
Provably Correct, Secrecy Preserving
Computation and its Applications in Auctions and

Securities Exchanges

A dissertation presented

by

Christopher Andrew Thorpe

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2008

c©2008 - Christopher Andrew Thorpe

All rights reserved.

Dissertation Advisors: Author

David C. Parkes and Michael O. Rabin Christopher Andrew Thorpe

Provably Correct, Secrecy Preserving Computation and its

Applications in Auctions and Securities Exchanges

Abstract

Recent advances in cryptography provide powerful new tools for enhancing trust

in electronic commerce at low cost. We construct a general model of provably cor-

rect, secrecy preserving computation without relying on any particular cryptographic

framework or assumptions. This model employs an “Evaluator-Prover” that accepts

encrypted inputs from many (possibly unaffiliated) parties, computes one or more

functions on those inputs, outputs the functions’ results and verifies the correctness

of the results to one or more verifiers. We distinguish our work from other secure com-

putation approaches as a balance between absolute security and a completely trusted

third party, achieving a model enjoying computational tractability and suitability for

business applications.

Our evaluator-prover is not trusted in the traditional sense; it is bound to output

only the correct results at all times and prevented from disclosing private data by

tools from other areas of computer science research such as trusted computing and

network security, rather than the provably secure cryptographic tools employed in

many past solutions. We show how to construct an implementation of our model

using Paillier’s homomorphic encryption scheme. We propose a “time-lapse cryp-

iii

iv

tography service” that produces public encryption keys and guarantees decryption

at a particular time by constructing and releasing the corresponding decryption key

after a specific interval. This service functions as a new cryptographic commitment

primitive with binding, hiding, and nonrepudiation.

Provided with these tools, we construct four new mechanisms for electronic com-

merce: a cryptographic sealed-bid auction protocol for one or more identical items,

a cryptographic combinatorial auction protocol based on the “clock-proxy” auction,

a cryptographic securities exchange that conducts a continuous double auction for a

particular security, and a cryptographic combinatorial securities exchange that pro-

vides for efficient atomic exchange of baskets of many securities.

Along the way, we develop useful building blocks of independent interest, most

notably a novel cryptographic mechanism to efficiently prove a solution to a linear or

integer program is optimal based on its encrypted inputs and encrypted constraints;

this provides unprecedented efficiency in proving the correctness of winner and price

determination in our combinatorial clock-proxy auction.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Citations to Previously Published Work ix
Acknowledgments . x
Dedication . xviii
Preface . 1

1 Introduction 15
1.1 Related Work . 19
1.2 Summary of the Presentation . 24

2 Secrecy-Preserving Computations by a Partially Trusted Third Party 26
2.1 Secrecy-Preserving, Provably Correct Computation 29

2.1.1 General Assumptions . 29
2.1.2 Entities Involved in the Computation 30
2.1.3 How the Computation Works 32
2.1.4 Supported Mathematical Operations 36
2.1.5 Extending These Operations to the Rationals 39
2.1.6 Observations on verifiable computation over rational numbers. 41
2.1.7 Approximating real values with rationals;

proving acceptable error . 42
2.1.8 Integral rationals; comparing “fractionality” 43

3 Implementation of Secrecy-Preserving, Provably Correct
Computation using Paillier Encryption 45
3.1 Paillier Encryption . 48

3.1.1 Public/Secret Keys . 48
3.1.2 Encryption . 48
3.1.3 Decryption . 49
3.1.4 Decryption with random help value r 49

v

Contents vi

3.1.5 Uniqueness of Encryptions . 50
3.2 Mathematical Operations on Encrypted Values 50

3.2.1 Secrecy-Preserving Equality and Inequality Proofs 52
3.2.2 Secrecy-Preserving Proof of Products of Encrypted Values . . 53
3.2.3 Verifiable, Secrecy Preserving Interval Proofs 54

3.3 Securely Computing a Product of Random Help Values 61

4 Time-Lapse Cryptography 64
4.1 Introduction . 65

4.1.1 Setting and Objectives . 65
4.1.2 Summary of Contributions . 66
4.1.3 Extension to Paillier Keys . 68
4.1.4 Applications . 69
4.1.5 Related Work . 72

4.2 Preliminaries and Assumptions . 74
4.2.1 Implementation Considerations 76
4.2.2 Resistance to Attacks . 76
4.2.3 Security Assumptions . 77
4.2.4 Communications Assumptions 78
4.2.5 Summary of ElGamal Encryption 79

4.3 How the Service Works . 79
4.3.1 What the Service Does . 79
4.3.2 What the Clients Do . 81

4.4 Protocol for the Parties Pi in the Service 82
4.4.1 Distributed key generation . 82
4.4.2 Sharing the private key components 83
4.4.3 Publishing the public key . 85
4.4.4 Reconstructing and publishing the private key 86
4.4.5 Proactive renewal of components and shares 87

4.5 Conclusions and Future Work . 88

5 Introduction to Cryptographic Auctions 90
5.1 Motivation: The Problem of Corruption 92
5.2 Our Solutions . 97
5.3 Additional Benefits: Better Robustness to Collusion 102

6 Practical, Secrecy-Preserving, Provably Correct
Sealed Bid Auctions 106
6.1 Introduction . 106

6.1.1 Related Work . 109
6.2 Preliminaries . 112

6.2.1 Desired Auction Properties . 113

Contents vii

6.2.2 Real-World Components . 114
6.2.3 Overall Flow and Main Steps of Auction 117
6.2.4 Basic Cryptographic Tools . 118

6.3 Single-Item Auctions . 122
6.3.1 Protocol . 122
6.3.2 Verification . 125
6.3.3 Verifying Partial Information about Outcomes 127

6.4 Multi-Item Auctions . 129
6.4.1 Protocol . 130
6.4.2 Verification . 132
6.4.3 Extensions . 141

6.5 Empirical Results . 142
6.6 Conclusions and Future Work . 144

7 Cryptographic Combinatorial Clock Proxy Auctions 148
7.1 Introduction . 149

7.1.1 Related work . 152
7.2 Cryptographic preliminaries . 153

7.2.1 Mix Networks . 154
7.3 Combinatorial Auction Preliminaries 155
7.4 Conducting the Clock Auction . 157

7.4.1 A Sequence of Clock Rounds 158
7.4.2 Transition to the Proxy Phase 163

7.5 Conducting the Proxy Auction . 165
7.5.1 Branch-and-Bound Search . 166
7.5.2 The General Approach . 169
7.5.3 Winner Determination . 172
7.5.4 Proxy Payments . 175
7.5.5 Announcing Results . 179

7.6 Conclusions . 180

8 Cryptographic Securities Exchanges 181
8.1 Introduction and Related Work . 182
8.2 Introduction to Securities Exchanges 185

8.2.1 Market Information and Its Misuse 189
8.2.2 Developing a Cryptographic Securities Exchange 195

8.3 The Cryptographic Securities Exchange 197
8.3.1 Assumptions . 199
8.3.2 Encryption Method . 199
8.3.3 Processing Incoming Orders 200
8.3.4 Post-Trade Reporting . 205
8.3.5 Adversaries and Attacks . 205

Contents viii

8.4 Example Order Book and Transactions 209
8.5 Conclusions and Future Work . 212

9 Cryptographic Combinatorial Securities Exchanges 214
9.1 Introduction . 215

9.1.1 Existing Commercial Protocols 216
9.1.2 Related Work . 219

9.2 Cryptographic Combinatorial Securities Exchanges 221
9.2.1 The Protocol . 222

9.3 Secrecy-Preserving Proofs of Impact on Portfolio Risk 225
9.3.1 Mechanics of the Protocol . 226
9.3.2 What Information Should Be Revealed? 228
9.3.3 How the Information Is Revealed 229
9.3.4 Computing the Combined Portfolio 230
9.3.5 Portfolio Value and Dividends 231
9.3.6 Portfolio Composition Statistics 232
9.3.7 Other Measurements of Risk 235

9.4 Pricing and Payment . 236
9.4.1 Compensating the Liquidity Providers 237
9.4.2 Simply Allocating Liquidation Costs 238
9.4.3 Fairly Allocating Liquidation Costs 238

9.5 Keeping the Pool Safe . 240
9.6 Strengthening Secrecy . 241
9.7 Conclusions and Future Work . 243

10 Conclusions 246

Bibliography 249

Citations to Previously Published Work

Large portions of Chapters 5 and 6, as well as some of Chapter 3, appeared in the
following conference paper [115] and will appear in the following journal article [119]:

“Practical Secrecy-Preserving, Verifiably Correct and Trustworthy
Auctions”, David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and
Christopher A. Thorpe, Proceedings of the 8th International Conference
on Electronic Commerce, ACM Press, pp. 70–81, 2006; and to appear in
Electronic Commerce Research and Applications, summer 2008.

A conference paper version of Chapter 8 [150] appeared in:

“Cryptographic Securities Exchanges”, Christopher Thorpe and David C.
Parkes, Proceedings of Financial Cryptography and Data Security, Springer,
pp. 163–178, 2008.

Chapter 4 was published as a Harvard SEAS technical report [129]:

“Time-Lapse Cryptography”, Michael O. Rabin and Christopher Thorpe,
Technical Report TR-22-06, Harvard University SEAS, 2006.

ix

Acknowledgments

Writing acknowledgments is one the most nerve-wracking parts of the disserta-

tion. One always feels that one risks inadvertently forgetting someone, particularly

with a set of acknowledgments this long. However, since a Ph.D. as the culmina-

tion of decades of education, it feels appropriate to do my best to thank those who

contributed to my education.

First, I thank the many teachers in my elementary and secondary education, and

the professors, lecturers, preceptors and teaching fellows in the dozens of classes I

have taken at Harvard and MIT as an undergraduate and graduate student.

A Harvard education comes not only from the faculty, but also from the students

and other members of the Harvard community who learn from and teach one an-

other. Those among my undergraduate and graduate years who I remember well for

helping me, many of whom remain friends, include the following; there were many

others who also helped me whom I don’t remember here but my imperfect mem-

ory does not diminish their contributions. Ben Adida, Attila Bódis, Bonnie Berger,

Eliza Block, Olivia Brown, Guillermo Diez-Cañas, Julia Carey, Mark Catrell, Benson

Chang, Tom Cheatham, Brad Chen, Hamilton Chong, Etan Cohen, Jonas Cooper,

Adam Deaton, Aram Demirjian, Justin Deri, João Dias, Ying Du, Sof́ıa Echegaray,

Rachel Elkin, Dan Ellard, Julie Farago, Allan Friedman, Kathy Gerlach, Robin Gold-

stein, Josh Goodman, Paul Gosmorino III, Paul Govereau, Jon Grenzke, Dick Gross,

Robert Haas, Michael Hammer, Jessica Hammer, Jan Hanseth, Mike Hlavač, Dan

Horwitz, Luke Hunsberger, Andrew Jacobs, Jason Jay, Ece Kamar, Emir Kapanci,

Harry Kargman, Brian Kernighan, Adam Klivans, Catalina Laserna, Lillian Lee, Brad

Leupen, Alex Lewin, Austin Lin, Sean Lyndersay, Pia Malkani, Phil Maymin, David

x

Acknowledgments xi

Mazières, Clayton Myers, Alexander Nadolinski, Brenda Ng, Brian Park, Kathy Park,

Lori Park, Anand Pathak, Annelisa Pedersen, Andrew Pimlott, Heather Pon-Barry,

Kevin Redwine, Ren Richmond, Jonathan Roberts, Nailah Robinson, Floris Roelof-

sen, David Ryu, Peg Schafer, Sven Seuken, Chung-chieh (“Ken”) Shan, abhi shelat,

Eric Silberstein, Janis Siggard, Chris and Kate Sims, Carl Sjogreen, Matt Tambiah,

Dylan Thurston, Jesse Tov, Omri Traub, Mike Tucker, Emmanuel Turquin, Bob Wal-

ton, Ilan Wapinski, Dan Williams, Elif Yamangil, Eric Yeh, Cliff Young, Ruth Zeltzer,

and Mark Zuckerberg.

The students in my CS286r class this semester taught me at least as much as I

taught them, and they were all extremely understanding about how busy I was. I am

also indebted to my exceptional teaching fellows, Olivier Guéant and Tal Levy.

The administrative staff in SEAS who support our research groups deserve special

appreciation for taking care of all sorts of important things that faculty and graduate

students are often not very good at. In particular, Arthur Cram, Hetchen Ehrenfeld,

Sandi Godfrey, Carol Harlow and Tricia Ryan have been especially helpful.

I once mentioned to Susan Wieczorek that she must be the most frequently ac-

knowledged individual among SEAS Ph.D. dissertations. When I expressed surprise

when she responded that she has not been acknowledged in every one of them, she

wryly retorted, “Not everyone is as much trouble as you are.” She’s undoubtedly

right, for between taking a year off, switching advisors to a pair of faculty, scrounging

for funding, defending my thesis with one advisor in Israel, and getting everything

in order for my class this spring, I can’t think of a more apt word than “trouble.”

We are fortunate to have someone with her administrative acumen keeping so many

Acknowledgments xii

students out of trouble—and out the door. In over a decade, I have yet to her a

question for which she didn’t either know the answer or the right person to ask.

A few individuals who have contributed to this research, whether directly or in-

directly, merit particular recognition.

I thank Zulfikar Ahmed, Michael Barrientos, Jonas Budris, William Josephson,

Stephanie Lee, Andrew McCollum, Nina Ni, and Greg Valiant, for their understanding

of my obligations as a student and their hard work on our joint endeavors.

Chris Small has been a good friend and colleague since he was my CS50 TF;

he was especially helpful in understanding the systems implications of time-lapse

cryptography and commercial interest in our research.

Alon Rosen cheerfully answers many of my questions on the literature in the field

of cryptography.

Carlos Battagglia taught me a few valuable guiding principles you’re more likely

to learn while fishing in Texas than sitting in a classroom at Harvard.

Aggelos Kiayias pointed me to Boudot’s paper on efficient interval proofs [30].

Lee Fleming, Mitch Hesley and Brian McRoskey contributed hard work and insight

in commercial applications of these technologies in the context of Prof. Fleming’s

course “Commercializing Science and High Technology” at Harvard Business School.

Eric Budish deserves acknowledgment for his willingness to discuss my research

applications in finance, his useful references to relevant literature, and a number of

helpful insights that have influenced our work and its presentation – particularly in

a way that is comprehensible and motivating to the finance community.

Imad Labban and Stephanie Borynack of Lehman Bros., who helped to understand

Acknowledgments xiii

the utility of our work in a business context and inspired the problems we solve in

Chapter 9.

Eric Allman’s friendship, kindness and encouragement have been a source of in-

spiration through this process.

Kirk McKusick gave me practical advice about a Ph.D. with a candor that one

rarely finds among career academics. “It doesn’t have to be your life’s work,” he

declared when I asked him for advice about picking this project two and a half years

ago; just find a project, prove that you are able to do real research, and get it done.

Román Román has always been there for me.

Anthony Johnson helped to keep me sane through this process, especially through

forcing me to have fun when I was getting too stressed out.1

If I had never studied computer science, I never would have taught Jennifer 8. Lee

in CS51 her freshman year at Harvard. We have been close ever since. Her first book

was just published in March 2008, and our mutual support on these large projects

has been a real joy.

I thank the other faculty who have been so warmly supportive of our work, includ-

ing among others Steven Gortler, Barbara Grosz, Tom Kelly, David Malan, Michael

Mitzenmacher, Ron Rivest, Tuomas Sandholm, Leslie Valiant, and Matt Welsh.

Stuart Shieber made important contributions to our earliest joint work in the field

and provided important referrals to industry contacts, and ongoing encouragement

and support.

Salil Vadhan shared his deep insight into the theoretical fundamentals of cryptog-

1For example, insisting I find a way to integrate the word “nuffie” into this document.

Acknowledgments xiv

raphy and provided helpful answers to many questions.

Bob Kendrick taught me by example how to love early music and how to teach in

a way that instills a love of the subject among the students in a class.

Harry R. Lewis called me on the phone and convinced me why Harvard was

a better choice than MIT when I was a senior in high school. His teaching and

excellent advice on many matters over many years have been an important part of

my experience here. His love of and service to Harvard are truly unparalleled.

John Y. Campbell invited me to present my research at the weekly Finance Lunch

and I thank him for his hospitality when I reached out to the finance community at

Harvard, and for asking hard questions that led to important insights in our work.

Rocco Servedio has been a collaborator and friend since my sophomore year of

college, when we both took Computer Science 121 from Harry Lewis and attended

sections led by then undergraduate, and now full professor, Salil Vadhan. After

having been partners in Harvard’s infamous undergraduate operating system class,

collaborating on theoretical research with him is a piece of cake.

I thank Henry Leitner, for a long and productive relationship teaching CS51, the

second semester introductory computer science course, and for offering me numerous

opportunities to grow through course development and leadership. I count my time

teaching with Henry as some of the most meaningful – and educational – at Harvard.

I wish to thank Norman Ramsey, from whom I have learned so many useful things.

While the grace and lucidity of his prose and the courtesy of his communications

continue to delight me, his truly selfless love of his students, the art of pedagogy, and

the joy he takes therein are among the chief inspirations that have led me to leave

Acknowledgments xv

one foot in the door of academia.

Before thanking my undergraduate thesis advisor and committee, I wish to thank

all the members of my family who have helped me along the way to become who I

am, and four in particular with respect to this work.

My uncle, Andy Patrick, who encouraged me to finish the Ph.D. and not drop out

to do a startup. “There are always startup and business opportunities, but a Ph.D.

from Harvard is really rare.” He was right, and I’m glad I followed his advice.

My grandfather, Rodger Patrick, spearheaded the adoption of computers at He-

witt Associates five decades ago to solve enormous actuarial problems. I am proud

to continue a family tradition of advancing the adoption of computing technologies

in business. He has always been a great support and inspiration to me; I have always

admired his work ethic, intelligence, and programming skills—even I would be hard

pressed to write a Sudoku solver in Microsoft Excel.

My parents, Allen and Elizabeth Thorpe, have two children, and my brother and

I are on the way to earning a total of five graduate degrees. I am grateful to them

not only for teaching me the importance of education, but also giving me the freedom

to make a lot of mistakes and learn from their consequences. If parents managed to

create a perfect world for their children, how unprepared would their children be for

real life?

Acknowledgments xvi

The late David Lewin, of the Harvard Music Department, inspired me to pursue

teaching by showing me the incomparable love for a field of study a teacher can

instill in his students. He gave me the confidence to successfully pursue a joint

undergraduate concentration in computer science and music, and to begin a Ph.D. in

the same area. He passed away within the week of teaching his last class before his

planned retirement from Harvard in May 2003, and we miss him.

I thank Luis Viceira for generously contributing his time and ideas to this research.

His expertise in finance has been invaluable, and his fundamental insights about the

economic value of trust have influenced our own understanding of the impact of our

research. I am especially grateful to him for his participation on my thesis committee.

Margo Seltzer, who taught CS50 my freshman year as a Harvard undergraduate,

hired me – not even eighteen years old – as a TF for the following year. Margo’s

excellent teaching, love of the material, and generous attention were instrumental in

my choice of computer science as a field of study. While I have always been grateful

for her open door, warm smile, and sage advice throughout the years I have had the

pleasure to learn from her, I am most recently indebted to her for her willingness to

serve on my committee at the last minute.

