | Immediate Market Order Cost 4.26%
Signed Transaction Volume 2.81% | Price Volatility -0.55%
Spread Volatility 1.89% | Signed Incoming Volume 0.59%
Spread + Immediate Cost 8.69% | Spread+ImmCost+Signed Vol | 12.85%




Optimal Action

Strategy Visualization Il
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Q-Values: Trading Costs vs. Actions

Bid-Ask Volume Misbalance
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(In)Stability Properties of

Limit Order Dynamics
[Even-Dar, Kakade, K., Mansour ACM EC 2006]



“Backtesting” of Trading Strategies

Theory and experiments describe so far:
— assume access to limit order data (historical or “live”)
— reconstruct complete order books at each point in time

— insert hypothetical limit orders into the stream
o competitive analysis: sequence of “market” limit orders arbitrary but fixed in advance
* RL experiments: limit order data was historical

— simulate forward the execution of the hypothetical orders

Faithfully simulate the mechanical aspects of market impact

What about the reactive or “psychological’” aspects?

Formalize as a question about dynamical stability:
— Make various assumptions about how future orders do or do not react to the past
— Can tiny perturbations of the limit order sequence cause dramatic future change?
— Butterfly Effects and Chaos

Of basic interest to any backtesting process... and thus to ML in finance



Two Models of Market Impact

Both models deal with arbitrary, fixed sequences... but of what?
Absolute model:

the model assumed so far

market given by a sequence of “absolute” limit order prices (one share each)
e.g. M = (p_1,buy),(p_2,buy),(p_3,sell),...

order books constructed from sequence M

“mechanical” impact only

motivation:

 traders with “inherent” valuations
 traders with slow time scales, long investment horizons, poor microstructure access

Relative model:

market given by a sequence of limit order prices relative to current bid & ask
e.g. M' =(d_1,buy),(d_2,buy),(d_3,sell),...
construct order books & actual prices in concert with each other

o e.g. limit price p_2 = current bid + d_2; limit price p_3 = current ask + d_3; etc.
crude form of “psychological” or “reactive” impact
motivation:

 traders “looking for a bargain”; trading off time for price
e “penny-jumping”, optimized execution

How do these models differ?



Stability

Consider sequences in the two models:
— absolute: M = (p_1,type_1),(p_2,type_2),...
— relative: M’ = (d_1,type 1),(d _2,type 2),...
Now consider a small, arbitrary modification to each
— e.g. deleting or adding a single order
 (p_itype_i) from M, (d_i,type i) from M’
* think of this as “our” action
How much can such a change alter basic properties of the sequence?
— stability = small change not amplified with time
— Instability = small change greatly amplified
Absolute model: Every “reasonable” property stable!
— volume executed, VWAP, closing price,...
— note: must still be careful; some bounds depend on spread of M
— generalizes to larger modifications, other types
Relative model: Most properties highly unstable!

— can find sequences (with bounded spread) such that single deletion causes
arbitrarily large changes in volume executed, VWAP, closing price,...



Absolute Model Stability

<B,S> = original buy and sell books (at some point in simulation)
<B’,S’> = modified buy and sell books (at the same point)

Introduce “meta-states” with small “edit distance” between simulations
E.g. meta-state where B=B’and S U {s’} =S’ U {s} for some s <> g’
Main technical lemma establishes:

Figure 1: Diagram representing the set S of stable states and the possible
movements transitions in it after the change.



Simulations
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Mixture Model
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Part II:
Proprietary Trading and
(Generalized) Portfolio Optimization



A Stock Market Field Guide
(The “Biodiversity” of Wall Street)

Retail traders
— individual consumers
“Buy” side
— large institutional traders: portfolio managers; mutual and pension funds; endowments
— often have precise metrics and constraints; e.g. tracking indices
— percentage-based management fee
“Sell” side
— brokerages providing trading/advising/execution services
— “program trading” - “algorithmic trading”: automated strategies for optimized execution
— profit from commissions/fees
Market-makers and specialists
— risk-neutral providers of liquidity
— highly regulated
— profit from the “bid-ask bounce”; averse to strong directional movement
— automated market-making strategies in electronic markets
Hedge funds and proprietary trading
— groups attempting to yield “outsized” returns on private capital (= beat the market)
— can take short positions
— highly unregulated; starting to see institutional investment
— heavy quant consumers: “statistical arbitrage”, modeling, algorithms
— typically take management fee and 20% of profits

All have different goals, constraints, time horizons, technology, data, connectivity...



Part |l Outline

 Quant Strategies: Types, Parameters and Development
e Online Algorithms for Portfolio Optimization: Theory & Practice



Types of Quant Strategies

Technical trading
— signals for individual stocks based on price and volume history
— examples: breakouts, moving average Crossovers
— also used as aids to understanding for human traders (the “chartists”)
Pairs trading
— bet on convergence of “related” stocks (e.g. Coke vs. Pepsi)
— market-neutral
Statistical modeling
— regress stock on overall market returns, sector returns, other factors
— wait for large deviations between model and empirical returns
— PCA generalizations of pairs trading
Event-driven
— e.g. buy or sell a stock when analysts upgrade/downgrade
— may be self-sizing
Many signals have both a momentum and mean-reversion interpretation



