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A Stock Market Field Guide
(The “Biodiversity” of Wall Street)

• Retail traders
– individual consumers

• “Buy” side
– large institutional traders: portfolio managers; mutual and pension funds; endowments
– often have precise metrics and constraints; e.g. tracking indices
– percentage-based management fee

• “Sell” side
– brokerages providing trading/advising/execution services
– “program trading” “algorithmic trading”: automated strategies for optimized execution
– profit from commissions/fees 

• Market-makers and specialists
– risk-neutral providers of liquidity
– highly regulated
– profit from the “bid-ask bounce”; averse to strong directional movement
– automated market-making strategies in electronic markets

• Hedge funds and proprietary trading
– groups attempting to yield “outsized” returns on private capital (= beat the market)
– can take short positions
– highly unregulated; starting to see institutional investment
– heavy quant consumers: “statistical arbitrage”, modeling, algorithms
– typically take management fee and 20% of profits

• All have different goals, constraints, time horizons, technology, data, connectivity…



Where are the Algorithmic Challenges?

• Need:
– precisely specified constraints (inputs and outputs)
– measures of performance
– data

• Two important areas:
– Part I: Market Microstructure and Optimized Execution
– Part II: Proprietary Trading and (Generalized) Portfolio Optimization



Part I:
Market Microstructure

and Optimized Execution



Questions of Enduring Interest
• How do (stock) prices “evolve”? How can we model this evolution?

– classical random walk, diffusion models + drift
• many recent empirical challenges [Lo & MacKinlay; Brock et al.]

– autoregressive time series models
• AR1, ARCH, GARCH, etc. generalized Ito model

– computer science: adversarial/worst-case price sequences
• algorithms analyzed w.r.t. competitive ratios, regret

• Can we design “adaptive” or “learning” algorithms for:
– executing difficult/large trades?
– predicting and profiting from movements of prices?

• Models generally ignore market mechanism and liquidity issues
– at least in part because the data was unavailable and unreliable

• This is changing rapidly… and presents challenges & opportunities



Part I Outline

• Market Microstructure and Optimized Execution
• Competitive Analysis for VWAP and Limit Order Trading
• Reinforcement Learning for Optimized Execution
• (In)Stability Properties of Limit Order Dynamics



Background on Market Microstructure
and Optimized Trade Execution



Background on Market Microstructure

• Consider a typical exchange for some specific security
• Limit order: specify price (away from the market)
• (Partially) Executable orders are filled immediately

– prices determined by standing orders in the book
– one order may execute at multiple prices

• Non-executable orders are placed in the buy or sell book
– sorted by price; top prices are the bid and ask

• Market order: limit order with an extreme price
• Full order books now visible in real time
• What are they good for?



Optimized Trade Execution
• Canonical execution problem: sell V shares in T time steps

– must place market order for any unexecuted shares at time T
– also known as “one-way trading” (OWT)
– trade-off between price, time… and liquidity

• Problem is ubiquitous
• Multiple performance criteria:

– Maximum Price:
• compare revenue to max execution price
• O(log(R)) competitive ratios in infinite liquidity, adversarial price model

– R = a priori bound on ratio of max to min execution price
– [El-Yaniv, Fiat, Karp & Turpin]

– Volume Weighted Average Price (VWAP):
• compare to per-share average price of executions
• widely used on Wall Street; reduces risk sources to execution
• by definition, must track prices and volumes

– Implementation Shortfall:
• compare per-share price to mid-spread price at start of trading interval
• an unrealizable ideal



Algorithms for VWAP
and Limit Order Trading

[Kakade, K., Mansour, Ortiz ACM EC 2004]



An Online Microstructure Model

• Market places a sequence of price-volume limit orders:
– M = (p_1,v_1),(p_2,v_2),…,(p_T,v_T)   (+ order types)
– possibly adversarial; also consider various restrictions

• Algorithm is allowed to interleave its own limit orders:
– A = (q_1,w_1),(q_2,w_2),…,(q_T,w_T) (+ order types)

• Merged sequence determines executions and order books:
– merge(M,A) = (p_1,v_1), (q_1,w_1),…, (p_T,v_T), (q_T,w_T)
– now have complex, high-dimensional state

• how to simplify?



What Can Be Done?
• Maximum Price:

– O(log(R)) inf. liquidity model O(log(R)log(V)) in microstructure model
– quantifies worst-case market impact of large trades
– if p_1 > p_2 >… are execution prices, randomly “guess” max{kp_k}
– note: optimal offline algorithm unknown!