Avi Pfeffer was my first graduate advisor at Harvard when I first returned to

study applications of artificial intelligence in music. Avi and I still share a strong

interest in research in that area. Although I have ultimately completed the Ph.D. in

a completely different area than we expected, I am grateful for his continued friendship

and support, and for his valuable feedback in framing our research in a way that is

comprehensible and motivating to a general computer science audience.

Acknowledgments xvii

David Parkes has been a wonderful colleague and valuable friend since our earliest

research collaboration. Rarely have I found myself so productive as when David and

I tackle interesting problems; it often feels like the papers write themselves when our

complementary skills leave few open questions to worry about. I’m also truly grateful

for the significant investment of time he made in my development and our joint

research. With a number of Ph.D. candidates in the pipeline, he has unselfishly made

sufficient time for us to work together, and delivered lucid drafts of complex ideas at

breakneck speed. I look forward to a long collaboration with David in cryptographic

computational mechanism design, and I am particularly grateful for the opportunity

to teach his graduate course this past semester. I heartily congratulate him on his

recent promotion to the rank of Professor with tenure.

Michael Rabin, who has been hailed by greater minds than mine for a singularly

productive career, has given me the confidence to achieve goals I would never have

thought possible on my own – and indeed, the achievements in this work would never

have been possible without his encouragement and ideas. It has been a tremendously

rewarding experience to collaborate with him on the theoretical cryptographic tools

supporting this work, and I look forward to our upcoming extensions to the RST

cryptosystem. Working with Prof. Rabin is also a lot of fun. We both share a love

of wordplay, and it is in keeping with his sense of humor to end this section on

that note. My favorite recollection of his wit is from over a decade ago, when as an

undergraduate I watched him write values b1, . . . , b12 on the blackboard and remark,

“Remember, b12 is a coefficient; it’s not a vitamin, so don’t eat it.” I’m truly grateful

for his support, friendship, and TLC over the past three years.

For M. R., D. P., A. P., and ∆. Λ.,

without whose generosity of wisdom

this never would have been.

xviii

Preface

Students should keep in mind that GSAS and many

departments deplore overlong and wordy dissertations.

—The Form of the PhD Dissertation, Harvard GSAS

Therefore, since brevity is the soul of wit,

And tediousness the limbs and outward flourishes,

I will be brief:

—Hamlet, Act I, scene ii.

While not every dissertation has or needs a backstory, this particular dissertation

rather seemed to just happen. One need not know this story to appreciate its con-

tributions, but I hope that the curious history of this nearly accidental dissertation

may be of interest, and serve to “connect the dots” between its various chapters—

and why a student who entered the Ph.D. program to study applications of artificial

intelligence in music graduated with a dissertation on new cryptographic techniques

and their applications in electronic commerce.

When I was still in elementary school, I was one of those kids who enjoyed making

up and sharing “secret codes” with my friends; we’d transmit messages to each other

encrypted with a simple Cæsar or substitution cipher. Even though the information

could not have been of great import, decoding them was more than half the fun;

watching the secret message unfold was like realizing what’s underneath the wrapping

paper while opening a birthday present.

So when I decided to return to graduate school to finish a Ph.D. in the intersection

of artificial intelligence and music after a year on leave, I noticed Prof. Rabin was

teaching his cryptography course, and I still had a theory requirement to complete. I

had taken his course on randomized algorithms ten years before as an undergraduate,

1

Preface 2

and it was (with all due respect to other faculty) the theoretical course I found most

interesting in my undergraduate curriculum. So I knew it would be well taught, and I

was curious to understand what real cryptography – not just the stuff of schoolchildren

and Neal Stephenson novels – was all about.

A little more than halfway through the semester, no one was more surprised than

I was when one day, sitting in the lecture hall before crypto class, I hear a voice

behind me – “Chris!” I turned around, and Prof. Rabin had just entered the room

and was smiling at me. The conversation went something like this:

“Hello, professor!” I stammered. I was surprised that a member of the theory

faculty had anything to ask me – after all, I thought of myself as kind of a systems

guy who could get by in AI, if only to code up techniques other people came up with

to solve problems I thought interesting.

“Stuart Shieber and David Parkes and I have been working on a project and I

would like to talk to you about it. Can you meet with me to discuss it?”

That week, Prof. Rabin outlined a new approach to sealed-bid auctions that he

and Profs. Shieber and Parkes were working on. Shieber had approached Rabin

with the idea of a cryptographic auction, and they soon invited Parkes, an expert in

computational mechanism design, to join the conversation. They still wanted another

member of the team: someone who could implement the scheme and evaluate its

efficiency and thus its feasibility for real-life applications in business, and apparently

my name had come up in their conversation.

This dissertation owes its existence to this happy sequence of events, one of those

lucky conjunctions of people and ideas where a spark of a simple idea lights in-

Preface 3

teresting new research. This project eventually turned out to be the holy grail of

graduate school: a research topic more interesting than any of one’s preferred meth-

ods of procrastination. I found myself staying up past midnight, not to vanquish

computer-generated dragons, but to figure out how to efficiently implement the nec-

essary cryptographic computations and extend the professors’ original approach to

more general auctions of multiple identical items with strategyproof pricing models.

Before this project, I knew precious little about auctions, or even computational

mechanism design, and my formal cryptography background was largely limited to

the content of Prof. Rabin’s graduate course. While the cryptography required for

conducting a sealed-bid auction was no more complex than what we studied for

electronic voting in class, Prof. Parkes was instrumental in teaching me enough about

auctions to make a dent in the problem. He knew exactly what to tell me to read

and patiently answered my many questions, and our collaboration soon bore fruit.

Within a few short months, and a number of long meetings, we had our first paper

complete; it was soon accepted to a conference on electronic commerce and one of six

papers at that conference selected to appear in a special issue of the journal Electronic

Commerce Research and Applications, and is incorporated into the present work as

Chapter 6.

One thorny issue in that work was the problem of repudiation: while we could

employ binding and hiding cryptographic commitments to keep bidders’ bids safe from

the auctioneer before the auction closed, and prevent them from changing their bid

after bidding, we couldn’t prevent a bidder from refusing to “unlock” a commitment

to a bid. In some high-stakes auctions, this could be a real problem: if I realize that

Preface 4

I significantly overbid, it might well be in my best interest to just refuse to open my

commitment altogether, and no one will be able to hold me to it.

We discussed various solutions. Parkes, who has significant experience in real-life

high-stakes auctions, suggested a fine for failing to open a commitment. He admitted

that this was not particularly attractive, as setting the amount of the fine correctly

requires an understanding of the value at stake – something that is often unknown

until the auction discovers an item’s value. Thus, it seemed hard to make a fine an

appropriate deterrent without making it impractical. Distributing bid information

among other bidders with threshold secret sharing complicated the protocol signif-

icantly and placed an undue level of trust in other bidders. Using a trusted third

party was, as usual, possible but unappealing because the third party now knows

secret information, so we thought about encrypting the information with a public key

in a way that it couldn’t be decrypted until after the auction.

This idea of Prof. Rabin’s was first described as a “delayed private-key revelation

service”: by having a widely known public encryption key to encrypt, but keeping

the decryption key secret until later, one could ensure the secrecy of the bids during

the auction but guarantee that they could be available to the auctioneer after all bids

had been submitted. While we alluded to such a service in our first paper, we did

not fully formalize it.

At that point, Prof. Rabin pointed out that a set of third parties trusted not to

collude could offer a service which published public encryption keys at one point in

time, and delayed publication of the secret decryption keys until later. That service

could be employed to force nonrepudiation of bids, and be completely separate from

Preface 5

the auction infrastructure. Bids would be encrypted with a public key generated by

a service, and if a bidder refused to open a bid, it could be forced open when the

service published the secret key.2

We sketched such a service in the auctions paper, and after our work on auctions

was submitted and accepted, Prof. Rabin and I set out to formalize such a service.

When trying to describe the name, I coined the phrase “time-lapse cryptography”

(intentionally echoing “time-lapse photography”, though the meaning of “time-lapse”

admittedly differs) and it stuck. After we spoke for a few minutes about building

distributed ElGamal keys as done in his class, I set out to think about it, armed with

my lecture notes from his course and a good search engine. We agreed to meet, and

I sent him a draft of my solution the night before.

He confessed he hadn’t had time to look at my draft and first wanted to present

his solution. As his skilled hands sketched on the whiteboard the mechanism he had

in mind, I was delighted that we had come up with exactly the same protocol –

including both of us independently choosing Feldman’s verifiable secret sharing [61]

to guarantee correspondence between the public and private keys. After a few very

productive meetings, we completed a technical report which now forms the basis for

Chapter 4 of this work.

We are now looking forward to impementing a prototype “Time-Lapse Cryptogra-

phy Service” that will publish vast numbers of cryptographic keys anyone can employ

and use in any number of cryptographic applications.

2When preparing a technical report on this paper, we found that the concept of a delayed key
revelation service, and its application to auctions, had already been considered independently; see
Chapter 4 for details.

Preface 6

At about the same time as Prof. Rabin and I were completing that work, I had

still been thinking about other applications for the auctions research. Originally, we

had considered an application to bond auctions, but online “direct to retail” bond

auctions had a discouraging track record, even though they seemed to benefit the

corporations issuing the bonds.3

So, while bond auctions seemed attractive, they also seemed out of reach from a

business perspective. I began to think about other auctions in securities; having done

a good deal of equities trading in my private life it occurred to me that perhaps our

ideas could be applied to securities exchanges, where information about the orders

could be hidden just like bids in a sealed-bid auction.

After I presented a sketch of this idea to Prof. Parkes, he obtained a number

of market microstructure references from his colleagues at Harvard Business School

which I devoured. After some initial forays into the literature, it became clear that

exploitation of order information in securities exchanges does lead to very real costs to

traders; the most common, front-running and penny-jumping, are too often practiced

(and, thankfully, prosecuted).

Parkes and I rapidly assembled a paper on how to run a continuous double auction

of securities using a homomorphic cryptosystem similar to that we used in sealed-bid

auctions. In our system, a partially trusted market operator proves which trades

should happen without revealing the magnitude of the trades – or even the exact

prices – to other market participants. Thus traders might be more inclined to place

3This was primarily because because investment banks and their clients make a great deal of
money underwriting these primary market bond auctions to very large bidders, who then “chop
up” the bonds and sell them (typically for a profit) in a secondary market. Underwriting a bond
auction directly to retail investors cut out a middleman who might take its other investment banking
business elsewhere if it no longer had relatively exclusive access to lucrative primary offerings.

Preface 7

limit orders, knowing that the information in them would not be exploited (or, at

least, exploited less, depending on how much information is revealed). This paper

appeared in the 2007 Financial Cryptography and Data Security conference and forms

the basis of Chapter 8.

After Prof. Rabin returned in the fall, we began to meet occasionally to discuss

our work, and future research and commercial applications of it. One morning, he

called me on my mobile phone, audibly excited with an idea, soon to be published in

2007 by Rabin, Servedio and Thorpe; I will refer to it as the “RST” cryptosystem for

brevity.4 This work was primarily motivated by an application to sealed-bid auctions,

in order to both reduce the computational burden of homomorphic cryptography as

well as reduce dependencies on cryptographic security assumptions – only secure

cryptographic commitments are required.

A few minutes after the phone rang, I sat before a whiteboard, feeling rather like

an attendee in a private lecture, watching and asking question after question, as he

presented a sketch of a new cryptosystem in which encryption was done by placing

the message x in a finite field Fp, then choosing two random numbers 〈x1, x2〉, such

that they sum to the message (modulo the size of the field): x1 + x2 ≡ x(mod p).

By committing to both numbers, one has “encrypted” the message – revealing both

commitments reveals the message by summing them. But if one number is revealed,

then nothing is known about the message with information theoretical security.5

Then he demonstrated how if you have two numbers represented in this way, say,

x : 〈x1, x2〉 and y : 〈y1, y2〉, then 〈x1 + y1, x2 + y2〉 represents, naturally, x + y – the

4Cryptographers whose last names begin with Q or U are cordially invited to join our project.
5Provided, of course, that the commitment scheme is also information-theoretically hiding.

Preface 8

sum of all four coefficients. Then, if I ask you to reveal only the first or second “half”

of each number and the sum, then I’ve learned nothing: I’ve learned two random

values and their sum. Only if I learn both halves do I learn anything. But, if you

offer me twenty such representations of x, y, x + y, and I ask you to reveal half of

nineteen of them – where I pick which half – then I will detect any cheating, i.e.

the twentieth sum is not really the sum of the first two values, with astonishingly

high probability. Given such a protocol for provably correct addition, it is possible

to construct a similar protocol for provably correct multiplication. Only a bit more

was needed to use this system for proving a sealed-bid auction correct.

The next challenge was proving correct interval proofs in this context. After

my presentation at Financial Cryptography on cryptographic securities exchanges,

Aggelos Kiayias had pointed out that there was an interesting body of recent work

on interval proofs that improved upon the cut-and-choose methods we employed in

our early work; he later pointed me to Fabrice Boudot’s paper [30] on the subject.

I followed up these leads and presented them to Prof. Rabin, who constructed a

fascinating interval proof for values encoded in this protocol using the fact that every

integer can be represented as the sum of four squares, proved by Lagrange in 1770.

It is one of those mysterious and beautiful coincidences of science that two hun-

dred years after Lagrange’s proof, in the 1970’s, Rabin himself devised an efficient

probabilistic algorithm to find four squares that sum to a particular integer; he and

Shallit published this algorithm in 1986.6 Twenty years after that, Rabin discovered

a new important use for his own number-theoretic algortihm: interval proofs in the

6Another such coincidence is that Joseph Lagrange himself was Prof. Rabin’s advisor’s advisor’s
advisor’s advisor’s advisor’s advisor’s advisor [3].

Preface 9

RST cryptosystem. When running experiments on the efficiency of the RST cryp-

tosystem, I downloaded Peter Schorn’s Python implementation of the Rabin-Shallit

algorithm, which was so blindingly fast that that computation was comparatively

negligible.

Soon after our initial discussions, Prof. Rabin traveled to New York to teach at

Columbia for a semester, where our friend Prof. Rocco Servedio is on the faculty. We

soon completed a general protocol for secrecy-preserving, provably correct straight-

line computations, and we showed in initial experimental results that using this new

method for sealed-bid auctions was considerably more efficient than our previous work

using Paillier encryption.

Prof. Rabin presented this work, “Highly Efficient Secrecy-Preserving Proofs of

Correctness of Computations and Applications”, at the 22nd IEEE Symposium on

Logic in Computer Science last year, and we are presently working on a journal

version of the article. While this work also supports the general framework of com-

putation described in Chapter 2, we omit the work from this dissertation and refer

the interested reader to the conference proceedings for details.

In the spring of 2007, I completed my Ph.D. course requirements with a class at

Harvard Business School entitled “Commercializing Science and High Technology”,

taught by Lee Fleming. Fleming’s course involved both close readings of business

cases involving, well, commercializing science and high technology, and real-world,

hands-on work in commercializing scientific research at Harvard. David Parkes and I

co-sponsored our research on cryptographic securities exchanges. Mitch Hesley, Brian

McRoskey and I formed a team where we investigated applications of this technology

Preface 10

in real finance.

A few interesting ideas emerged from the study of the course. The first was that

because of new SEC regulations (known as “Reg NMS”), using a system such as ours

for establishing prices may now not be possible on US-regulated cash traded equities

exchanges – though exchanges in other jurisdictions and other types of securities

might still benefit from our technology.

Another was that the original work we had done on cryptographic auctions had

more application in commercial procurement than we had anticipated. While we have

not yet pursued studying our work in procurement auctions in any formal way, this

may be a very interesting and important area of further research.

Probably the most useful contributions of the course came at its end, when in-

dustry professionals from all over the Northeast came to a poster session describing

our technology and our projects. Stephanie Borynack, responsible for University Re-

lations at Lehman Bros., set up a meeting with myself and their director of program

trading, Imad Labban. Mr. Labban and I discussed my technology briefly, and its

application in so-called “dark pools” (where liquidity for block trades can be found

without revealing your own liquidity unnecessarily). While our research sparked in-

terest, he agreed that there were still a lot of problems to think about.

Mr. Labban then described to me a type of commercial transaction in which an

institution with significant assets wishes to trade a very large basket of securities,

worth hundreds of millions of dollars or more. In these transactions, the investment

banks “buying” the baskets need to understand details of the risks of these baskets

without being able to learn the exact equity positions that comprise them. (Naturally,

Preface 11

if anyone learned the exact positions being traded before the trade was agreed on,

that information could be exploited, and even the most respected investment banks

have found that, on occasion, an unscrupulous employee cannot resist the tempta-

tion of exploiting knowledge.) Could cryptography improve price discovery in these

transactions by allowing the banks to better estimate their risk, without revealing

any more information about the baskets?

This question led to the development of two new protocols for securities trading

that may well be of interest in other commercial transactions. The first protocol

attempts to solve the problem posed directly, by providing a mechanism by which

the “buyer” can indirectly measure the change in its risk parameters by accepting an

incoming good without learning anything about that good not implied by the risk

changes.7 This could improve price discovery in the securities transactions, because

the banks could more accurately assess their actual risk by taking on a basket than

before.

The second protocol combined ideas from our earlier cryptographic securities ex-

change work with this notion for a new protocol for a cryptographic alternative trad-

ing system for block trades. In this system, trading interest from many parties is

encrypted and combined into a “cryptographic dark pool”, and orders “cross” when

one party wants to buy and another wants to sell. In many existing pools, if a trader

wants to buy more than others are willing to sell, the order doesn’t get filled; this

makes such pools less attractive, and unusable when execution is essential.

Our protocol solves this problem by allowing the pool to generate an encrypted

7For example, if the function defining the feature is linear, then knowing the change in the feature
of the buyer’s risk implies knowing the feature for the good.

Preface 12

“remainder” basket of unfilled interest, whose risk characteristics can be proven to

investment banks, and the most competitive bank can fill the unfilled liquidity, thus

helping the parties to reach equilibrium. The banks then can accurately measure

their risk in accepting the baskets, and the traders receive better prices because they

can trade with all interested parties at once, not simply via pairwise trades. These

protocols are outlined in Chapter 9.

The most recent contribution of the present work stems from David Parkes’ obser-

vation that our existing mechanisms should be extensible to combinatorial auctions,

where buyers place bids on bundles of many different goods. Parkes pointed out that

the ability to efficiently conduct cryptographic combinatorial auctions would be a

significant contribution, given the complexity of computing an optimal result. We

have accordingly spent a good amount of time thinking together about how to apply

the cryptographic tools we now have to these auctions. This part of the work, while

most recently completed, has been the most elusive, primarily due to the complexity

of the combinatorial auction problem.

Parkes’ solid understanding of the cryptographic primitives, coupled with his

world-class expertise in computational mechanism design, led him to suggest an ideal

mechanism in which the cryptographic primitives can be applied to solve an im-

portant type of combinatorial auction: the combinatorial clock proxy auction. His

contributions to this area of our research are tremendous, and the

In combinatorial auctions, a seller wishes to auction off a number of different

goods, and a number of buyers wish to buy one or more of these goods in bundles.