Parameters for Optimization

Universe of stocks
— e.g. SP500, R2000, mid-caps, specific sectors, other criteria...
— need to be very careful here...
Timescales: trading frequency and holding period
— constrains execution parameters
Hedging method
— reducing exposure: which indices to “subtract off’? (and there are many)
— futures vs. options
Strategy-specific parameters
— thresholds for trading or length of position list
— any parameters of the stat model
Risk-return tradeoff
— larger PNL vs. lower variance
Trade execution
— T and V from Part | (stock-specific)
— method: VWAP, implementation shortfall, market on close,...
Even “simple” ideas require a great deal of engineering



Strategy Development Process

1. A plausible high-level idea
— “let’s buy/sell when analysts upgrade/downgrade”
— “let’s apply Exponential Gradient to the long & short SP500”
2. Quick-and dirty backtesting
— usually make crude/optimistic assumptions about execution costs, market impact, etc.
— e.g. assume we can get market on close +/- round-trip bid/ask estimate
— optimize strategy parameters
— may not be possible for high-frequency intraday strategies
3. Evaluate performance
— profitability and risk
— scalability!
4. Get serious
— improved realism in backtests
— optimize execution parameters
— explore various hedging methods
— analyze exposures
— make sure you understand why it works (and is “different”)
5. Cross fingers and begin live trading
— usually at reduced volume initially

6. Monitor performance continually; adjust and resize



Online Algorithms for
Portfolio Optimization:

Theory and Practice
[Thanks to E. Even-Dar, C. Ural, J. Wortman]



Basic Framework

An underlying universe of K assets U ={S _1,...,S K}

Goal: manage a “profitable” portfolio over U
— each trading period S_i grows/shrinks q_i = (1+r_i), r_iin [-1,infinity]
— we maintain a distribution w of wealth, fraction w_iin S_i
— all guantities indexed by time t

Traditionally: K assets are long positions in common stocks

Generalized: K assets are any collection of investment instruments:
— long and short positions in common stocks, cash, futures, derivatives
— technical trading strategies, pairs strategies, etc. (search keywords?)
— generally need instruments to be “stateless”. can be entered at any time
How do we measure performance relative to U?
— average return (~“the market”): place 1/K of initial wealth in each S_i and leave it there
— Uniform Constant Rebalanced Portfolio (UCRP): set w_i = 1/K and rebalance every period
— Best Single Stock (BSS) in hindsight
— Best Constant Rebalanced Portfolio (BCRP) in hindsight
Note: must place some restrictions on comparison class
What about risk?
— Sharpe Ratio = (mean of returns)/(standard deviation of returns)
— Mean-Variance (MV) criterion = mean — variance
— Maximum Drawdown
— Value at Risk (VaR)
— more refined: distinguishing “good” vs. “bad” variance



Online Algorithms: Theory

Assume nothing about sequence of returns r_i (except maybe max loss)

On arbitrary sequence r'\1,...r"T, algorithm A dynamically adjusts portfolio w™1,...,w"t
Compare cumulative return of BSS in hindsight to return of A

Powerful family of no-regret algorithms: for all sequences,

— Return(A(r*1,...,r"T))/T >= Return(BSS(r*1,...,r"T))/T — O(sqrt(log(K)/T))

— per-step regret is vanishing with T
How is this possible?

— note: for this to be interesting, need BSS to strongly outperform the average
Turns out to be crucial to update weights multiplicatively, not additively
Flavor of a typical algorithm:

—  W_i € exp(n#*r_i)w_i, renormalize
One (crucial) parameter: learning rate n

— for the theory, need to optimize n ~ 1/sqrt(T)

— generally are assuming momentum rather than mean reversion

— note: n =0 (no learning) is UCRP; a form of mean reversion

— value of n also strongly influences portfolio concentration - variance/risk
Let’s look at some empirical performance



Data Period: 1/4/1999 — 8/2/2005

Underlying Instruments: 466 stocks in S&P 500
Daily (closing) returns and trading
Mark-to-market
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Return of EG-update on Original Strategy with and without TC
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Invest $1 million (GMV) in the algorithm every day

Cumulative P&L of Original Strategy with eta=-2.1 in the last one year

200000

150000

100000 -

50000 -

Cumulative
P&L

0 4

4

-50000 -

-100000

Date
EG (withTC) S&P 500 Index
Annualized Arithmetic Return 17.94% 12.18%
Annualized Geometric Return 18.88% 12.32%
Annualized Stdev 11.31% 10.62%
Sharpe Ratio (Arithmetic) 1.59 1.15

Sharpe Ratio (Geometric) 1.67 1.16




What About Risk?

Sharpe Ratio = (mean of returns)/(standard deviation of returns)
Mean-Variance (MV) criterion = mean — variance

Maximum Drawdown

Value at Risk (VaR)

More refined: distinguishing “good” vs. “bad” variance

One (theoretical) ideal: no regret compared to BSS in hindsight w.r.t. risk-return
— e.g. BSS Sharpe, BSS MV, ...
— can prove any online algorithm must have constant regret!
— nevertheless...
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Conclusions

Many algorithmic challenges in modern finance
Low level: optimized execution & microstructure
High level: quant strategy design and development
Space in between filling rapidly

More speculative comments:
— Importation of finance methodology into emerging markets (search keywords)
— the Optimark story
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