• VWAP:
– O(log(Q)) in microstructure

• Q = ratio of max to min total executed volume on sequence
• Q often small empirically; can exploit (entropic) distributional features

– Better: trade V shares over γV executed shares, γ > 1
• VWAP “with volume” instead of “with time”

– Can approach competitive ratio of 1 for large V !
– Sketch of algorithm/analysis:

• divide time into equal (executed) volume intervals I_1, I_2,…
• place sell order for 1 share at ~ (1-ε)^k nearest VWAP_j
• if all orders executed, are within (1-ε) of overall VWAP
• can’t “strand” more than one order at any given price level
• optimize ε

• None of these algorithms “look” in the order books!



Reinforcement Learning for
Optimized Trade Execution

[Nevmyvaka, Feng, K. ICML 2006]



RL for Optimized Execution

• Basic idea: execution as state-based stochastic optimal control
– state: time and shares remaining… what else?
– actions: position(s) of orders within the book
– rewards: prices received for executions
– stochastic: because same state may evolve differently in time

• This work: large-scale application of RL to microstructure
• Related work:

– Bertsimas and Lo
– Coggins, Blazejewski, Aitken



Full OB
State:

“No Impact” State Factorization

Private
State: (T,V) (T-1,V’) (T-2,V’’)

OB State
Features:

OB(T) OB(T-1) OB(T-2)

Policy: a(T) a(T-1) a(T-2)

OB execution simulation reward (share prices)

What OB features?
Massive saving
of data and
computation…
Will it work?

Training only,
do full OB sim
on test data

Action: limit price for
remaining volume



Experimental Details
• Stocks: AMZN, NVDA, QCOM (varying liquidities)
• V = 5K and 10K shares

– divided into 1, 4 or 8 levels of observed discretization
• T = 2 and 8 mins

– divided into 4 or 8 decision points
• Explored a variety of OB state features
• Learned optimal strategy on 1 year of INET training data
• Tested strategy on subsequent 6 months of test data
• Objective function: 

– basis points compared to all shares at initial spread midpoint
• implementation shortfall; an unattainable ideal (infinite liquidity assumption)

• Same basic RL framework can be applied much more broadly
– e.g. “market-making” strategies [Chan, Kim, Shelton, Poggio]



A Baseline Strategy: Optimized Submit-and-Leave

Trading Cost vs. Limit Price

Risk vs. Limit Price

Efficient Frontier

deep in OB M.O. at start

[Nevmyvaka, K., Papandreou, Sycara IEEE CEC 2005]



Experimental Results



Private State Variables Only: Time and Inventory Remaining

T=4 I=1 27.16% T=8 I=1 31.15%

T=4 I=4 30.99% T=8 I=4 34.90%

T=4 I=8 31.59% T=8 I=8 35.50%

Average Improvement Over Optimized Submit-and-Leave



Strategy Visualization (10K, 2min)

General shape is intuitive, but (stock-specific) numerical optimization matters!



Q-Values: Trading Costs vs. Actions (10K, 2min)



Bid Volume -0.06% Ask Volume -0.28%

Bid-Ask Volume Misbalance 0.13% Bid-Ask Spread 7.97%

Price Level 0.26% Immediate Market Order Cost 4.26%

Signed Transaction Volume 2.81% Price Volatility -0.55%

Spread Volatility 1.89% Signed Incoming Volume 0.59%

Spread + Immediate Cost 8.69% Spread+ImmCost+Signed Vol 12.85%

Improvement From Order Book Features



Strategy Visualization II



Q-Values: Trading Costs vs. Actions

min
min

predictive and actionable predictive but not actionable



(In)Stability Properties of
Limit Order Dynamics

[Even-Dar, Kakade, K., Mansour ACM EC 2006]



“Backtesting” of Trading Strategies

• Theory and experiments describe so far:
– assume access to limit order data (historical or “live”)
– reconstruct complete order books at each point in time
– insert hypothetical limit orders into the stream

• competitive analysis: sequence of “market” limit orders arbitrary but fixed in advance
• RL experiments: limit order data was historical

– simulate forward the execution of the hypothetical orders
• Faithfully simulate the mechanical aspects of market impact
• What about the reactive or “psychological” aspects?
• Formalize as a question about dynamical stability:

– Make various assumptions about how future orders do or do not react to the past
– Can tiny perturbations of the limit order sequence cause dramatic future change?
– Butterfly Effects and Chaos

• Of basic interest to any backtesting process… and thus to ML in finance



Two Models of Market Impact
• Both models deal with arbitrary, fixed sequences… but of what?
• Absolute model:

– the model assumed so far
– market given by a sequence of “absolute” limit order prices (one share each)
– e.g. M = (p_1,buy),(p_2,buy),(p_3,sell),…
– order books constructed from sequence M
– “mechanical” impact only
– motivation: 

• traders with “inherent” valuations
• traders with slow time scales, long investment horizons, poor microstructure access

• Relative model:
– market given by a sequence of limit order prices relative to current bid & ask
– e.g. M’ = (d_1,buy),(d_2,buy),(d_3,sell),…
– construct order books & actual prices in concert with each other

• e.g. limit price p_2 = current bid + d_2; limit price p_3 = current ask + d_3; etc.
– crude form of “psychological” or “reactive” impact
– motivation:

• traders “looking for a bargain”; trading off time for price
• “penny-jumping”, optimized execution

• How do these models differ?