Once each buyer states its value on particular bundles, the problem of computing

Preface 13

an optimal allocation of items to buyers is computationally extremely hard. Thus,

earlier techniques described in related work (cited in Chapter 7), such as multi-party

computation of the results, or homomorphic cryptography involving enumeration of

all possible allocations, are intractable in practice.

Parkes explained that if we could prove the solution to an integer program to be

feasible, then a third party could perform the complicated computation of calculating

a feasible solution, and the more expensive secrecy-preserving computations could

be employed in the more efficient cases of validating the proofs of feasibility, given

the same inputs. This fits extremely well with the “partially trusted third party”

models of our other research, where we employ a third party to perform expensive

computation and prove its actions correct, but do not trust that third party with any

private information until after it cannot benefit from exploiting it.

Parkes further identified the “combinatorial clock” auction as an ideal candidate

for the application of cryptography. In the clock auction, the auctioneer raises prices

in a sequence of rounds while bidders indicate how many of each good they want at

those prices. prices of goods until When the demand does not exceeds the supply of

any item, the clock phase concludes with the current round’s prices set.

Then, a final “proxy” sealed-bid auction is employed to eliminate possible abuse of

the protocol and improve accuracy of reported prices. Employing the cryptographic

protocols underlying our work, bidders can prove they obey activity rules that pro-

mote honest bidding without the cooperation of the auctioneer, and can jointly com-

pute aggregate demand without revealing individual demand. Prof. Rabin suggested

several optimizations to our initial ideas that make these computations intuitive and

Preface 14

efficient. We maintained our desired level of trust: only after all final bids are sub-

mitted does the auctioneer learn anything; he cannot influence the bidding with any

private information.

This auction setting led to one of the most important technical contributions of the

present work: the efficient yet provably correct secure computation of mixed-integer

and linear programs. These optimization problems are well known as being among

the most computationally expensive to solve, and thus elude secure computation via

traditional, more theoretically secure means. Our models lend themselves very well to

solving these optimization problems, because our third party can compute a correct

result using high performance computation—which may still be exponential in cost—

and then issue a proof that can be checked in polynomial time over the encrypted

inputs, using slower verifiable computation techniques. These proofs were the last

piece needed for our cryptographic combinatorial clock-proxy auctions described in

Chapter 7.

Chapter 1

Introduction

A valuable technology lowers the economic costs of creating a good or provid-

ing a service, increasing the efficiency of a market. In this work, we develop new

cryptographic technologies that reduce the cost of establishing trust in commercial

and financial entities, by providing them with tools that serve two main purposes:

proving that they performed all actions according to their obligations, and controlling

access to any private information to limit its exploitation. We formulate a set of basic

cryptographic tools, describe how to build these tools upon theoretical foundations

of cryptography, and then use these tools to design computational mechanisms for

trustworthily conducting auctions and trading securities.

The singular theme of our contribution is controlling trust with efficient, realistic

cryptographic and computational tools. We seek to eliminate a large degree of trust

by forcing every party to prove that its actions are correct—without revealing new

information about the inputs leading to its actions. We further eliminate trust by

protocols that bind participants to their commitments, even if they abandon the

15

Chapter 1: Introduction 16

protocol. And, where we cannot completely eliminate trust, we contain it by delaying

private information from reaching any party entrusted with that information until it

is essential; this typically reduces any benefit from breaching that trust.

Of course, cryptography itself has already become an essential component of mod-

ern electronic commerce: encryption protects against unauthorized access to private

information, passwords and trapdoor functions provide authentication, and digital

signatures and message authentication codes prove a message arrived unaltered from

a known entity. As electronic commercial mechanisms have become more and more

sophisticated, new cryptographic techniques of equal complexity have arisen to sup-

port them.

Yet there is a large class of commercial problems for which recent advances in

cryptography are untapped, even though these advances offer solutions that are at

once surprising or even seem impossible. For example, one can conduct a sealed-bid

auction where the bids are kept secret until the end of the auction, the outcome can be

proven correct without revealing any information not implied by the outcome itself,

and bidders cannot repudiate their bids after they are submitted. Another example is

an alternative trading system that can offer investors the opportunity to trade baskets

of securities with each other without revealing the securities comprising those baskets

– the system reveals only the risks associated with accepting a proposed trade.

In these real-world situations, practical cryptographic solutions are essential. While

significant existing cryptographic and theoretical computer science research offers

strong, information-theoretically secure solutions that enable such secure compu-

tation, these strong solutions come at a significant complexity cost, requiring dis-

Chapter 1: Introduction 17

tributed trust and the cooperation of multiple parties (among whom that trust is

distributed) to securely compute results. Moreover, although such multi-party com-

putation (MPC) can compute established trust of these trusted third parties, and

there are no practical computational mechanisms for many large-scale settings. In

real world examples, auctioneers and procurement officers are trusted not to reveal

private information about bids before winners are determined, and to behave eth-

ically. Trading firms are expected not to disclose clients’ intended trades. Today,

reputation plays a crucial role in trust: commerce relies on a vast number of entities

whose trust is based almost entirely on their reputation. Despite a common reliance

on reputation, there is ample evidence that these trusted third parties often should

not be trusted: fraud often happens. Chapters 5 and 8 offer a number of documented

examples of fraud in auctions and securities exchanges, respectively.

This fraud can come at tremendous cost. The unethical cooperation between a

few senior auditors at Arthur Andersen and Enron executives led to an obstruction

of justice conviction that destroyed Andersen’s reputation, leading to the destruction

of its business—even though it was one of the highly respected “Big Five” accounting

firms [57]. A decade earlier, after two managing directors at Salomon Bros. were

discovered to have placed bids on behalf of nonexistent clients in Treasury bond

auctions to manipulate bond prices, the scandal eventually led to the resignation of

Salomon’s chairman and CEO who knew about the scheme but failed to inform the

US Government. The event cost Salomon $290 million in fines and penalties, forced

its chairman to resign, and tarnished its reputation for years [56]. More recently,

the ultimate effects of widespread fraud and lax compliance in subprime mortgage

Chapter 1: Introduction 18

lending [9, 18] began a chain reaction whose effects have included the near-destruction

of financial giant Bear Stearns, a crisis in the credit markets and associated volatility

in world markets, the inability of borrowers to obtain mortgages and sharp declines

in real estate prices.

These events are clear evidence of the tremendous economic value of trust in

our commercial and financial institutions. Building an institution that merits trust

through reputation is extremely costly and can take many years—while a breach of

that trust can destroy a trusted institution in a moment. Moreover, as was the case

with Andersen and Salomon Bros., a few dishonest individuals within an otherwise

trustworthy organization can destroy public trust in the entire entity. We seek to

develop technologies that reduce the cost of buliding a trustworthy commercial entity

and eliminate the ability for dishonest insiders to abuse or otherwise endanger that

trust, are efficient enough to be cost-effective, and simple enough to be adopted in

real-world business settings.

We thus explore a tradeoff between theoretically complete security and practical

efficiency, via what we call a partially trusted third party (PTTP). This PTTP is

superior to an ordinary trusted third party, because it issues proofs that its actions

were correct given the inputs – in every case. Thus the PTTP is never trusted to

“do the right thing”: it is forced to. Moreover, we seek to build protocols in which

the PTTP is only entrusted with private information after it cannot gainfully exploit

that information.

The actual partial trust placed in the PTTP depends on the protocol in which

it is used. For example, in a sealed-bid auction, we might trust the PTTP not to

Chapter 1: Introduction 19

reveal private information after the auction is over, but prevent it from learning any

private information until all bids have been submitted. Thus, the auctioneer cannot

reveal a bid to any favored bidder; the proofs of correctness prevent the auctioneer

from manipulating the already submitted bids.

Even this partial trust can be improved by the use of software, hardware and net-

work security to build secure “black boxes” whose network connections are audited

for correct behavior. Trusted Computing [142] provides a hardware and software

framework for trustworthy computation in which specialized, secure hardware runs

digitally signed operating systems and applications to achieve high confidence that

the program is being run as specified. However, we point out out that in such cir-

cumstances, the proofs of correctness are still important because they ensure that no

bugs in the signed software yield inadvertently incorrect results. Thus we can limit

trust in these architectures only to prevent information leakage, not to ensure correct

operation.

1.1 Related Work

Because this dissertation is comprised of several chapters that consider quite dif-

ferent problems, we consider existing work related to each chapter within the intro-

duction to that chapter, and do not summarize it here. Rather, in this section we

consider work related to our approach to provably correct, secrecy-preserving com-

putation, and its relationship with an existing body of significant work in computer

science and related fields.

One of the most influential papers in modern computer science is Goldwasser,

Chapter 1: Introduction 20

Micali and Wigderson’s 1986 work introducing “zero-knowledge proofs” [70]. In this

groundbreaking work,1 the authors advanced the idea that parties can prove a particu-

lar fact correct, or that they possess private knowledge of some information, revealing

anything more than the statement they are making—in particular, no private knowl-

edge needs to be revealed. For example, if I know a three-coloring for a map, I can

prove using these techniques that I know a three-coloring, without revealing to a ver-

ifier any valid three-coloring. The verifier learns only (typically with overwhelming

probability) that the map is three-colorable.

These protocols are typically interactive proof protocols, in which a prover and

verifier go through a back-and-forth set of challenges and responses that convince

the verifier of the truth of the statement being proven. Importantly, to be assured

of true zero-knowledge, the verifier must be able to construct a simulation of the

entire communication stream without the aid of the prover. If the verifier could

have constructed the entire communications without any assistance, then nothing

was revealed.2 Blum, Feldman and Micali later introduced “Non-Interactive Zero-

Knowledge” [97], in which a reference string of “random data” simulates the choices

of the verifier in an interactive process. This simplifies the process, and sometimes

prevents certain attacks in which a dishonest verifier can learn something from the

prover.

In this work, we employ “zero-knowledge” style techniques that allow computa-

1According to Rabin, before its publication the paper was rejected more than once by reviewers
who could not understand why it would be useful to prove you knew something but not reveal what
it was you knew.

2In extensions to zero-knowledge proofs beyond the scope of this work, relaxations to the require-
ment to construct a simulation without help, e.g. allowing up to k bits of “hints” to be transmitted,
provide for more powerful protocols.

Chapter 1: Introduction 21

tions to be performed and proven correct on a collection of private values held by

several different parties, for example, bidders in an auction or traders in a securities

exchange, without revealing facts about the private values not implied by the result of

the computation. Many of the cryptographic ideas we rely on, where a prover proves

facts about a computation without revealing anything useful, find their origins in

non-interactive zero-knowledge proofs.

The first solutions to solving this type of problem emerged even before the idea

of “zero-knowledge”, with Shamir’s secret sharing scheme [140] and multi-party com-

putation (MPC) that allowed the parties to distribute shares of their private inputs

among a trusted group (often the parties themselves). This group would then jointly

perform a computation so that a minimum number of the parties would be required

to reconstruct the result – unless that number of members of the group cheated, only

the result would be reconstructed. Later, “verifiable secret sharing” approaches pro-

vided for the provable correctness we desire, preventing a malicious member of the

group from corrupting the output of the computation [61, 122]. Feigenbaum et al.

advanced this paradigm further by providing for computations of approximate results

in multi-party settings [60], which offers benefits in real-world situations we consider

later, such as revealing facts about a portfolio’s composition without permitting the

recipient of the information to “back out” useful data from knowledge of the function

and an exact output in its domain (see Section 9.3.2).

In such verifiable multi-party computation models, where we obtain both secrecy

and proofs of correctness of the result, the parties with private data3 typically col-

3In secret-sharing MPC protocols, the number of parties who can reconstruct the secret, and the
number required for its reconstruction (or computation thereon) is determined a priori.

Chapter 1: Introduction 22

laborate in every step of computing the provably correct result (see for example the

extensions of Gennaro et al. [67, 68]). In these models who boast they need no trusted

third party, provable correctness is sometimes achieved by composing the function to

be computed with an authentication code, yielding an authenticated result. They

need no single trusted third party because trust is distributed. Canetti [42] intro-

duced this notion of universal composability.

In other related theoretical work, Beaver et al. consider “instance-hiding”; an

instance-hiding proof system for a function f “is a protocol in which a polynomial-

time verifier interacts with one or more all-powerful provers and is convinced of the

value of f(x) but does not reveal the input x to the provers [22]. In our work, we are

interested in a multi-party context of instance-hiding, where the provers prove a value

of f(x1, . . . , xn) to various verifiers, and, ideally, nothing about any input xi, each

of which comes from a different original party, is revealed to the provers. Our work

is also related to the field of private information retrieval (PIR), where a database

provider answers queries about private data it stores on behalf of clients, but cannot

learn anything about the data [87].

Finally, we mention the technique of obfuscated circuits, in which a circuit is ob-

fuscated beyond recognition so that a third party can run the program on private data

and not learn useful information. Recent work by Barak et al. examines what is and

is not possible using these techniques, and reviews the previous work on obfuscated

circuits related to secrecy-preserving computation [20].

Although many offer theoretically complete security, all of these protocols are

cumbersome to implement in a business setting, and are burdensome for evaluating

Chapter 1: Introduction 23

computationally expensive functions – such as NP-hard problems or approximations

thereof – over the private data. In addition, in many settings, a partially trusted

third party who computes a single solution of a difficult problem yields a solution

with many “results”, each of which is to be privately transmitted to a distinct ver-

ifier. One example of this is where each bidder receives a proof of their personal

outcome in a sealed-bid combinatorial auction. In a traditional MPC setting, sepa-

rate computations would need to be carried out for each result if no party is to indeed

learn nothing but what they need to know.4 In the case of a large combinatorial auc-

tion with hundreds or even thousands of bidders and items, going through a costly

MPC protocol to compute the outcome of the auction separately and provide each

bidder with her personal outcome could make a practically intractable problem even

theoretically impossible.

Bolstering our claim, we know of none of these high-security protocols which have

been implemented in any large-scale real-world setting. While implementations have

been published, e.g. the Fairplay system by Malkhi et al. [96] and the implementa-

tion of secure auctions based on multiparty integer computation by Bogetoft et al.

described in Section 8.1 [26], the intractability of computations and the business pro-

cess complexity inherent in implementing such systems for thousands of bidders are,

in our view, a likely explanation for why important theoretical results that have been

around for three decades are not yet in widespread business use.

4It is certainly possible that a large-scale multi-party computation could be optimized so that
useful intermediate results could be reused in computing each output, but some separate computation
would nonetheless need to be run for each distinct output.

Chapter 1: Introduction 24

1.2 Summary of the Presentation

We situate our work as seeking a compromise between a completely trusted third

party and complete security: a “partially trusted third party”. We describe such a

party who receives commitments to private data, opens them at a designated time,

performs various computations on the private data, reveals the results of the com-

putations to designated recipients, and proves these results correct without revealing

anything further about the private data. This partial trust is limited to disclosure –

we do not place any trust in our partially trusted party with respect to correctness of

the results: the proofs guarantee correctness. Moreover, we can eliminate even that

limited trust by use of specialized hardware and specially designed networks that limit

steganographic5 revelation of information even after the computation is complete.

Of course, when some results are to be kept private, it is even more difficult to

prevent steganographic encodings of private information in the private communication

of an outcome to a particular verifier colluding privately with the third party. Lepinski

et al. describe the problem of steganographic attacks in zero-knowledge contexts, and

propose a “Fair Zero-Knowledge” protocol to limit these attacks [92]. We present

our various contributions constructively. First, we develop the cryptographic ideas

underlying secrecy-preserving, provably correct computation, through a general model

of these computations, a construction of this model using Paillier’s probabilistic and

homomorphic cryptosystem [114], and the construction of a time-lapse cryptography

service.

Next, we explore applications to auctions. After a brief introduction motivating

5Hiding information in the representation of other information, such as encoding private data in
a public “random” value.

Chapter 1: Introduction 25

the need for secrecy-preserving, provably correct auction protocols, we construct two

cryptographic auction protocols. The first is a simple cryptographic auction of one

or more identical items with generalized Vickrey prices. The second is a novel cryp-

tographic combinatorial auction mechanism that allows the auctioneer to solve the

challenging optimization problems efficiently, yet prove the results correct to third

parties. This mechanism includes a method of independent interest for proving a

solution to a mixed-integer or linear program correct while revealing very little infor-

mation.

Finally, we explore applications in securities trading. After a similar introduction

motivating the need for secrecy-preserving, provably correct mechanisms for securities

trading, we construct two cryptographic securities exchange protocols. The first is a

cryptographic limit order book: a continuous double auction where traders submit

encrypted buy and sell orders, and the market operator proves its actions are correct

on the encrypted orders. The second is a cryptographic combinatorial securities

exchange that permits traders to submit baskets of securities that clear with each

other; the unfilled orders are then placed in a special remainder basket that third

parties liquidate for a commission. Using an independently useful protocol, the market

operator accepts representative portfolios from several third parties, and proves how

their risk would change if they accepted the remainder basket. The commission, a

predetermined function of this change in risk, is then verifiably computed; the third

party with the lowest commission fills the orders. Thus, the third party receives a

fair commission for its services but no party learns any information which can be

exploited until after all trades are already committed to.

Chapter 2

Secrecy-Preserving Computations

by a Partially Trusted Third Party

We define here a general model of secrecy-preserving computations by a partially

trusted third party without tying it to a particular underlying cryptosystem. Various

cryptographic building blocks can be used to create practical and secure implementa-

tions of our generalization; we describe two such constructions in detail in Chapter 3

and [128].

In our model, the partially trusted third party can compute a large number of

results by performing a single expensive computation, and then prove each particular

result correct using a much more efficient computation. Moreover, this separation

of computation and verification allows the third party to employ the most efficient

methods to compute the result, limiting the computationally costly operations over

encrypted data to checking the proofs of the claimed results’ correctness.

Another benefit of our model is that the “result” can be easily tuned to reveal

26

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 27

minimum information. The result might be that a particular payment for a good is

$42, or which bid in an auction is the largest, but it might also be that the makeup

of technology stocks in an investor’s portfolio lies between 17 and 17.5 percent (see

Section 9.3.6) or that a particular bidder met an activity rule of increasing her bids in

each round of an auction (see Section 7.4.1). Indeed, the result can easily be any fact

about the data — unlike in many efficient multi-party settings (such as polynomials

over finite fields) in which the final result must be an element of the computation’s

domain. (That said, the theoretically general results described above can of course

yield any computable result with proper encodings.)

This construction has an important relationship with computational complexity

theory: many problems for which computing a solution is (believed to be) difficult

have trivial proofs of correctness for any particular solution. Indeed, for any NP-

complete problem, there always exists an statistical zero-knowledge argument that

a prover knows a solution [111], if one-way functions exist. Similar zero-knowledge

proofs can efficiently reveal particular facts about the solution without revealing the

entire solution. By only employing the more burdensome verifiable computation for

verification of results, we are free to use highly efficient hardware and software for

the computation of those results.

In the particular applications we consider, many linear and integer programming

problems that arise in combinatorial auctions are extremely difficult to solve, but

proving a particular answer to be optimal is easier. In many cases, we can solve

these problems over private data using advanced algorithms, and then prove the

solution correct, requiring far fewer computational operations for the verifiers than

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 28

computing the allocation. In other cases, such as solving an integer program to run a

combinatorial auction, an allocation can be shown to be feasible by demonstrating it

satisfies particular constraints. Validating whether a particular result satisfies these

constraints can be done extremely efficiently, and can be performed using the methods

we describe using practical computing power.

This framework also supports specialized applications in which a particular party

A with a private information state wishes to know the change its information state

would undergo by learning information from B, without knowing anything else about

B’s information, or even learning what the updated information state would be. In

one of our concrete examples, party A holds a particular portfolio of equities and

wants to know how its risk profile would change if it “bought” a portfolio of equities

from party B, without learning the particular equities in B’s portfolio or revealing

to B anything about either its own holdings or even the result of the computation.

We offer concrete, efficient examples of such information exchanges in this general

framework in Chapter 9.1

We begin with a formal definition of our model. There are a set of “parties”

with private data, a partially trusted “Evaluator-Prover”2, (EP) and zero or more

independent “observers” who verify the outcome but do not supply any inputs to the

computation. Each party has (without loss of generality) one private value, a public

and encrypted form of that value that can be used in verification computations, and

a cryptographic commitment to the encrypted value that is both binding and hiding

from even the EP (see 2.1.3). We then define the security assumptions we make, and

1If greater theoretical security is necessary, one can always employ more secure multi-party com-
putation for these protocols.

2This term is due to Rabin [128].

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 29

the (partial) trust we place in each party.

Next, we describe the nature of the data used in our computations and veri-

fications, and the assumptions we make about underlying cryptographic protocols

supporting our model.

Finally, we outline the computations and verifications using these data, in partic-

ular the specific operations we support with high efficiency, and how these operations

provide for both practical implementations of important commercial protocols and

theoretical computability of any computable function.

2.1 Secrecy-Preserving,

Provably Correct Computation

2.1.1 General Assumptions

While this work is in the general realm of security, we do not wish to clutter the

essential aspects of our protocols with too many details. To that end, we make several

reasonable simplifying assumptions that do not affect our results.

Communications. We assume that there are secure private communications

channels between all entities in the computation. We further assume a public channel

where data may be posted publicly for all to see (often called a “bulletin board”).

In practice, one way of achieving the secure private channels is to equip each entity

with verifiable digital signature and public-key cryptographic keys – that is, build a

public key infrastructure (PKI); we can model the public channel with a verifiable,

distributed bulletin board where digitally signed posts are sent to multiple servers

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 30

who publish them on a computer network, and we assume that a majority of the

servers remains active and uncorrupted at any time.

Cryptographic Complexity Assumptions. We assume the existence of one-

way functions and the resulting implications. We require this assumption for the

existence and security of cryptographic hash functions and cryptographic protocols

we employ in particular implementations of our protocol. At the present time, we

assume a random oracle model for cryptographic hash functions. That said, important

cryptographic techniques exist that do not require a random oracle assumption; see

the discussion in the Cramer-Shoup cryptosystem [49].

Honest but curious parties submit data to the computation. In general, we

assume a party enters each computation without malice, as it expects the possibility

of benefit from the results. To this end, each party will perform the protocol as

prescribed. Since after the initial data are submitted, the parties have no further

input, our model does not suffer from so-called protocol completion incentive problems

(see Section 6.1.1, [31]). While we reserve it for future work, we believe it possible

to extend our protocols to provide for a higher degree of security in which some of

the parties may be malicious, inspired by advances in verifiable secret sharing and

multi-party computation [61, 122, 67, 48].

2.1.2 Entities Involved in the Computation

In our model, a set of n parties P1, . . . , Pn have private data values x1, . . . , xn. (If

a party has more than one private data value, then we model it as multiple parties

without loss of generality.)

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 31

We assume a set of verifiers defined for each result of the computation which may

include one or more of the parties. The set of verifiers for each result is defined at the

beginning of the protocol. These may, but need not, include any or all of the parties

providing data.

The Evaluator-Prover EP is a partially trusted third party responsible for accept-

ing private data, computing one or more functions on the private data, revealing each

result to the designated verifiers, and proving each result correct using the public,

encrypted forms of the private data.

Assumptions about the Evaluator-Prover

Our protocols force the evaluator-prover to provide the following guarantees:

• The EP cannot see private data before they are needed, although the parties

may be required to commit to their values earlier in the protocol. The EP

cannot disclose data before it sees them.

• The EP can compute a correct result in every case using the data provided, or

determine that no result exists.

• The EP can prove the reported result correct in every case.

• The EP cannot generate a valid proof of an incorrect result.

◦ Depending on the underlying protocol, these guarantees may be qualified, for

example, under realistic cryptographic assumptions or with a negligible proba-

bility of error.

We assume the following about the EP:

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 32

• The EP destroys all data not required for proving the computation correct at

the conclusion of the protocol.

• The EP does not reveal anything to any party other than the results entitled

to it as mandated by the protocol.

2.1.3 How the Computation Works

Initialization

In this exposition, we consider, without loss of generality, a setting with a single

computation C with inputs xi for each party Pi, where i ∈ [1, n], and a set of two

corresponding results z1, z2, each of which is revealed to its respective verifier V1,V2

and proven correct by the respective verification function V1, V2.
3 Each party Pi also

creates a random data string σi; the EP creates a random string σEP . These strings

are used later to tie the hands of the EP when issuing proofs.

To begin, the evaluator-prover (EP) publishes the computation C that is going

to take place and a description of the domain of results. He also publishes a com-

mitment to his random data ComEP (σEP). The EP requests that each party Pi

prepare an input xi, a to-be-published encryption of that input E(xi, ri), a commit-

ment to that encrypted input Comi(E(xi, ri)), and a commitment to its random data

Comi(σi). We recall that parties with multiple inputs are represented as multiple

parties without loss of generality. The encryption function E() is efficient and public

3In practice, the EP might compute many computations on a single set of inputs and issue any
number of results, such as a private sealed-bid auction where he computes each winner’s payment
and proofs of those payments for each winner and a proof of an insufficient bid for non-winners. We
use a model with two computations and results to illustrate the protocol with minimal notational
overhead.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 33

and corresponds to a decryption function D() private to the EP; the details of en-

cryption and decryption depend on the underlying cryptographic framework. Thus

the parties supply Com1(E(x1)), . . . ,Comn(E(xn)),Com1(σ1), . . . ,Comn(σn) The

EP publicly acknowledges receiving each commitment.

The EP requests that the verifiers V1 and V2 submit requests for results z1 and z2,

and responds to these requests with verification functions V1 and V2, respectively. V1

takes n+2 arguments: the n parties’ encrypted inputs, the claimed result z1, and proof

information π1. The function V1(π1, z1, E(x1), . . . , E(xn)) outputs a single bit which

is true if and only if the result z1 carried out is correct, that is, C1(x1, . . . , xn) = z1.

V2 is analogous. The verification functions must not reveal any fact about any private

data not implied by the result during the course of their evaluation.

Computation

The EP first announces that the inputs are now fixed and will accept no more

inputs. In some protocols, it may be necessary to have a period of time that allows

parties to contest non-inclusion of their data if they do not appear in the list of inputs

published by the EP; we assume that appropriate measures will be taken to ensure

that all parties’ input commitments are accepted and posted.

When it is time for the EP to obtain the inputs, the commitments to the inputs

and random strings σi are publicly unlocked, whether by the parties themselves or an

alternative system, such as Time-Lapse Cryptography as described in Chapter 4 or es-

crow with another trusted party.4 At this point the encrypted inputs E(x1), . . . , E(xn)

4Such an alternative system is useful for enforcing nonrepudiation of commitments by the parties.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 34

are public and visible to all parties, all verifiers, and the EP. Any necessary random

data for the computation σ is now fixed as the exclusive or (XOR) of all random

strings committed to before the protocol begins: σ = σ1 ⊕ σ2 ⊕ . . .⊕ σEP . Provided

any one of the components σi is truly random, the string σ will be truly random.

A fixed “random data” string is necessary to prevent the EP from initiating

steganographic communications5 with an adversary by manipulating the random help

values used in the proofs. If all random data to be used in the computation and proofs

are committed to before the inputs are known to the EP, then the EP cannot engage

in such an attack. However, in our general framework, we make a simplifying assump-

tion that the random string of data used in the computation can be made public, but

remind the reader that in some cases many random values will be committed to a

priori and some will never be revealed.6

The EP privately decrypts the inputs x1, . . . , xn, and computes the provisional

results 〈ẑ1, ẑ2〉 = C(x1, . . . , xn, σ). The EP then computes the proof data π1, π2

(which may well be a side effect of the computation C) and sends (ẑ1, π1) to the

verifier V1, and (ẑ2, π2) to the verifier V2. Any random data used in constructing the

result or proof must be derived from σ via a predetermined protocol.

5That is, hiding meaningful data in communications that appear to be for other purposes, for
example, agreeing to set certain bits of a particular “random” help value to reveal the winning bid
to another losing bidder in a sealed-bid auction.

6For example, in our yet unpublished research on extensions to the the RST cryptosystem [128],
not all random data used in the computation can be publicly revealed without compromising the
security of the protocol, but any random data must be committed to before the inputs are revealed
to the EP.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 35

Verification

V1 verifies the claimed result ẑ1 by computing the verification function V1 on the

now available encrypted data, the proof π1, the random data σ, and the result. He

accepts z1 = ẑ1 if and only if V1(ẑ1, π1, σ, E(x1), . . . , E(xn)) outputs true. We require

for any system that π1 reveal nothing about the inputs and that nothing can be

learned from this process other than the claimed result ẑ1 and whether ẑ1 equals the

true result z1.
7

The verification functions are determined by the computation, but are not iden-

tical to the computation. They only prove that the result is correct, and that the

result and proofs were constructed deterministically (given the randomness from σ).

For example, C might be to order n input bids using an O(n log n) sorting algorithm

and pick the winner. However, verifying whether the resulting ordering of n bids is

correct requires only O(n) comparisons; the verification function V1 can be a program

that checks whether a given order is correct or a particular bid is maximal. Thus the

verifier need not sort the encrypted bids on his own; the provided ordering is sufficient

to satisfy him.

This is one of many examples in which the verification can be much more efficient

than the computation itself. Another benefit illustrated by this example is that the

single expensive sorting operation yields an ordering of all bids, and that single result

can be re-used in many verification processes to offer an efficient verification to each

bidder.

The verifiers then check that the verification functions V1 and V2 will satisfy their

7In some cases in practice, we may relax this requirement so that the proof information reveals
minimal information.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 36

requirements. Each verifier can see that the verification function verifies a result of

the announced computation is correct based on the underlying cryptographic proto-

col. Typically the verification function involves the verifier computing a sequence of

operations over public encrypted values; this sequence of operations corresponds to

a sequence of operations over the private unencrypted values which the verifier does

not know, but because of this correspondence, the verifier believes the verification

function to be correct. Where exact results are provided, the verifier can check that

the encrypted result he computed uniquely corresponds to the unencrypted result and

proof information supplied by the EP. Where approximate results are provided, the

verifier can check an interval proof that the encrypted result he computed lies within

the bounds stated by the approximate results. See Chapter 3 and [128] for specific

examples of cryptosystems that achieve these ends.

2.1.4 Supported Mathematical Operations

Our general framework of evaluator-prover (EP) supports extremely efficient sup-

port for verifiable (in)equalities, addition and multiplication of integers, with a constant-

factor increased cost for these operations over rational numbers. To model the broad-

est representation, allowing any underlying system, we speak of “verification” and

not “computation” of the results, although in the instances we describe in this work,

verifiers typically perform their verification by first performing a computation over

the encrypted values.

Because the applications in which we are most interested are well-served by integer

arithmetic, we focus on specific integer operations that specifically meet the needs of

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 37

the applications we describe.

We can extend these operations to rational numbers, which can be represented as

pairs of integers, via inequalities and multiplications of integers; the increased cost is

generally at most one multiplication per operation. This extension to rational arith-

metic allows us to efficiently prove certain results about linear and integer programs

as described in Chapter 7. Naturally, supporting modular addition and multiplication

of integers provides for the evaluation of any theoretically computable function, but

we recall that the other less efficient results mentioned earlier offer superior security

when a theoretical result is desired; our purpose in extending these methods to the

rationals is to offer a practical and efficient computational paradigm.

The following integer operations are supported. We observe that these operations

can apply to both constants and encrypted values by replacing any encrypted value

with a “null encryption” of a constant.8 For the following exposition, we omit the

random help values from our notation for clarity; the notation E(xi) is shorthand for

E(xi, ri).

• (In)equalities:

= Given E(xi) and E(xj), verify that xi = xj in zero knowledge.

We write E(xi) ≡ E(xj).

6= Given E(xi) and E(xj), verify that xi 6= xj in zero knowledge.

We write E(xi) /≡ E(xj).

≥ Given E(xi) and E(xj), verify that xi ≥ xj in zero knowledge.

8An encryption that renders a value compatible with arithmetic under a cryptosystem without
hiding that value.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 38

We write E(xi) � E(xj).

• The ≤ operation follows from ≥; < and > follow from these, respectively,

by adding 1 to one of the compared values. The symbols �, �, and �

are similarly employed to indicate inequalities between encrypted values’

plaintexts.

• Arithmetic Operations:

+ Addition: Given E(xi), E(xj), and E(xk), verify E(xk) ≡ E(xi + xj).

× Multiplication: Given E(xi), E(xj), and E(xk), verify E(xk) ≡ E(xi×xj).

− Additive Inverse: Given E(xi) and E(xk), verify E(xk) ≡ E(−xi).

(Alternatively, verify E(xk + xi) = E(0).)

÷ Multiplicative Inverse:9 Given E(xi) and E(xk), verify E(xk) ≡ E(x−1
i).

(Alternatively, verify E(xk × xi) = E(1).)

|x| Absolute Value: Given E(xi) and E(xk), verify that E(xk) ≡ E(|xi|). One

straightforward way to do this is to use multiplication to prove E(xi×xi) ≡

E(xk × xk) and E(xk) � 0, using the above operations.

9In the systems we describe in this work, operations are taken modulo a large number. When
the modulus is composite, as occurs for example when the homomorphic properties of the Paillier
cryptosystem support an EP, a multiplicative inverse does not exist for all nonzero integers. We
can still assume in this case that the multiplicative inverse is verifiable in practice, because finding
a noninvertible value is of negligible probability. Happening upon such a value would allow fac-
toring the modulus, and thus breaking the security of the underlying cryptosystem; doing so is as
improbable as factoring the modulus by random guessing.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 39

2.1.5 Extending These Operations to the Rationals

Given efficient implementations of the integer operations above, we can derive

equivalent operations on the rational numbers that are a constant factor more ex-

pensive, due to most operations requiring one or two additional verifiable integer

multiplications. While we admit that a series of computations on the rational num-

bers could be performed using only integer operations by multiplying through by a

common denominator, this requires advance knowledge of the entire computation.

While that might be appropriate in certain contexts, a general framework for com-

putation over rational numbers has clear advantages. Chief among these is that the

entire computation need not be known in advance.

We represent each unencrypted rational number as a pair of integers 〈x, y〉 and

encrypt a rational number by encrypting the two integers separately: 〈E(x), E(y)〉.

We typically employ the more familiar notation of x
y

for a rational number, and notate

its encrypted form as either E(x
y
) or E(x)

E(y)
, which we consider semantically equivalent.

We offer efficient options for proving equality and inequality so that the proofs can

avoid costly multiplications wherever possible.

• (In)equalities:

= Given E(xi)
E(yi)

and
E(xj)

E(yj)
, either:

∗ Verify E(xi) ≡ E(xj) and E(yi) ≡ E(yj) (fast)

∗ Verify E(xi × yj) ≡ E(xj × yi)

6= Given E(xi)
E(yi)

and
E(xj)

E(yj)
, either:

∗ Verify E(xi) /≡ E(xj) and E(yi) ≡ E(yj)

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 40

∗ Verify E(xi) ≡ E(xj) and E(yi) /≡ E(yj)

∗ Verify E(xi × yj) /≡ E(xj × yi)

≥ Given E(xi)
E(yi)

and
E(xj)

E(yj)
, either:

∗ Verify E(xi) � E(xj) and E(yi) ≡ E(yj)

∗ Verify E(yi) � E(yj) and E(xi) ≡ E(xj)

∗ Verify E(xi × yj) � E(xj × yi)

• The other inequalities follow analagously, including strict inequality

(E(xi × yj) � E(xj × yi) holds iff E(xi)
E(yi)

>
E(xj)

E(yj)
.)

• Arithmetic Operations:

+ Efficient Addition: To prove E(xi)
E(yi)

+
E(xj)

E(yj)
≡ E(xk)

E(yk)
,

verify E(xk) ≡ E(xi + xj) and E(yi) ≡ E(yj) ≡ E(yk).

+ General Addition: To prove E(xi)
E(yi)

+
E(xj)

E(yj)
≡ E(xk)

E(yk)
,

verify E(xk) ≡ E(xi × yj + xj × yi) and E(yk) ≡ E(yi × yj)

× Multiplication: To prove E(xi)
E(yi)

× E(xj)

E(yj)
= E(xk)

E(yk)
,

verify E(xk) ≡ E(xi × xj) and E(yk) ≡ E(yi × yj).

− Additive Inverse: To prove E(xi)
E(yi)

≡ −E(xk)
E(yk)

, either:

∗ Verify E(xk) ≡ E(−xi) and E(yi) ≡ E(yk)

∗ Verify E(yk) ≡ E(−yi) and E(xi) ≡ E(xk)

÷ Multiplicative Inverse: To prove (E(xi)
E(yi)

)−1 ≡ E(xk)
E(yk)

, either:

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 41

∗ Verify E(xk) ≡ E(yi) and E(yk) ≡ E(xi)

∗ Verify E(xi × xk) ≡ E(yj × yk)

2.1.6 Observations on verifiable computation over rational

numbers.

We observe that in many applications, the denominators of rational numbers that

are computed using the above methods can grow quite large, particularly after many

multiplication operations. In practice, a system building proofs of correctness may

need to periodically “reduce” rationals to their lowest integer denominator to prevent

this. This can be easily done: to reduce E(xi)
E(yi)

, the EP privately computes d, the

greatest common divisor of xi and yi, publishes E(xi/d)
E(yi/d)

, and proves that E(xi)
E(yi)

≡
E(xi/d)
E(yi/d)

via the cross product as above.10 It is most critical that the numerator and

denominator do not grow to be larger than any limitation imposed by the modulus

of any finite field underlying the cryptosystem.

In some cases involving complicated computations, again those with many mul-

tiplications, it may not even be possible to reduce an encrypted rational value to a

representation with small integer components because the greatest common divisor

of the numerator and denominator is too small. In this case, the prover can mitigate

problems of very large integers in the rational representation by rounding to a repre-

sentation with smaller coefficients, then proving that the rounding “error” is within

some acceptably small bound. The bound is encrypted, and then the difference be-

tween the rounded value and the actual value is proven to be smaller than that bound

10That is, E(xi × (yi/d)) ≡ E(yi × (xi/d)).

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 42

using their encryptions and the methods described above.