Stability
• Consider sequences in the two models:

– absolute: M = (p_1,type_1),(p_2,type_2),…
– relative:   M’ = (d_1,type_1),(d_2,type_2),…

• Now consider a small, arbitrary modification to each
– e.g. deleting or adding a single order

• (p_i,type_i) from M, (d_i,type_i) from M’
• think of this as “our” action

• How much can such a change alter basic properties of the sequence?
– stability = small change not amplified with time
– instability = small change greatly amplified

• Absolute model: Every “reasonable” property stable!
– volume executed, VWAP, closing price,…
– note: must still be careful; some bounds depend on spread of M
– generalizes to larger modifications, other types

• Relative model: Most properties highly unstable!
– can find sequences (with bounded spread) such that single deletion causes 

arbitrarily large changes in volume executed, VWAP, closing price,…



Absolute Model Stability
• <B,S> = original buy and sell books (at some point in simulation)
• <B’,S’> = modified buy and sell books (at the same point)
• Introduce “meta-states” with small “edit distance” between simulations
• E.g. meta-state where B = B’ and S U {s’} = S’ U {s} for some s <> s’
• Main technical lemma establishes:



Simulations
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Part II:
Proprietary Trading and 

(Generalized) Portfolio Optimization



A Stock Market Field Guide
(The “Biodiversity” of Wall Street)

• Retail traders
– individual consumers

• “Buy” side
– large institutional traders: portfolio managers; mutual and pension funds; endowments
– often have precise metrics and constraints; e.g. tracking indices
– percentage-based management fee

• “Sell” side
– brokerages providing trading/advising/execution services
– “program trading” “algorithmic trading”: automated strategies for optimized execution
– profit from commissions/fees 

• Market-makers and specialists
– risk-neutral providers of liquidity
– highly regulated
– profit from the “bid-ask bounce”; averse to strong directional movement
– automated market-making strategies in electronic markets

• Hedge funds and proprietary trading
– groups attempting to yield “outsized” returns on private capital (= beat the market)
– can take short positions
– highly unregulated; starting to see institutional investment
– heavy quant consumers: “statistical arbitrage”, modeling, algorithms
– typically take management fee and 20% of profits

• All have different goals, constraints, time horizons, technology, data, connectivity…



Part II Outline

• Quant Strategies: Types, Parameters and Development
• Online Algorithms for Portfolio Optimization: Theory & Practice



Types of Quant Strategies

• Technical trading
– signals for individual stocks based on price and volume history
– examples: breakouts, moving average crossovers
– also used as aids to understanding for human traders (the “chartists”)

• Pairs trading
– bet on convergence of “related” stocks (e.g. Coke vs. Pepsi)
– market-neutral

• Statistical modeling
– regress stock on overall market returns, sector returns, other factors
– wait for large deviations between model and empirical returns
– PCA generalizations of pairs trading

• Event-driven
– e.g. buy or sell a stock when analysts upgrade/downgrade
– may be self-sizing

• Many signals have both a momentum and mean-reversion interpretation



Parameters for Optimization
• Universe of stocks

– e.g. SP500, R2000, mid-caps, specific sectors, other criteria…
– need to be very careful here…

• Timescales: trading frequency and holding period
– constrains execution parameters

• Hedging method
– reducing exposure: which indices to “subtract off”? (and there are many)
– futures vs. options

• Strategy-specific parameters
– thresholds for trading or length of position list
– any parameters of the stat model 

• Risk-return tradeoff
– larger PNL vs. lower variance

• Trade execution
– T and V from Part I (stock-specific)
– method: VWAP, implementation shortfall, market on close,…

• Even “simple” ideas require a great deal of engineering



Strategy Development Process
• 1. A plausible high-level idea

– “let’s buy/sell when analysts upgrade/downgrade”
– “let’s apply Exponential Gradient to the long & short SP500”

• 2. Quick-and dirty backtesting
– usually make crude/optimistic assumptions about execution costs, market impact, etc.
– e.g. assume we can get market on close +/- round-trip bid/ask estimate
– optimize strategy parameters
– may not be possible for high-frequency intraday strategies

• 3. Evaluate performance
– profitability and risk
– scalability!