For example, if a computation resulted in the encrypted value E(301
900

), and we

allowed a tolerance of 1
500

, then we could reduce the result to E(1
3
), then prove using

the above methods that the error is within the allowed tolerance:

E(
300

900
) ≡ E(

1

3
)

E(
301

900
)− E(

300

900
) � E(

1

500
)

E(
1

900
) � E(

1

500
)

E(1× 500) � E(1× 900)

Clearly, the errors from every “reduce” operation can also be collected and summed

at the end of the computation to verify that the total error is within some acceptably

small bound.

2.1.7 Approximating real values with rationals; proving ac-

ceptable error

In the event our work is used in the context of a high-performance solver, the

results obtained may be floating point values, not rational numbers. However, as we

have not developed a cryptographic framework for working with arbitrary precision

arithmetic,11 these values must be converted to rationals in order for us to prove them

correct.
11One could conceive of a similar approach for arbitrary floating-point arithmetic, where one might

represent an encrypted floating-point value as a pair of encrypted values. For example, one might rep-
resent an encryption of 00123.45600 as “before” and “after the decimal point”: 〈E(123), E(45600)〉.
One could also conceive of a representation encrypting the significand and the exponent, for example,
123.456 would be 〈E(123456), E(2)〉. Developing an ideal representation and protocols for provably

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 43

We can easily approximate a decimal floating point value with high accuracy by

taking its decimal representation as the numerator and a power of 10 as the denom-

inator.12 For example, the value π ≈ 3.14159265358979323846 can be accurately

approximated as 314159265358979323846
100000000000000000000

.

In the present work, we typically use our tools to prove a rational result satisfies a

set of linear constraints. If we convert from a floating point value or real number (for

example, from a commercial solver), the error in conversion may mean the rational

result fails to satisfy the linear constraints.

To ameliorate this, we can apply the above ideas to prove the constraints are

satisfied with acceptable error. To prove an existing constraint E(a/b) � E(c/d), we

publish an encryption of a public error constant E(x/y), then prove the constraint is

satisfied within that error by proving that E(ab) �E(c/d+x/y) ≡ E(a/b) �E((cy+

xd)/dy), using the operations already been developed above. A similar approach

provides for proving that an encrypted rational value satisfies any linear constraint

within a particular error. If desired, the error could be multiplied instead of added

to prove the constraint is satisfied within a certain factor of error, rather than the

absolute magnitude of any error.

2.1.8 Integral rationals; comparing “fractionality”

In our calculations, it may be necessary to prove a rational number represented

as above is integral. To prove E(a/b) is integral, the prover first computes E(c/1)

correct secrecy preserving computations on floating point values is clearly a challenge beyond the
scope of this work.

12The base is of course arbitrary, and a careful choice of base may reduce rounding errors or the
requirement to reduce to smaller denominators.

Chapter 2: Secrecy-Preserving Computations by a Partially Trusted Third Party 44

and proves that a = bc. He then reveals that the denominator of E(c/1) is in fact 1;

provided c remains secret, no further information is revealed.

During the branch and bound proofs described in Chapter 7, we may need to

prove which of two rational values is “more fractional”. Given two encrypted rational

values E(x1/y1), E(x2/y2), we define this to mean the one whose fractional component

is closer to 1/2. While a more efficient approach may be possible, we choose the

following method for simplicity of exposition.

First, construct two encrypted valuesE(I1/1), E(x′1/y1), and prove thatE(x1/y1) =

E(I1/1 + x′1/y1), that E(I1/1) is integral, and that for the fractional portion x′1/y1,

x′1 ≥ 0, y1 > 0, and x′1 < y1. Nothing else is revealed about I1, x1, x
′
1 or y1. Do the

same to obtain the analogous E(x′2/y2). This yields two positive encrypted fractions

E(x′1/y1), E(x′2/y2).

To prove which value is “more fractional”, we need to identify which is closer to

1/2. In lieu of developing a general absolute value function, we instead subtract 1/2

from each fraction, then square the result using the above multiplication operation.

The smaller the result, the more fractional the value; a value of 0 indicates the fraction

was exactly 1/2.

Let E(z1/w1) ≡ E(x′1/y1 − 1/2) × E(x′1/y1 − 1/2), with analogous E(z2/w
2
2).13

Then the inequality E(z1/w1) � E(z2/w2) is true if and only if x1/y1 is at least as

fractional as x2/y2. If it is necessary to prove when neither is more fractional—a

tie—then we prove E(z1/w1) ≡ E(z2/w2).

13We use z1/w1 for visual comfort: z1/w1 = ((2x′1 − y1)2/(2y1)2).

Chapter 3

Implementation of

Secrecy-Preserving, Provably

Correct Computation using Paillier

Encryption

Paillier’s encryption scheme [114] is ideal for supporting the general computa-

tional framework described in Chapter 2. In this section, we show how to derive the

operations required by that framework using Paillier’s function.

Paillier’s is a homomorphic encryption system, in which the result of an operation

applied to two ciphertexts is a valid encryption of an operation (possibly the same

one) applied to their plaintexts.1 In cryptography, a plaintext is the original form of

1More formally, in a homomorphic encryption scheme, there exist operations ⊕ and ⊗ such that
given ciphertexts C1 = E(x1) and C2 = E(x2), C1 ⊗C2 = E(x1 ⊕ x2). Paillier’s encryption scheme
is homomorphic in that E(x1)× E(x2) = E(x1 + x2).

45

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 46

an input; a ciphertext is the encryption of a plaintext.

Homomorphic encryption schemes enable computation with encrypted values with-

out revealing any new information about the values themselves or the results of the

computation. Given a set of ciphertexts, anyone can calculate a new ciphertext that

is a valid encryption of a function of the associated plaintexts. For example, mul-

tiplying two ciphertexts yields a new ciphertext that decrypts to the sum of their

plaintexts. Paillier’s system employs a public/secret key pair, N and φ respectively.

The secret key N is the product of two large prime numbers p and q, and its size

is determined by the security requirements of the application. The secret key φ is

(p − 1)(q − 1). A 1024-bit public encryption key is widely considered sufficient for

security until 2010 [69].

Paillier encryption is also a probabilistic encryption scheme. In particular, encryp-

tions are performed with a random “help value” r that is used to achieve semantic

security: given two plaintexts and their encryptions, one cannot tell which ciphertext

corresponds to which plaintext without being able to decrypt them. Semantic secu-

rity is critical to preserve the secrecy of the inputs both during their initial encryption

and during the verification process, where both inputs and the values in the test sets,

whose plaintexts are well known, must still remain secret.

The security of this scheme is founded on the “Decisional Composite Residuosity

Assumption” (DCRA) [114].2 The DCRA implies that if the public key N is difficult

to factor, then it is also difficult to tell whether a particular number x is a number

of the form x = rN (mod N2) for some r. This assumption is related to the widely

2 A number x = rN (mod N2) is known as an N th residue mod N2. Because N is a composite
number—the product of two primes—x is called a composite residue.

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 47

accepted assumptions underlying the security of RSA3 [131], ElGamal [58], and Ra-

bin [127] encryption, and is believed to be of similar computational intractability.

The Paillier encryption of a message x will typically be denoted E(x, r), where the

public key N is implicit and the help value r is made explicit. In discussion below,

the help value r will sometimes be omitted to simplify notation where it is implicit

or irrelevant, for example, c = E(x).

The fundamental homomorphic properties of Paillier encryption are simple, yet

powerful. Given only the encryption E(x1) and either another encryption E(x2) or a

public constant k, anyone can compute the encryptions E(x1 + x2), E(x1 + k), and

E(x1 ·k) without learning anything about x1, x2, or the secret key φ. Second, a prover

P who knows the secret key φ can also prove a full set of equality and inequality

relations for two encrypted values E(x1) and E(x2), e.g., x1 = x2, x1 > x2, etc.,

again, without revealing anything about x1 or x2. Moreover, a party who encrypted

two values using the public key n, E(x1, r1) and E(x2, r2), can prove these same

relationships using the help values r1 and r2, even if the secret key φ is unknown. It is

also possible to compare encrypted inputs to constants in a similar way. We continue

our use of the notation E(x) � E(y) to mean “x ≤ y can be proven using encrypted

values E(x) and E(y)” and the similar notation � (≥), � (<), and � (>).

3The RSA problem is the task of computing m given only x, N and e where x = me (mod N)
and N = pq for large primes p, q. It is believed that the RSA problem is as difficult as factoring
N , but this is unproven. Knowing the factorization of N allows one to efficiently solve the RSA
problem.

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 48

3.1 Paillier Encryption

3.1.1 Public/Secret Keys

As above, Paillier encryption uses an encryption key N = p · q, where p and

q are large primes. The decryption key φ is derived from the factorization of N ,

φ = ϕ(N) = (p − 1) · (q − 1). We recall that ϕ(N) is Euler’s totient function, the

number of integers relatively prime to N . It is also required that N is relatively prime

to φ.

3.1.2 Encryption

To encrypt a plaintext x, first compute a random value r from the range [1, N−1]

such that gcd(r,N) = 1, then observe that (1 + N)x ≡ (1 + xN) (mod N2) and

encrypt as

E(x, r) = (1 + xN) · rN (mod N2) (3.1)

This is derived as follows:

E(x, r) = gx · rN (mod N2) (by [114])

set g = (1 +N), a generator of Z∗N

= (1 +N)x · rN (mod N2)

=
((
x
0

)
N0 +

(
x
1

)
N1 +

(
x
2

)
N2 + . . .

)
· rN (mod N2)

= (1 + xN + αN2 + . . .) · rN (mod N2)

= (1 + xN) · rN (mod N2)

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 49

3.1.3 Decryption

To decrypt C = E(x, r), given decryption key φ = (p − 1)(q − 1), observe that

rN ·φ ≡ 1 (mod N2) by Euler’s Totient Theorem, and

Cφ = (1 +N)x·φrN ·φ (mod N2)

=
((
x·φ
0

)
N0 +

(
x·φ
1

)
N1 +

(
x·φ
2

)
N2 + . . .

)
(mod N2)

= 1 + xφN + αN2 + . . . (mod N2)

= 1 + xφN (mod N2)

implying

x =
(Cφ − 1)/φ mod N2

N
(3.2)

While this method is clear, we did not use this method when obtaining our empirical

results elsewhere in our work (Section 6.5). Instead, we used a more efficient algorithm

involving precomputation and Chinese remaindering, as described in Paillier’s Ph.D.

thesis [113].

3.1.4 Decryption with random help value r

It is also possible for some P who knows the r used to encrypt C = E(x, r) to

show V that x is the unique decryption of C by revealing r. P may know r either

by having encrypted all the values used to compute C or by computing it via the

decryption key φ. To recover x, V computes

x =
(C · r−N mod N2)− 1

N
(3.3)

P can also recover random help r from C = E(x, r) = (1 + xN) · rN (mod N2)

by use of the secret decryption key φ as follows. (Note that our computations are

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 50

modulo N and not modulo N2 because r was taken from Z∗N .)

r = CN−1 (mod φ) (mod N)

= (1 + xN)N
−1 (mod φ) · rN ·N−1 (mod φ) (mod n) (3.4)

= 1 · r1 (mod N)

3.1.5 Uniqueness of Encryptions

Paillier’s encryption scheme involves a bijection from (ZN × Z∗N) ↔ Z∗N2 [114].4

Thus any integer in Z∗N2 represents a single valid encryption of an integer x ∈ ZN

with random help value r ∈ Z∗N . Consequently, if C = E(x, r), C 6= E(x′, r′) for any

x′ ∈ ZN and r′ 6= r. (This requires, as stated above, that gcd(N,ϕ(N)) = 1.)

P can attempt to cheat by providing a different random help value r′. Using r′

instead of r in (3.3) will yield a different but invalid “decryption” x′. V must therefore

verify the provided value r′ is consistent with the known encryption C. This can be

done by re-encrypting the derived value x′ as C ′ = E(x′, r′) and rejecting r′ unless

C ′ = C.

3.2 Mathematical Operations on Encrypted Val-

ues

The following definitions apply to any values encrypted as above. These properties

are due to the homomorphic properties of Paillier’s encryption scheme [114]. In these

4 ZN is the set of integers [0, N); Z∗N is the subset of ZN relatively prime to N .

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 51

definitions we refer to a prover P who has the decryption key or all random help

values for encrypted data, and a verifier V who does not.

Addition. Addition of two encrypted values:

E(x) · E(y) = E(x+ y) (mod N2)

Adding a constant k to an encrypted value x is easily done by encrypting k with the

random help value 1 and multiplying the two encryptions.

E(x) · (1 + kN) = E(x+ k) (mod N2)

Multiplication by a constant.

(E(x))k = E(x · k) (mod N2)

Negation. Implied by multiplication by a constant.

(E(x))−1 = E(−x) (mod N2)

Comparison to a constant k. P can prove any encryption C = E(k, r) is an

encryption of k by revealing the help value r used to encrypt C. V then verifies that

(1 +Nk)rN = C (mod N2), because

E(k, r) = (1 +N)k · rN (mod N2) (3.5)

This is of particular interest when k = 0. We remark that no encryption of a value

other than zero is an N th residue5 mod N2.

5To say that x is an N th residue (mod m) means that there exists some value g such that
x = gN (mod m). See also Footnote 2.

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 52

3.2.1 Secrecy-Preserving Equality and Inequality Proofs

Equality comparison. Given two ciphertexts C1 = E(x1, r1) and C2 =

E(x2, r2), P can prove x1 = x2 without revealing any additional information.Both

P and V compute C ′ = C1 ·C−1
2 (mod n2) = E(x1− x2, r1/r2) = E(0, r1/r2). P then

proves C ′ is an encryption of zero as above by revealing r1/r2.

Inequality comparison. Given two ciphertexts Cx = E(x) and Cy = E(y), P can

show x > y and x ≥ y. Because our values x and y are integers mod N2, we can

prove x > y by showing x ≥ y + 1, provided y 6= N − 1. Due to the homomorphic

properties of Paillier encryption, E(x+ 1) = E(x) · (N + 1) (mod N2), and so adding

1 to a value in its encrypted form is trivial. Thus, all ordering comparisons can be

reduced to the ability to prove x ≥ y. We first specify that x and y must be in the

range [0, 2t) for 2t < N/2. This can be proven as described in Section 3.2.3. Then,

to prove x ≥ y, both P and V calculate E(x− y) = E(x) · E(y)−1 (mod N2), and P

proves 0 ≤ (x− y) < 2t < N/2 from E(x− y). If in fact x < y, then (x− y) will wrap

around mod N2 so that (x− y) ≥ N/2 and no such proof is possible. This principle

is also detailed in Section 3.2.3.

To show that x 6= y given E(x) and E(y), without revealing anything about

their relative magnitude, there are a few possible solutions. One simple solution (for

|x−y| <
√
N/2) using our other primitives is to verifiably compute E(z) ≡ E(x−y),

then prove that z2 > 0 by showing that E(z · z) � E(0).

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 53

3.2.2 Secrecy-Preserving Proof of Products of Encrypted

Values

Because Paillier encryption does not enable the secrecy-preserving multiplication

of two encrypted values as it does addition, we require a method that allows a prover

P with three plaintexts u, v, and w such that uv = w (mod N) to prove this fact to a

verifier V who has Paillier encryptions E(u), E(v), and E(w), respectively. D̊amgard

et al. [51] propose another solution to this problem; our solution is in the spirit of our

other cryptographic primitives.

A Multiplication Test Set (MTS) for E(u, r), E(v, s), and E(w, t) is a set of 8

elements:

{E(u1, r1), E(u2, r2), E(v1, s1), E(v2, s2),

E(wi,j) = E(uivj, pi,j) | i, j ∈ {1, 2}}

where u = u1 + u2 (mod N) and v = v1 + v2 (mod N).

In each MTS, u1 and v1 are chosen uniformly at random from Zn; u2 and v2 are

correspondingly defined, as above, so that u = u1 + u2 (mod N) and likewise for v.

Clearly, if given encryptions as in MTS and

w1,1 + w1,2 + w2,1 + w2,2 = w (mod N) (3.6)

then in fact uv = w (mod N). But for P to prove and for V to verify all the

relationships included in the MTS, P must reveal u1, u2, v1, and v2, which would

consequently reveal u and v. Thus we adopt for an interactive proof the following

challenge and partial revelation proof. P constructs and sends MTS. V randomly

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 54

chooses a challenge pair (i, j), say, (1, 2), and sends it to P . In this case, P reveals r1,

s2, and p1,2. This allows V to decrypt E(u1), E(v2), and E(w1,2), and directly verify

that u1 · v2 ≡ w1,2 (mod N). P further reveals:

R = r1 · r2 · r−1 (mod n)

S = s1 · s2 · s−1 (mod n)

p = p1,1 · p1,2 · p2,1 · p2,2 · t−1 (mod N)

V by use of R verifies E(u1) · E(u2) · E(u)−1 (mod N2) = E(0, R), i.e., verifies u =

u1 + u2 (mod N) and similarly v = v1 + v2 (mod N) via S. Finally, V verifies

E(w1,1) · E(w1,2) · E(w2,1) · E(w2,2) · t−1 (mod n2) = E(0, p), thereby verifying that

(3.6) holds.

If MTS was not proper then the probability of V uncovering this by the random

choice of (i, j) is at least 1
4
. Thus the probability of P meeting the challenge when

uv 6= w (mod N) is at most 3
4
. This implies that if m MTS’s are used and P meets

all m random challenges then the probability of P cheating is smaller than (3
4
)m.

In practice, the prover will verify multiplications by repeating these zero-knowledge

proofs until the desired probability of error is achieved.

3.2.3 Verifiable, Secrecy Preserving Interval Proofs

The method we describe here is simple to describe, but not as efficient as other

methods advanced in other work. We refer the reader to Kiayias and Yung [81]

for a discussion of more efficient interval proofs using a method first described by

Boudot [30]; Damg̊ard and Jurik [51, 79] also discuss Paillier interval proofs, and

Lipmaa et al. [94] present similar solutions for efficient interval proofs in auctions.

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 55

Rabin et al. [128] also employ a somewhat different and more efficient technique

inspired by Brickell et al. [36] for interval proofs in the RST scheme.

In order to prove that a ≥ b for two values a and b, we can show that a, b < N/2

and then that (a− b) (mod N) < N/2 as described above.6 This works because if a

and b are less than N/2 and a is greater than b, then clearly a− b < N/2; if a is less

than b, then a− b will “wrap around” modulo N and must be a large number, that

is, a < b⇒ a− b (mod N) > N/2.

Thus, with a single additional primitive to prove that x < N/2 given only an

encryption of x, we can prove inequalities of values using only their encrypted forms.

Given ciphertext C = E(x, r) we want to prove that x < 2t for some t such that

2t < N/2. That is, we we want to be able to verify that a value x is smaller than

some agreed upon bound 2t, without revealing any information about x. The value

of t determines the number of bits of resolution available to parties in selecting their

inputs.

We perform the test as follows:

A valid test set TS for the assertion “C = E(x, r) is an encryption of a number

x < 2t < N/2” is a set of 2t encryptions:

TS = {G1 = E(u1, s1), . . . , G2t = E(u2t, s2t)} (3.7)

where each of the powers of 2: 1, 2, . . . , 2t−1 appears among the ui exactly once and

the remaining t values uj are all 0. Each test set’s elements are randomly ordered.

By use of a test set TS, the prover P can prove that x < 2t < N/2 as follows:

6Because our mathematical operations are over the integers modulo a large number, a small nega-
tive number is the same as a large positive number, and vice versa. For example, 13 ≡ −2 (mod 15).

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 56

Range Protocol. Let x = 2t1 + . . .+2t` be the representation of x, a sum of distinct

powers of 2. P selects from TS the encryptions Gj1 , . . . , Gj` of 2t1 , . . . , 2t` , and further

t− ` encryptions Gj`+1
, . . . , Gjt of 0. Note that:

(
E(x, r)−1 ·Gj1 · . . . ·Gjt

)
(mod N2) = E(0, s) (3.8)

is an encryption of 0 with help value s = (r−1 · sj1 · . . . · sjt) (mod N) if and only if

indeed x = 2t1 + . . . + 2t` and the Gjh were chosen as stated. Now since P has the

decryption key φ and thus knows the help value r, then he can hand over to V the set

{Gj1 , . . . , Gjt} and the above help value s. V can now verify on her own that (3.8)

holds and deduce that x < 2t < N/2.

The above protocol reveals nothing to V beyond x < 2t < N/2, because TS is a

random set, in actual implementation a randomly permuted array of the elements in

question. Consequently V has no information about which encryptions of powers of

2 are included in {Gj1 , . . . , Gjt} Furthermore, the inclusions of t − ` encryptions of

0 hides even the number of non-zero bits in the binary representation of x. Finally,

the random factors sj1 , . . . , sjt present in the test set’s encryptions combine to a

uniformly random s, which completely masks any information about the help value

r in the encryption E(x, r). Consequently no information about x is revealed.

There is, however, a problem with the above protocol in that V does not know

that P has presented her with a true test set. This is overcome as follows. For ease

of understanding, we first describe an interactive verification protocol, then modify it

for non-interactive use. The idea is to use a “cut and choose” procedure in which the

prover commits to a number of test sets and allows the verifier to choose and inspect

multiple test sets and make sure that they are each valid. Finally, the remaining test

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 57

sets are all used to complete the proof. An early, possibly the first, use of this idea

was presented by Rabin [126].

Tamper Proof Interactive Verification of x < 2t < N/2. First, the prover P

creates 2v, say for v = 20, test sets TS1, . . . ,TS2v, and presents those to V claiming

that they are all valid. Verifier V randomly selects v test sets TSi1 , . . . ,TSiv and

requests that P reveal all the encryptions by revealing all the corresponding help

values. V verifies all the encryptions and checks that every TSih is valid. If any

verification fails, the process is aborted. Otherwise, there now remain v unexamined

test sets, call them TSj1 , . . . ,TSjv . P now completes v repetitions of the above

Range Protocol, and establishes that x < 2t < N/2 by use of each of the above

remaining v test sets. If all verifications succeed then V accepts that indeed x < 2t <

N/2.

The only way that P can cheat is if all the above remaining v test sets are invalid,

which requires that initially the 2v test sets comprised v proper test sets and v

improper ones and, furthermore, when examining the test sets, V randomly chose

all the v proper ones. The probability of such an unlucky choice is
(
2v
v

)−1
. In our

example of v = 20, that probability is, by Sterling’s Theorem, about
√

20π
240 < 8

1012 .

Thus, we have a zero-knowledge protocol for V to verify interactively with P that

x < 2t < N/2, when given a ciphertext E(x, r) such that the inequality actually

holds.

Tamper Proof Non-Interactive Verification of x < 2t < N/2. We prefer to

adopt the following non-interactive method7 to establish the validity of test sets in

our scheme. Suppose that there are (as in Section 6.3.2) 2k range-of-values tests to

7Non-interactive zero knowledge was introduced in [97].

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 58

perform. Once the inputs to the computation are fixed, P publishes 4kv test sets.

(For expository convenience, we proceed below with our assumption of v = 20.)

When the computation is set up, the parties providing inputs and the EP are also

asked to commit to a random string, which will be revealed after the inputs are fixed

and after the EP commits to test sets. We recall from Section 2.1.3 that each party

providing input and the EP submit random strings that are combined into a random

data source σ.

The 80k test sets posted on the Bulletin Board are then segmented into 2k groups

of 40 test sets each, i.e., the first 40 test sets, the next 40 test sets, etc. The random

bit-string σ is then used, in combination with a fixed rule available to all participants

and posted at the start of the computation to the bulletin board, to select 20 test sets

from each group. This random selection replaces the random selection by the verifier

V employed in the interactive proof and allows the proof to work without interaction.

Bulk Verification of Test Sets

Because in practice a computation will require large numbers of test sets, we may

accelerate the non-interactive verification process by verifying all the test sets to be

used for a computation en masse, which requires a smaller percentage of the test sets

be revealed and thereby made unusable.

We have already shown how the EP can use a test set to prove both that for any

encrypted inputs E(x1) and E(x2), {x1, x2} ≤ 2t and x1 > x2, provided 2t < N/2.

However, the verifier V needs to know that the test set the EP uses to prove this is

correctly constructed in order to believe the proof.

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 59

In a traditional zero-knowledge proof (ZKP) setting, the EP would present V

with several test sets in a “cut-and-choose” protocol, and V would then select at

V ’s own discretion some of the test sets for the EP to reveal. In our setting, it is

impractical for the EP to perform real-time ZKP’s of input correctness to all of the

verifiers. Therefore, we employ a technique where instead of the verifier choosing the

test sets to reveal, we derive randomness from the test sets themselves and use that

randomness to define both which test sets will be revealed, and the order in which

other test sets will be used to verify the computation. This means that the EP can

publish a ZKP of the correctness of the test sets that anyone can verify. This can

even be done asynchronously, i.e., the test sets used to prove a computation correct

can be verified correct before the inputs are fixed.

All of the test sets must be of identical form for a computation on inputs of

maximum size 2t. Each test set will contain t encryptions of powers of 2: 20, . . . , 2t−1,

and t encryptions of 0. For visual comfort, we will use examples where t = 32,

accommodating inputs in a range of over 4 billion values. Because any input or

comparison of inputs can be verified using such a test set, we will prepare a single

very large collection of test sets that will be used for all comparisons in a computation.

We demonstrate with very high probability that for collections of sufficient size,

after revealing 20% of the collection, no more than 10% of the remaining unrevealed

test sets are improper. Assuming we draw from the remaining test sets uniformly

at random, the probability of a correctness proof of s succeeding, i.e., all s sets are

improper is < 10−s.

If we select and reveal 500 test sets uniformly at random in a collection of 2500,

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 60

the probability that all 500 will be correct and 200 (or more) of the remaining 2000

are incorrect is < 7 × 10−19. We can then prove an input or comparison between

inputs with probability of error < 10−10 by drawing 10 of the remaining 2000 test

sets uniformly at random and proving correctness on each of them.

We can achieve a reasonable “random” ordering from the test sets using the ran-

dom data string σ; let R be a predefined substring of σ of suitable length for this

purpose.

Step 1. The EP privately creates 2500 test sets TSi, i ∈ [0, 2499], each of

which is comprised of encryptions of 64 small values, {ci0, . . . , ci63} = {E(0) ×

32, E(20), . . . , E(231)}. The EP creates a secret random permutation πi(0 . . . 63) ∈

{0 . . . 63} for each TSi for each of the encrypted values in the test set and privately

stores the plaintexts, random help values r and exponentiations thereof rN (mod N2).

Step 2. The EP creates a permutation ρ(0 . . . 2499) ∈ {0 . . . 2499} of an ordering

of the 2500 test sets using the random data in R according to the protocol published

at the beginning of the computation.

Step 4. The EP reveals the first 500 test sets defined by the ordering ρ. Verifiers

will be given a reasonable specified time (depending on the size and complexity of the

computation) to verify the correctness of these test sets. If a test set is discovered to

be invalid, the EP creates 2500 new test sets and the protocol is begun anew at Step

1.

Step 5. If all 500 test sets are correct, then ρ (excluding the revealed test sets)

defines the random ordering of the unrevealed test sets that are used to prove the

correctness of the inputs and computations.

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 61

3.3 Securely Computing a Product of Random

Help Values

In our cryptographic combinatorial clock proxy auction in Chapter 7, we use

the following method for bidders to jointly compute the product of their random

help values used to encrypt their demands; this allows them to obtain the random

help value that will decrypt the encrypted aggregate demand. We recall that the

encrypted aggregate demand was created as the product of all bidders’ encrypted

demands. This protocol assumes nothing other than secure communications channels

among the bidders.

Before continuing, we remark that in the general case it may be viewed as superior

to have parties other than the parties providing the inputs compute the aggregate

values to prevent malicious parties from intentionally disrupting the protocol. This

might take the form of bidders secret-sharing their random help values with another

group of parties (such as those conducting a time-lapse cryptography service). We

also refer the reader to Damg̊ard and Jurik’s related threshold protocol for Paillier

encryption [51], invented for the similar task of computing sums of ballots in electronic

voting.

In the following protocol, the bidders first construct random shares of their random

help values (their inputs), distribute these shares among all the bidders, construct

intermediate factors from these shares, then multiply the factors together to that

yield the aggregate product without revealing anything about the initial inputs.

Formally, at the end of round t, for each good Gj, each bidder Bi breaks her

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 62

random help value for her encrypted demand for that good E(stij, r
t
ij) into n shares

rtij1, . . . , r
t
ijn whose product equals rtij((mod N)). The remaining operations in this

section are also assumed to be performed (mod N).

Each bidder chooses nonzero shares rtij2, . . . , r
t
ijn at random from ZN , and verifies

that each value is relatively prime to N . This is because in practice, the group

Z×N (the positive integers less than N relatively prime to N) is not known to the

bidder: knowing the membership of that group is equivalent to factoring N—thus

compromising the security of the cryptosystem. This poses no practical problem

because a bidder happening upon a value that is not relatively prime to N is as

improbable as the bidder factoring N by random guessing. This is a safe assumption

since we assume the cryptosystem is secure.

She then computes the final share rtij1 such that

rtij1 ≡
rtij∏n

k=2 r
t
ijk

((mod N)),

that is, so the product of all her shares equals her input. She then sends a vector

of shares of her encrypted demand for each good 〈rti1k, . . . , rtimk〉 to each bidder Bk

(including herself).

Now each bidder Bi has the following set of vectors: 〈rt11i, . . . , r
t
1mi〉, 〈rtn1i, . . . , r

t
nmi〉

She computes another vector whose elements are intermediate factors: the product of

the shares provided by the other bidders andm of her own: 〈r̂ti1 =
∏n

k=1 r
t
k1i, . . . , r̂

t
im =∏n

k=1 r
t
kmi〉. She then publishes 〈r̂ti1, . . . , r̂tim〉. These factors are indistinguishable from

a collection of random values.

Once all bidders have published these intermediate factors, every bidder computes

and publishes the vector containing the product of each of these factors for every

Chapter 3: Implementation of Secrecy-Preserving, Provably Correct Computation
using Paillier Encryption 63

good: 〈r̂t1 =
∏n

i=1 r̂
t
i1, . . . , r̂

t
m =

∏n
i=1 r̂

t
im〉 By the associative law of multiplication,

this vector now holds the product of all bidders’ random help values for each good:

r̂tj =
∏n

i=1 r
t
i1 (note rti1 6= r̂ti1.) These values can decrypt the sum of all bidders’

demands—the aggregate demand—without revealing anything about any particular

bidder’s demand.

Chapter 4

Time-Lapse Cryptography

The notion of “sending a secret message to the future” has been around for over

a decade. Despite this, no practical solution to this problem is in common use.

We name, construct and specify an implementation for a cryptographic primitive,

“Time-Lapse Cryptography”, with which a sender can encrypt a message so that it

is guaranteed to be revealed at an exact moment in the future, even if this revelation

turns out to be undesirable to the sender. Our solution combines new ideas with

Pedersen distributed key generation, Feldman verifiable threshold secret sharing, and

ElGamal encryption, all of which rest upon the single, broadly accepted Decisional

Diffie-Hellman assumption. We develop a Time-Lapse Cryptography Service (“the

Service”) based on a network of parties who jointly perform the service. The protocol

is practical and secure: at a given time T the Service publishes a public key so that

anyone can use it, even anonymously. Senders encrypt their messages with this public

key whose private key is not known to anyone – not even a trusted third party – until a

predefined and specific future time T+δ, at which point the private key is constructed

64

Chapter 4: Time-Lapse Cryptography 65

and published. At or after that time, anyone can decrypt the ciphertext using this

private key. The Service is envisioned as a public utility publishing a continuous

stream of encryption keys and subsequent corresponding time-lapse decryption keys.

We complement our theoretical foundation with descriptions of specific attacks and

defenses, and describe important applications of our service in sealed bid auctions,

insider stock sales, clinical trials, and electronic voting.

4.1 Introduction

First proposed by Timothy May [99], many attractive protocols have been pro-

posed to encrypt messages to send into the future, usually under a name like “timed-

release cryptography”. We coin the phrase “Time-Lapse Cryptography” to distinguish

protocols like ours, in which a fixed amount of time elapses between the ability to

send a message (encrypt) and retrieve it (decrypt), from other methods in which only

estimates of or lower bounds on elapsed time can be given.

4.1.1 Setting and Objectives

The setting for our service is as follows: At time T , Alice wishes to send Bob a

message m so that Bob may decrypt it only at or after a specified future time (T +δ).

This decryption will be possible without any further action by Alice.

Our “Time-Lapse Cryptography Service” (“the Service”) makes this possible. At

or before time T , the Service publishes a public key PK along with a statement that

its corresponding private key SK will be revealed at time T + δ. Alice uses PK to

encrypt m with random help r using a probabilistic encryption scheme and sends

Chapter 4: Time-Lapse Cryptography 66

the ciphertext c = EPK (m, r) to Bob. She is now committed to the content of the

message, although Bob cannot yet see it. At time (T + δ), the Service reconstructs

and publishes SK , which Bob obtains and uses to decrypt c and recover m. (Of

course, Alice, if she so wishes, can always reveal m early by sending Bob m and r.)

The primary objectives of our Service are as follows:

• The Service publishes a public key PK associated with a start time T , duration

δ. It includes authenticating information with which users can unequivocally

determine the authenticity of PK , T , and δ.

• The private key SK corresponding to PK remains completely secret until time

T + δ.

• At time1 T + δ the Service publishes the decryption key SK , along with au-

thenticating information that allows any user to unequivocally determine the

authenticity of SK .

• The Service is resistant to attacks that attempt to generate insecure public

keys, prevent the generation of public keys, reconstruct the private keys early,

or prevent accurate and timely reconstruction of private keys.

4.1.2 Summary of Contributions

We offer a complete description of a service and associated protocols that enable

Time-Lapse Cryptography as described in Section 4.1.1. The Service we describe is

1Plus a negligible delay ε for reconstruction described in Section 4.3.1.

Chapter 4: Time-Lapse Cryptography 67

simple and easy to understand by anyone with an elementary cryptography back-

ground.

It is anonymous: the Service knows nothing about who might be using it; this

increases privacy and eliminates any incentive for early private key reconstruction if

the Service were to know a key were used for an important purpose.

The Service allows the originator of a message complete control over when the re-

cipient may decrypt it, while guaranteeing that the recipient may decrypt the message

at a specific future time.

The protocols rely only on well-studied and widely accepted cryptographic prim-

itives: Pedersen distributed key generation (DKG) [122], Feldman verifiable secret

sharing (VSS) [61], and the ElGamal cryptosystem [58].2 Conveniently, the security

of all three of these primitives rests on the widely believed assumption of the hard-

ness of the Decisional Diffie-Hellman problem. This offers an elegant consistency and

simplicity to the security of our proposal.

Our protocols guard against such attacks as: the Service being able to prematurely

reveal the decryption key; the Service refusing to reconstruct the decryption key at

the required time; users of the Service getting inconsistent views of the stream of

public and private keys. We detail these and other attacks in Section 4.2.2. It will

be clear from our construction that all these attacks are rendered impossible under

generally accepted assumptions.

Our work also names and describes this protocol as a new cryptographic prim-

itive that may be useful in complex protocols. This primitive can be viewed as a

2As described later, we recommend the use of more recent variants of these DKG and VSS
protocols to eliminate specific attacks which may slightly bias the uniform distribution of the public
keys.

Chapter 4: Time-Lapse Cryptography 68

simple cryptographic commitment that is concealing and that cannot be repudiated.

Alice is not only bound to not change content of the message; unlike in some other

commitment schemes, such as those based on cryptographic hash functions, Alice

furthermore may not prevent the message from being read by refusing to reveal the

message (input to the hash function). When a binding commitment is required, Al-

ice’s digital signature on the ciphertext of a time-lapse encrypted message yields a

commitment binding Alice to the still-secret content of the message.

An additional contribution of our work is a detailed enough description that will

serve as a basis for an implementation of a time-lapse cryptography service, includ-

ing details of and defenses against real-world attacks. We plan to deploy such an

implementation in the coming months.

4.1.3 Extension to Paillier Keys

A useful extension to the present work is the use of distributed key generation

schemes for other cryptographic keys, most notably composites of two large primes

(“RSA keys”3) used in the Paillier homomorphic encryption scheme described in

Chapter 3. Boneh and Franklin first proposed an efficient distributed RSA key gen-

eration protocol [27]; Frankel et al. offer a more robust formulation in [63].

While we plan to extend our protocol to RSA/Paillier keys in future work, the

existence of these secure DKG protocols support a protocol in which TLC keys can be

used directly to encrypt inputs in our computation model. That said, the ElGamal

scheme we describe can be used even in a computation model employing Paillier-

3RSA encryption is the best-known scheme to assume the hardness of factoring such composites
for its security.

Chapter 4: Time-Lapse Cryptography 69

encrypted values by first encrypting the values with the Evaluator-Prover’s public

Paillier key, then encrypting those encryptions yet again using a time-lapse protocol.

4.1.4 Applications

While we do not attempt to anticipate all of the possible applications that may

be discovered for such a service, many useful applications already motivate its cre-

ation. We remark that time-lapse cryptography is not appropriate or sufficient for

some applications. Time-lapse crypto is not appropriate when the sender wishes to

revoke a message—indeed, nonrepudiation is an important property of our system.

Furthermore, our protocol makes no guarantees about the correctness, authenticity,

or suitability of the encryption of a particular message. Other protocols, such as

interactive zero-knowledge proofs, may complement time-lapse cryptography where

such requirements exist.

Bids in sealed-bid auctions. As mentioned in the preface, our original moti-

vation for this work came from our earliest joint work with David Parkes and Stuart

Shieber on cryptographic auctions [115]. In that auction protocol, we realized the

need for bidders to issue commitments to their bids that were secret to even the

auctioneer during the auction but could not be repudiated after the close of the auc-

tion. This prevents a type of abuse in which the auctioneer decrypts some bids and

instructs favored bidders to refuse to unlock their bids (for example, because they

offered far too much.)