• 4. Get serious
– improved realism in backtests
– optimize execution parameters
– explore various hedging methods
– analyze exposures
– make sure you understand why it works (and is “different”)

• 5. Cross fingers and begin live trading
– usually at reduced volume initially

• 6. Monitor performance continually; adjust and resize



Online Algorithms for 
Portfolio Optimization:

Theory and Practice
[Thanks to E. Even-Dar, C. Ural, J. Wortman]



Basic Framework
• An underlying universe of K assets U = {S_1,…,S_K}
• Goal: manage a “profitable” portfolio over U

– each trading period S_i grows/shrinks q_i = (1+r_i), r_i in [-1,infinity]
– we maintain a distribution w of wealth, fraction w_i in S_i
– all quantities indexed by time t

• Traditionally: K assets are long positions in common stocks
• Generalized: K assets are any collection of investment instruments:

– long and short positions in common stocks, cash, futures, derivatives
– technical trading strategies, pairs strategies, etc. (search keywords?)
– generally need instruments to be “stateless”: can be entered at any time

• How do we measure performance relative to U?
– average return (~“the market”): place 1/K of initial wealth in each S_i and leave it there
– Uniform Constant Rebalanced Portfolio (UCRP): set w_i = 1/K and rebalance every period
– Best Single Stock (BSS) in hindsight
– Best Constant Rebalanced Portfolio (BCRP) in hindsight
– Note: must place some restrictions on comparison class

• What about risk?
– Sharpe Ratio = (mean of returns)/(standard deviation of returns)
– Mean-Variance (MV) criterion = mean – variance
– Maximum Drawdown
– Value at Risk (VaR)
– more refined: distinguishing “good” vs. “bad” variance



Online Algorithms: Theory
• Assume nothing about sequence of returns r_i (except maybe max loss)
• On arbitrary sequence r^1,…r^T, algorithm A dynamically adjusts portfolio w^1,…,w^t
• Compare cumulative return of BSS in hindsight to return of A
• Powerful family of no-regret algorithms: for all sequences,

– Return(A(r^1,…,r^T))/T >= Return(BSS(r^1,…,r^T))/T – O(sqrt(log(K)/T))
– per-step regret is vanishing with T

• How is this possible?
– note: for this to be interesting, need BSS to strongly outperform the average

• Turns out to be crucial to update weights multiplicatively, not additively
• Flavor of a typical algorithm:

– w_i exp(η∗r_i)w_i, renormalize
• One (crucial) parameter: learning rate η

– for the theory, need to optimize η ~ 1/sqrt(T)
– generally are assuming momentum rather than mean reversion
– note: η = 0 (no learning) is UCRP; a form of mean reversion
– value of η also strongly influences portfolio concentration variance/risk

• Let’s look at some empirical performance



Data Period: 1/4/1999 – 8/2/2005
Underlying Instruments: 466 stocks in S&P 500
Daily (closing) returns and trading
Mark-to-market



Annualized Return of EG-update on Original Strategy as a function of Learning Rate
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Annualized Return of EG-update on Contrarian Strategy as a function of Learning Rate
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• Current Assumption: 4 bp.
• Not a significant effect to the Original Strategies (long only)

Return of EG-update on Original Strategy with and without TC
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Turnover Ratio for Contrarian Strategy with eta=1.6
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Return of Contrarian Strategy with and without TC
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Invest $1 million (GMV) in the algorithm every day

EG (withTC) S&P 500 Index
Annualized Arithmetic Return 17.94% 12.18%
Annualized Geometric Return 18.88% 12.32%

Annualized Stdev 11.31% 10.62%
Sharpe Ratio (Arithmetic) 1.59 1.15
Sharpe Ratio (Geometric) 1.67 1.16

Cumulative P&L of Original Strategy with eta=-2.1 in the last one year
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What About Risk?

• Sharpe Ratio = (mean of returns)/(standard deviation of returns)
• Mean-Variance (MV) criterion = mean – variance
• Maximum Drawdown
• Value at Risk (VaR)
• More refined: distinguishing “good” vs. “bad” variance
• One (theoretical) ideal: no regret compared to BSS in hindsight w.r.t. risk-return

– e.g. BSS Sharpe, BSS MV,…
– can prove any online algorithm must have constant regret!
– nevertheless…







Conclusions
• Many algorithmic challenges in modern finance
• Low level: optimized execution & microstructure
• High level: quant strategy design and development
• Space in between filling rapidly
• More speculative comments:

– importation of finance methodology into emerging markets (search keywords)
– the Optimark story
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