Using our service, a bidder doubly encrypts her bids, first with the auctioneer’s

public key PK AU and then the public key PK S published by the time-lapse encryption

Chapter 4: Time-Lapse Cryptography 70

service S. This creates the ciphertext c = EPKS
(EPKAU

(Bid)), which is digitally

signed by the bidder and published on a bulletin board. Thus no one, including the

auctioneer, knows anything about her bid until either she reveals the random help

value she used in EPKS
() or the appropriate amount of time elapses. No action of any

bidder can prevent the auctioneer from decrypting her bid or the public from using

her encrypted bid EPKAU
(Bid)) in verification protocols after the time-lapse expires.

We make extensive use of time-lapse cryptography in the sealed-bid and continuous

double auction protocols throughout this dissertation.

Insider stock trades. An insider to a publicly-traded company could be legally

obligated to issue advance commitments to stock transactions to mitigate the po-

tential for abuse of inside information, as well as to protect the insider from false

accusations of misuse of inside information. In certain circumstances, it is desirable

that those commitments stay secret until shortly after the execution of the transaction

in question. Clearly, a commitment that does not guarantee nonrepudiation does not

suffice since an insider may publish in advance a concealed commitment to a trade

and then refuse to reveal it in the event the trade is no longer desirable to him. If an

insider encrypts his transaction in advance using a time-lapse cryptography service,

he can always be legally compelled to complete the transaction although the details

of the transaction remain secret until the appointed time. We suggest a protocol in

which insiders issue their advance directives daily (say, for various lengths of time in

advance) using the Service. These directives may be to buy, sell, or do nothing, which

are indistinguishable under the semantic security of ElGamal. In this way an insider

reveals no information to the market; while it is intuitive that disclosure of this in-

Chapter 4: Time-Lapse Cryptography 71

formation could hurt the insider, Fishman claims that insiders can exploit disclosure

rules due to the fact that “the market cannot observe whether an insider is trading on

private information or for personal portfolio reasons [62].” If, in fact, insiders always

trade for liquidity reasons and never (illegally) trade on private information, then dis-

closure of their trades should have no market impact (trades accompanied by credible

claims they are for liquidity reasons are known as “sunshine trades”; see see Admati

et al. [7]). Current SEC regulations require ex post disclosure for certain insiders, in

part due to the argument that advance disclosure reveals too much information. The

time-lapse cryptography Service answers this argument.

Data collected in clinical trials. In order to preserve the integrity of clinical

trials, the data collected during such a trial may be encrypted using a time-lapse

cryptography service. Because many of these trials are funded by companies who

stand to make or lose significant amounts of money depending on their outcome,

there is the potential for pressure to achieve a positive result. Use of our Service can

mitigate this bias without revealing confidential information about the study before

it is complete. Time-lapse cryptography prevents unethical scientists from cheating,

and benefits ethical scientists by protecting them against false claims of fraud or

pressure from their funders to achieve a particular outcome. Our protocol’s property

of early revelation also enables data collected in such trials to be revealed early in the

case of necessity, for example, in cases that a drug is so effective it would be immoral

not to offer it to the control group.

In one setting, scientists’ data collection process uses our Service to encrypt data

directly as they are being collected, for example, by diagnostic devices or computer

Chapter 4: Time-Lapse Cryptography 72

user interfaces. The scientists would not be able to see the data collected until the

conclusion of a phase of the study; this prevents observations of trends in early data

collection from affecting future data collection practices.

In another setting, clinical data would be provided to the scientists in raw form

immediately and to an auditing board encrypted via time-lapse cryptography. The

scientists would preserve the confidentiality of their data during the study to prevent

leaking of information by the auditing board, but would know that any tampering

with results would be discovered after the expiration of the time-lapse.

Electronic Voting. In some voting applications, the publication of intermedi-

ate results may be undesirable, as it could unduly influence other voters or election

officials. If votes are encrypted using time-lapse cryptography during an election,

results can be kept completely confidential until polls close, as well as being assuredly

revealed promptly when required.

4.1.5 Related Work

Solutions that do not have a fixed decryption time generally involve expensive

sequential computations (“time-lock puzzles”)4 to recover an initial message, ensur-

ing that the recipient cannot recover the data before some length of time, such as

those proposed by Rivest et al. [132]. Other solutions that do not guarantee fixed

time release are made possible by partial key escrow, first described by Bellare and

Goldwasser in [23].

A number of ideas inspiring our approach use known encryption techniques in

4Merkle [104] is generally credited with inventing these “puzzles”.

Chapter 4: Time-Lapse Cryptography 73

which the decryption key is kept secret until a fixed revelation time. Blake and

Chan [25] describe the “Timed Release Encryption Problem” as a sender encrypting

a message such that only a particular receiver can decrypt that message, and that

only after a specific release time has passed, as verified by a single trusted, third-party

time server. They solve this problem with a bilinear pairing on a Gap Diffie-Hellman

group, which requires reasonable cryptographic assumptions.

Blake and Chan’s solution is similar to those employed in identity-based cryp-

tography. Other work sharing this connection is the work by Cheon et al. [46] for-

malizing “secure timed-release public key encryption” and its equivalence to strongly

key-insulated public key encryption. Their solution, also based on a bilinear map,

requires a trusted “timed-release public server” that periodically publishes informa-

tion, based on a private secret, that enables decryption of previously encrypted texts.

Dodis and Yum [55] proposed a related protocol in which digital signatures become

verifiable only at a fixed future time t upon publication by a trusted third party of

“some trapdoor information associated with the time t.”

Our solution is also related to “token-controlled” public key encryption, first intro-

duced by Baek et al. in [17]. In token-controlled encryption, messages are encrypted

with both a public encryption key and a secret token, and can only be decrypted

with the private decryption key after the token is released. Time-lapse cryptography

and token-controlled encryption share many important applications, and in fact an

approach similar to time-lapse crypto could be used as a means of securely generating

and distributing the secret tokens with distributed trust.

Rivest et al. [132], in addition to time-lock puzzles, offer the first description

Chapter 4: Time-Lapse Cryptography 74

we know of the use of a secret decryption key for time-lapse cryptography; in their

scheme, a trusted third party creates and distributes public and private keys at ap-

propriate times. Our protocol is similar, but replaces their trusted third party with a

network of parties and an assumption that no fewer than a specified number of these

parties need to be trusted.

Di Crescenzo et al. [50] employ a trusted time server and a new primitive called

“conditional oblivious transfer” to send messages into the future where the server

never learns the sender’s identity. (It does learn the receiver’s identity.)

4.2 Preliminaries and Assumptions

Our service consists of the following major components:

• A network of n participating parties P1, . . . , Pn

• Distributed key generation of the public and private keys

• Verifiable threshold secret sharing of the private key

• Secure multi-party reconstruction of components of the private key

• Reconstruction and publication of the private key

• Secure public and private bulletin boards for posting of intermediate and final

results

The protocol is conducted by a “Time-Lapse Cryptography Service” (“the Ser-

vice”) consisting of n parties P1, . . . , Pn. The protocol allows for the possibility that

Chapter 4: Time-Lapse Cryptography 75

these parties may only be intermittently available. It also allows for the existence of

adversaries that may attempt to disrupt the protocol in various ways. Call the gener-

ation of a public key and the corresponding reconstruction of the private decryption

key an “action” of the Service. We assume a threshold t such that during any one

action, at most t − 1 parties may disrupt the protocol by revealing secret informa-

tion, submitting false information, or refusing to participate in the action. Any such

party will be informally referred to as being improper. We also assume that during

the entire action, at least t parties strictly follow the protocol. Such parties will be

informally referred to as being proper. This implies that n ≥ 2t− 1.

We postulate that for the ElGamal encryption, there is a publicly agreed-upon

cyclic group G and generator g ∈ G of prime order q. For this work we assume that

2q + 1 is a prime p, and that G is the set of quadratic residues modulo p; hence,

all elements of G other than {1,−1} have order q. This ensures semantic security

vis-à-vis quadratic residuosity.

We further assume that p and q are selected with appropriate attention to crypt-

analysis, so that the encryption scheme used is resistant to known attacks involving

vulnerabilities of particular “unsafe primes.” Without loss of generality, we will refer

to only one group G and public generator g for both ElGamal encryption and the

verification of shared secrets. Other groups G are possible, most notably elliptic curve

groups that offer improved efficiency.

Chapter 4: Time-Lapse Cryptography 76

4.2.1 Implementation Considerations

The Service will be implemented on a network of autonomous computers, each of

which represents a party Pi in our protocol. Each party follows the protocol described

below; it obtains the schedule of public key generation and private key reconstruction

from a set of manager computers we next describe.

For further efficiency, reliability and resistance to attacks, we employ a small

network M of K managers that act as a “managing team” for the Service. The role

of the managing team is to create the schedule of the public and corresponding private

keys to be produced by the Service; to maintain an internal bulletin board for use

by the parties comprising the Service; and to maintain a public bulletin board for

users of the Service. Integrity of these bulletin boards is achieved by each manager

maintaining his own copies of these two bulletin boards. Parties and users will look at

messages posted on each of the managers’ copies of the bulletin boards and determine

the correct values by a majority of postings.

The authoritative time for all actions shall come from an assumed universally

accessible clock (Section 4.2.4), and no party or manager shall rely on an internal

clock. All computers comprising the Service should be maintained by administrators

with experience in security considerations and running operating systems with up-to-

date security patches.

4.2.2 Resistance to Attacks

Up to t − 1 improper parties Pi may attack the Service in various ways. We

describe in detail our protocol’s resistance to the following attacks by these improper

Chapter 4: Time-Lapse Cryptography 77

parties at the appropriate phase of our protocol in Section 4.4.

• Sabotaging the joint construction of a valid, random PK

• Posting an incorrect value of PK

• Prematurely reconstructing SK (prior to time T + δ)

• Sabotaging the reconstruction of SK at time T + δ

In addition, an improper party can attack the distributed key generation algorithm

we describe by introducing a slight bias into the distribution of possible public keys.

We refer the reader to work by Gennaro et al. [68] for a complete description of this

attack and a modified algorithm that prevents it. Those implementing the protocol

may wish to periodically review cryptology research on distributed key generation in

order to guard against new attacks.

We also point out that improper parties or users of the Service may mount denial of

service attacks by attempting to overload the Service with internal or public bulletin

board postings or requests for keys. The managers of the Service can prevent such

attacks by appropriate rationing of postings and requests. Of course, there exist other

known possible denial of service attacks, and corresponding countermeasures, that are

outside the scope of this work.

4.2.3 Security Assumptions

The protocol employs the ElGamal encryption scheme [58]. ElGamal’s scheme is

semantically secure under chosen plaintext attacks (CPA): adversaries can encrypt as

many messages as they want and gain no information about the private key or any

Chapter 4: Time-Lapse Cryptography 78

other encrypted message. ElGamal is known to be trivially malleable and hence inse-

cure under chosen ciphertext attacks (CCA-1). We do not view this as a security risk,

because no ciphertexts can be decrypted with the private key before its reconstruc-

tion and publication, and it is expected at that time that all ciphertexts encrypted

with that key can be decoded by anyone. Malleability is not of concern in our pro-

tocol, because it can be avoided by signing encrypted messages via an appropriate,

nonmalleable digital signature scheme.

We assume that each party Pi uses a computer that accurately and secretly per-

forms the computations we describe and securely stores all Pi’s secret data. We

assume the parties back up data in some secure way for disaster recovery, though it

must be a method that makes stealing the secrets from backups at least as difficult

as compromising the hosts themselves.

4.2.4 Communications Assumptions

We assume that each party Pi can communicate privately and secretly with any

other party Pj. For example, each party may have a public/private cryptographic

key pair and all parties will know every other party’s public key.

In addition, our protocol will require posting of various intermediate steps and

results. The parties will employ the internal bulletin board provided by the managing

team for that purpose, as described in Section 4.2.1. Posting of any message m by a

party Pi will always be accompanied by Pi’s digital signature SIGN i(m).

We also assume a universally accessible and tamper-resistant clock, such as pro-

vided by the US NIST, that determines times for actions taken by the Service.

Chapter 4: Time-Lapse Cryptography 79

4.2.5 Summary of ElGamal Encryption

As described above, we assume a publicly known group G and generator thereof

g. The Service creates and publishes an ElGamal public key PK = gx as described

later; the private key is SK = x.

To encrypt a message m, Alice first obtains the public key PK = gx and creates

a random help value y ←R [1, q − 1]. She then computes the ciphertext c as a pair:

c = (gy (mod p),m · gxy (mod p)).

Alice then sends this pair c to Bob. By elementary algebra, Bob can recover m

when the Service publishes the private key x or Alice later sends him the random

help value y.

4.3 How the Service Works

For a less formal introduction to our protocol, we recall the reader to our high-level

overview in Section 4.1.1.

4.3.1 What the Service Does

The Service creates, publishes and maintains “time-lapse cryptographic key struc-

tures” that represent public time-lapse cryptography keys with a specific lifetime. The

Service may generate these structures on a periodic basis for public convenience; for

example, each day it might release keys with a lifetime of 1 week, or every 30 minutes

release keys with a lifetime of 2 hours. These schedules are posted by the managers

to the public bulletin board. In addition, the Service can accept requests from clients

Chapter 4: Time-Lapse Cryptography 80

to generate new keys with a particular lifetime; the managers accept these requests

and post them on the public bulletin board. The parties Pi construct the key struc-

tures according to the protocol, individually sign them, and publish the signed key

structures on the public bulletin board.

For each key required by convention or client request, the Service will generate

a key structure KID = (ID , TID , δID ,PK ID) consisting of a unique identifier ID , a

publication time TID , a “time-lapse” δID , and a public key PK ID . Each party Pi

publishes the key structure and signature thereof (KID , SIGN i(KID)) on the public

bulletin board.

At time (TID +δID) the Service will reconstruct and publish the associated private

key SK ID . The public key and private key for KID are related by the equation

PK ID ≡ gSK ID (mod p). It is assumed that the generator g is public. It is crucial

that the private key SK ID is known to no one, and never reconstructed, before the

appropriate time. As before, each party Pi publishes the reconstructed private key

and signature thereof (SK ID , SIGN i(SK ID)) on the public bulletin board.

There is a subtle issue in that reconstruction of the private key is not in fact

instantaneous. In practice, the Service will begin reconstruction of the private key

SK ID at time (TID +δID) and publish SK ID at time (TID +δID +ε) where ε is the time

required to reconstruct the private key. We assume that ε can be made negligible in

comparison to any time-lapse δID and will be on the order of a fraction of a second,

and therefore we generally assume ε = 0 for convenience. At the beginning of the

time lapse, we assume that the time TID is an upper bound on the time when the

public key is released, and that the Service may release a key required at time TID at

Chapter 4: Time-Lapse Cryptography 81

any time at or before TID .

4.3.2 What the Clients Do

When Alice wishes to send Bob a message m, she requests or selects an appropriate

key structure KID from the Service. Alice does not need to identify herself in any way

in order to do this; because the Service publishes the key structures on the public

bulletin board, Alice may use any mechanism for obtaining the public key structure,

e.g. a friend or an anonymous Web proxy server. Alice then verifies the published

digital signatures SIGN i(KID) match the published key structure KID for a minimum

of a threshold t parties Pi, and that these parties’ KID are identical. This guarantees

that PK ID is the public key generated by all the proper parties, and its corresponding

decryption key SK ID will be subsequently reconstructed and correctly posted by all

the proper parties.

To send the message, Alice encrypts m using ElGamal encryption; she creates a

random help value y ←R [1, q−1] and privately sends Bob the pair c = (gy (mod p),m ·

PK y
ID (mod p)) as well as the index ID of the key structure KID whose public key she

used. Alice may at this stage apply other appropriate cryptographic primitives, such

as a digital signature or message authentication code, depending on the application.

If Alice wishes to send a longer message than can be accommodated by the group

G, she may use our protocol to encrypt and send a secret key for a block cipher and

encrypt her actual message with that block cipher, or she may break her message up

into smaller chunks and encrypt each one.

Alice now has no ability to stop Bob from decrypting her message. Bob receives c

Chapter 4: Time-Lapse Cryptography 82

and stores it, then waits for Alice to send y or for time (TID + δID), whichever comes

first. If Alice sends him y, he decrypts m using gPK ID and y; if she does not, he

obtains PK ID from the Service and decrypts m using that.

4.4 Protocol for the Parties Pi in the Service

We use a standard distributed key generation (DKG) algorithm as described by

Pedersen [122], and employ Paul Feldman’s simple verifiable secret sharing (VSS)

scheme [61] to guarantee the authenticity of the generated keys.5

Throughout this section we shall designate a set of “qualified” parties Q which are

the parties that have complied completely with the protocol and not been disqualified

for any reason. It will turn out that for any action (i.e. the construction of an

encryption key PK and the subsequent reconstruction of the corresponding decryption

key SK), Q will include all proper parties. Consequently, |Q| ≥ t at all times.

4.4.1 Distributed key generation

Whenever a fixed “preparation interval” before a posted key generation time T is

reached, each party Pi begins the protocol. For example, the Service might schedule

a 1-week key to be released each day at 10:00 am Eastern Time; the parties begin

preparing this key a few minutes ahead of schedule so that it can be released at or

before 10 am. It will be seen later on that parties to the Service may be disqualified

during the creation phase of the public key by demonstrably violating the protocol.

5See Section 4.2.2 for a brief discussion of a subtle attack and a reference to a modified algorithm
defending against it.

Chapter 4: Time-Lapse Cryptography 83

We shall refer to the set of parties that were not disqualified as the set Q of “qualified

parties”. It will turn out that all proper parties (and possibly some improper parties)

Pi will be members of Q, and that every proper party will have the same view of

(value for) Q.

Each party Pi should choose a random xi ←R [1, q − 1]. This xi constitutes Pi’s

candidate component of the private key. It will turn out that the private key will

be x =
∑

i∈Q xi (mod q). Each Pi should then compute hi = gxi (mod p) and post

(hi, SIGN i(hi)) on the internal bulletin board. It will turn out that the public key

will be h =
∏

i∈Q hi (mod p). This hi is Pi’s candidate component of the public key.

Any party Pi who does not post hi is disqualified. Obviously, all proper parties will

have the same view of which parties were disqualified at this point.

4.4.2 Sharing the private key components

In order to ensure that the private key x corresponding to the public key h will

be correctly reconstructed at time T + δ, we have to protect against the possibility

that improper parties will refuse to reveal their component xi of the private key x or

reveal a false value instead of xi. This is achieved by use of verifiable threshold secret

sharing. During this phase, further parties Pi may be disqualified.

Each party Pi should create a random polynomial of degree k = t− 1 in Fq[z]:

fi(z) = xi + a1iz + a2iz
2 + . . .+ akiz

k

The secret key component is fi(0) = xi. Each party Pi should compute secret shares

xij = f(j) and verification commitments c0 = hi = gxi , c1 = ga1i , . . . , ck = gaki .

(All commitments ci are computed (mod p).) Each Pi then privately sends to all

Chapter 4: Time-Lapse Cryptography 84

Pj, j ∈ [1, n], (j, xij, SIGN i(j, xij)) and posts on the internal bulletin board signed

commitments (c0, SIGN i(c0)), . . . , (ck, SIGN i(ck)). Every Pj can now verify that xij

is a correct share by checking (∗):

(∗) gxij ≡ c0c
j
1c
j2

2 . . . cj
k

k (mod p)

(In our proposal, index j is the argument to the polynomial for all Pj.)

At this point an improper Pi can disrupt the process in one of two ways. First, he

may send Pj an incorrect share xij of his component xi. In this case, Pj posts the triple

(j, xij, SIGN i(j, xij)) on the internal bulletin board. The proper parties will check

whether xij is valid according to (∗). If it is an invalid share, then Pi is disqualified.

All parties can check whether xij is a valid share according to (∗). All proper parties

will arrive at the same conclusion as to whether Pi should be disqualified.

Second, Pi may have failed to send Pj the share xij. In this case Pj posts a signed

protest to the internal bulletin board. Pi is then required to reveal xij on the internal

bulletin board by posting a signed message (j, xij, SIGN i(j, xij)). Every party can

then verify the posted share xij according to (∗). If it is invalid, then Pi is disqualified.

Again, all proper parties will reach the same conclusion as to the disqualification of

Pi.

Putting all the above together, it is clear that all proper parties now have the

same view of the value Q, the set of qualified parties.

Despite the above posting of some shares, the secrecy of the private key is preserved

until time T +δ. Consider first shares xij of the private key component xi of a proper

party Pi. Only improper parties Pj will (unjustly) demand revelation of such shares.

Thus, just a total of at most t − 1 shares of xi will be posted. By the properties

Chapter 4: Time-Lapse Cryptography 85

of Shamir secret sharing [140], the component xi remains random to the improper

parties, and any observer of the internal bulletin board. Of course, the improper

parties can always circulate the shares they received anyway: an adversary gains

nothing by this revelation. Next, consider shares xij of an improper party Pi who

refuses to send Pj its share. The posting of Pi’s shares may reveal xi. However,

even if every improper Pi would broadcast its component xi of the private key x, the

private key remains secret until the components xj of the proper parties are revealed

and this happens only at time T + δ.

4.4.3 Publishing the public key

Now, each qualified party Pj holds the public key h, a component xj of the private

key x, and shares xij for all qualified parties Pi. These latter shares are kept for the

reconstruction of any missing components xi that are unavailable at the conclusion

of the protocol if Pi is unavailable or corrupted.

Every qualified party Pj, j ∈ Q forms h =
∏

i∈Q g
xi (mod p) and the key structure

KID = (ID ,PK ID = h, TID , δID). and posts (KID , SIGN j(KID)) on the internal and

public bulletin boards. A simple analysis shows that all the parties proper during

this action will post the same value for KID . The number of such proper parties

strictly exceeds n/2. Consequently, any user viewing the public bulletin board can

unambiguously extract a valid value for KID . The public key PK ID can now be used

for time-lapse encryption. Clearly, users can and should verify the digital signatures

on data posted on the public bulletin board.

Chapter 4: Time-Lapse Cryptography 86

4.4.4 Reconstructing and publishing the private key

At the appointed time (TID + δID) for the reconstruction of the private key SK ID ,

by definition, all parties proper for this action will correctly participate. Conse-

quently, at least t proper parties will do so. Parties consult the public bulletin board

maintained by the managers to obtain the list of reconstruction times, and begin the

reconstruction protocol when the time TID + δID for reconstructing SK ID is reached

on the universal clock.

First, every party Pi should publish its component xi of the private key x = SK ID

to the internal bulletin board. By definition, all proper parties do so. Note that even

after this is done, certain components xi previously provided by some Pi ∈ Q may be

missing if the party Pi in question is in fact improper. Every proper party then checks

that for every Pi ∈ Q, the posted xi satisfies the equation gxi ≡ hi (mod p), where

hi is as published in the previous step. For any Pi ∈ Q who has not posted xi or for

whom this verification fails, the parties need to reconstruct the correct xi. Obviously,

by definition, at least the parties proper within this action will do so. Note that the

parties Pi /∈ Q are of no interest since their candidate shares did not enter into the

construction of the private key x.

Now, every party Pj should post the xij it received from Pi during the distributed

key generation phase described in Section 4.4.2.

Note that at this point, every proper party Pj has either received a verified xij

from Pi which it posts, or in the “Sharing the Private Key” phase (Section 4.4.2)

of the protocol, demanded of Pi to post to the internal bulletin board the share xij.

Furthermore, that posted share was verified. This holds because otherwise Pi would

Chapter 4: Time-Lapse Cryptography 87

have been disqualified and not included in Q.

In summary, every proper Pj now sees on the internal bulletin board at least t

valid shares xij of Pi’s component xi of the private key x = SK ID . The party Pj uses

any t shares xij to reconstruct xi by polynomial interpolation.

After this is done, every proper party Pj has all the components xi for all the

parties Pi ∈ Q. Every such Pj now computes the sum SK ID = x =
∑

i xi (mod q)

and publishes (ID , SK ID , SIGN j(ID , SK ID)) to the public bulletin board. Now, there

will be strictly more than n/2 signed postings agreeing on the value of SK ID . Conse-

quently, any user looking up the value of SK ID can unequivocally determine it, even if

improper parties attempt to sabotage the reconstruction or the posting of the private

decryption key.

The Handbook of Applied Cryptography [102] offers a concise description of poly-

nomial interpolation in Section 12.71 in its description of Shamir’s (t, n) threshold

secret sharing scheme [140].

4.4.5 Proactive renewal of components and shares

Because there may be applications where a time-lapse cryptographic key has a

very long life (for example, a year or more), it may be prudent to periodically redis-

tribute the shares of each party’s component of the private key and shares thereof for

additional security. With such a system in place, an adversary has a limited time to

obtain the required number of secret components before the components are renewed

and past components are no longer useful. A protocol for doing so for ElGamal cryp-

tosystems is described by Herzberg et al. [74] and related work. This enhancement

Chapter 4: Time-Lapse Cryptography 88

can be directly combined with the protocols we advance in this chapter.

4.5 Conclusions and Future Work

We have developed a simple, practical and clear protocol that solves the prob-

lem of “sending a secret message into the future” and a Service that implements it.

Our formal treatment firmly establishes this idea as a useful cryptographic primitive;

previous work and our suggested applications demonstrate broad applicability. Our

work goes beyond a purely theoretical foundation and describes how our Service might

be implemented in practice with important practical details, including resistance to

specific attacks. We have isolated the fundamental elements of the “Time-Lapse

Cryptography” primitive in our construction. This allows for established primitives

to perform additional cryptographic functions. For example, the sender Alice of a

time-lapse encrypted secret to Bob can restrict subsequent revelation solely to Bob

by further encrypting the ciphertext again with Bob’s public key; she can achieve

non-malleability via a message authentication code; she can apply her digital signa-

ture to prove she sent the message, etc. Thus we have a clean, independent primitive

that is easy to understand and employ in more complex protocols.

Plans for future work include a complete implementation of our Service on a

distributed network of computers made available for public use. During this process

we will improve the details of our specification and deepen our understanding of the

practical security of the underlying protocols we employ.

We also anticipate that we and others will invent and describe novel applications of

this technology once it is publicly available. For example, the homomorphic properties

Chapter 4: Time-Lapse Cryptography 89

of ElGamal and Paillier encryption may be useful in a time-lapse setting. We have

also considered modified time-lapse cryptography protocols in which we retain the

properties of sender anonymity and guaranteed future decryption if the sender does

nothing, yet allow the sender to delay decryption until a later time upon request to

the Service. One application of this extension is to the encryption of a will, in which

the testator wishes to postpone its revelation until required.

Chapter 5

Introduction to Cryptographic

Auctions

In recent years, auctions and electronic marketplaces have been used to facilitate

trillions of dollars in trade in the world economy [59]. Auctions, in particular, are

often adopted to promote the ideal of competitive pricing and economic efficiency [100,

29]. Previously used for rare goods, or for time-sensitive goods (e.g., flowers and

fish), auctions can now be harnessed for all kinds of commercial transactions [105].

Auctions see especially wide use for the procurement of goods and services by firms

and governments [54, 76, 151]. We also note that more and more auctions of all kinds

are electronic, and operate over the Internet, which reduces the cost of participation

and enables worldwide competition.

Individual procurement events in the private sector, for instance, the procurement

of truckload services by Procter and Gamble, approach US $1 billion in transaction

value. To give a sense of the scale of procurement in the public sector, Asker and

90

Chapter 5: Introduction to Cryptographic Auctions 91

Cantillon [13] estimate public procurement in the European Union at about 16%

of its GDP; by this estimate public procurement comprised $2 trillion of trade in

2006 [152]. Governments worldwide also use auctions to allocate property rights,

such as auctions for wireless spectrum [101] (with worldwide proceeds exceeding US

$100 billion by the end of 2001 [105]). In a typical week in February, 2006, the

U.S. treasury sells more than US $25 billion in three-month treasury bills through

a sealed-bid auction.1 Sponsored search auctions drive over $1 billion in revenue to

Google each quarter [89], and the eBay marketplace reported a record US $44.3 billion

volume in the 2005 calendar year, representing a 30% increase over 2004.

Why are auctions so popular? Trepte [151] emphasizes the role auctions play in

promoting competition. Competition, in turn, provides incentives for bidders to act

as ‘honest brokers’ of information, so that in the context of procurement the winner

is the most technically efficient firm. Yet, auctions are only effective in promoting

competition if they are trustworthy, with all bids treated fairly and equally and all

bids are seen to be treated in this way [151]. In discussing the role of regulation in

the context of procurement auctions, Trepte emphasizes the importance of being able

to commit to an objective process, so that

“... the buyer binds himself in such a way that all bidders know that he
will not, indeed cannot, change his procedures after observing the bids,
even though it may be in his interest to do so.”

Schelling [139] had already noted “... it is a paradox that the power to constrain

an adversary may depend on the power to bind oneself.” In the context of auctions

the point is a simple one: the firm engaged in procurement would like to commit not

1Generally sold in uniform-price auctions. See http://www.publicdebt.treas.gov

Chapter 5: Introduction to Cryptographic Auctions 92

to advantage one firm over another to promote fair competition.

5.1 Motivation: The Problem of Corruption

(We thank David Parkes for his extensive contributions to this section.)

Auctions are not immune to corruption and this commitment to a correct process

can be hard to achieve. By corruption, we mean the auctioneer breaking the rules of

the auction in favor of some bidder(s), typically in exchange for bribes [90]. In its

procurement guidelines, The World Bank defines a corrupt practice as

“... the offering, giving, receiving, or soliciting, directly or indirectly,
of any thing of value to influence the action of a public official in the
procurement process or in contract execution.”

When an auction is used for the procurement process then the auctioneer is the

person of trust. The possibility of corruption exists in an auction whenever the

auctioneer is not the owner of the goods for sale in the auction, or the owner of the

firm that is seeking to procure goods [90]. For instance, there is a possible conflict

of interest when the auction is operated by an individual within a large firm, or by a

public servant within a government organization [88].

As evidence of the extent of concern about corruption in competitive processes,

the main goal of governments and international bodies such as the World Bank, in

regulating public procurement auctions, is to “curb the discretion” of the buyer [151].

The World Bank recently estimated the volume of bribes exchanging hands for public

sector procurement alone to be roughly US$200 billion per year, with the annual

volume of procurement projects ‘tainted’ by bribes close to US$1.5 trillion [149], and

has made the fight against corruption a top priority [47].

Chapter 5: Introduction to Cryptographic Auctions 93

When price is the only factor in determining the winner of an auction, then many

authors argue that using an open and verifiable, sealed-bid auction should help to

prevent corruption [151, 134, 91]. In a sealed bid auction, bids are committed during

the bidding process and then opened simultaneously by the auctioneer and the rules

correctly followed to determine the winner (and price). However, it seems difficult in

practice to ensure a fully trustworthy sealed-bid auction. The kinds of manipulations

that are possible in a first-price sealed-bid auction include the following:

• The auctioneer allows a favored bidder to improve on the bid of the winning

bidder (possibly the same favored bidder) by revealing information about other

submitted bids before the auction closes [91], or by inserting a bid for the favored

bidder after reviewing the submitted bids. This allows the favored bidder to

win at the best possible price.

• A favored winning or second-place bidder can be invited to change a bid after

the auction has closed in order to obtain a better price or win the auction,

respectively [103].

• Bribes can can be received before bids are made, in exchange for a promise to

modify the bidder’s bid to the bidder’s advantage should that bidder be the

winner [83].

Each of these manipulations relies on the ability to circumvent the intended sealed-

bid auction process. The first method relies on learning information before the close

of the auction, or being able to insert or modify a bid after some bidders have already

bid. The second and third methods rely on being able to change, or cancel, bids after

Chapter 5: Introduction to Cryptographic Auctions 94

the close of the auction.

More than ethically troubling, corruption is undesirable because it can lead to

both an efficiency loss (e.g., with the wrong supplier winning a contract) and also a

distributional effect (e.g., with the government paying too much for a contract) [11,

47, 83, 103, 43, 38, 39]. Corruption is a widespread, real-world problem, as illustrated

by the following examples:

• A 1988 U.S. investigation, Operation Ill Wind, into defense procurement fraud

resulted in the conviction of 46 individuals and 6 defense corporations, with

fines and penalties totaling US$190 million [38].

• The construction of subways in Italy cost US$227 million per kilometer in 1991;

after anti-corruption actions the cost fell to US$97 million [38].

• Germany’s auditor estimated the government suffered costs resulting from cor-

ruption in the construction field of about DM 5 billion a year [38].

• Mafia families in New York City would sometimes pay bribes for an “under-

taker’s look” at the bids of other bidders before making their own bids when

bidding for waste-disposal contracts [83].

• A Covington, KY developer was shown the bids of two competing developers

for a US$37 million courthouse construction project [83].

• In 1999, the winner of an auction for the construction of a new metropolitan

airport in the Berlin area changed its bid after it acquired the application doc-

uments of the rival bidder [90].

Chapter 5: Introduction to Cryptographic Auctions 95

• In 1996, Siemens was barred from bidding in public procurement auctions in

Singapore for five years because they bribed the chief executive of Singapore’s

public utility corporation in exchange for information about rival bids [90].

• As many as 40–50 “information brokers” (buying information from oil compa-

nies and selling to suppliers) may be actively working at any given point of

time in the North Sea oil industry, with corruption and bid rigging affecting

upwards of 15% of contracts (an economic value of GB£1.75 billion per year in

1995) [10].

Driving home the difficulty of implementing truly sealed-bid auction processes,

Ingraham [75] provides a remarkable account of corruption in New York City School

Construction Authority (SCA) auctions, an approximately US$1 billion per year mar-

ket. Two SCA employees and eleven individuals within seven contracting firms were

implicated in the corruption. A dishonest contractor would submit a bid well be-

low the projected price of the contract, and during the public announcements of the

bids, the auctioneer would save the favored bid until the other bids were opened and

announced. Knowing the current low bid, the dishonest auctioneer would then read

aloud a false bid just below the current low bid instead of the artificial bid actually

submitted. The bid form would subsequently be modified with correction fluid.

Second-price auctions are robust against all three of these manipulations [103]. In

a second-price (Vickrey) auction the good is sold to the highest bidder for the second

highest bid price [153] (respectively, bought from the lowest bidder for the second

lowest bid price in a reverse auction such as a procurement auction). In a second-

price auction no single bidder can be given a special advantage because all bidders

Chapter 5: Introduction to Cryptographic Auctions 96

have the same opportunity to match other bids via the auction rules. However other

(more complicated) manipulations are possible; e.g., the auctioneer can collude with

the two highest bidders, with the second highest bidder invited to withdraw her bid

upon the auction closing so that the highest bidder wins the auction but has to pay

only the third highest bid [91].2

Moreover, without additional assurances, second-price auctions are vulnerable to

a new kind of manipulation: when selling an item, an agent acting for the seller can

insert a shill bid below the highest bid after the close of an auction and drive up

revenue.3

An almost universal conclusion of the published research in the field is that there is

a need for verifiably correct and trustworthy first-price sealed-bid auctions [91, 151, 29],

with emphasis placed on the need for the process to be open and transparent. It is

apparent from the above examples that standard solutions, which rely on a well-

defined and open process, with bids sealed until opened in public, and the use of

regulations and penalties, often remain inadequate. Indeed, Andvig [10] makes the

interesting point that even when an organization is successful in restricting access to

information before an auction closes, then, paradoxically, there are fewer people that

2Moldovanu and Tietzel [106] provide a remarkable account of a failed attempt by the German
author Goethe (1749–1832) to use a second-price auction to sell a manuscript. Goethe set a reser-
vation price p and instructed his agent to collect a bid b from Vieweg (1761–1835), the propsective
publisher, and to sell at p if and only if b ≥ p. The story is relevant here because his agent and
legal counsel Böttiger, deviated from the rules and revealed to Vieweg the exact amount p. Vieweg
subsequently bid p, and Goethe accepted the offer but without realizing his desire, which was to
learn about his true “worth” by running this truthful auction.

3Seeing problems with implementing truly sealed-bid auctions, one can also consider the role of
open auctions in which bids are “broadcast” to all participants; traditionally, this would occur with
all bidders in the same room but today an open auction can be conducted over the Internet. Although
open auctions may provide transparency and reduce opportunities for manipulation, Lengwiler and
Wolfstatter [91] conclude the open auctions may not be desirable for the fear of bidder collusion.
Other authors argue that open auctions are often unsuitable for procurement, and other complex
environments, because bidders need time to formulate technical proposals [13, 90].

Chapter 5: Introduction to Cryptographic Auctions 97

know enough to “police” the process and this can lead in turn to more opportunities

for corruption.

5.2 Our Solutions

Our first solution, due to Parkes, Rabin, Shieber, and Thorpe, ensures the correct-

ness of a sealed-bid auction for any number of identical goods and allows verifiability

of correctness by any third party, without revelation of the bids received. The solution

includes all popular variants of auction pricing rules, including first-price, second-price

and generalized Vickrey auction (GVA) payments. Correctness is ensured by provid-

ing complete secrecy of bids until the close of the auction (including, even, from

the auctioneer), assured revelation of bids to the auctioneer upon auction closing,

and verification that the outcome (or the part of the outcome that the auctioneer

promises to verify) is correct through the use of cryptographic methods. None of the

aforementioned manipulations of first-price or second-price auctions is possible in our

scheme.

Our second solution, a cryptographic combinatorial clock-proxy (CCCP) auction,

due to Parkes, Thorpe, and Rabin, ensures the correctness of a clock-proxy auction

advanced by Ausubel et al. in [15]. Far more general than the first solution, this

computational mechanism provides for winner determination and price discovery in

a combinatorial auction setting, where bidders may bid on various bundles of one

or more distinct goods for sale. Cryptography provides both secrecy and provable

correctness: during the auction protocol, not even the auctioneer learns any private

information until the bids are closed and he can no longer influence the outcome;

Chapter 5: Introduction to Cryptographic Auctions 98

after the protocol, the auctioneer must prove his actions correct using encrypted

information collected from bidders during the initial phases of the auction.

An important factor in the practicality of cryptographic methods for providing

trusted auctions is having a clearly understandable and convincing solution that is

accessible to knowledgable people who are nevertheless not experts on the intricacies

of cryptography and general zero knowledge proofs. In this regard, we assume a

public key infrastructure under which all parties possess public/secret key pairs for

digital signatures and private communications and illustrate our protocols with Pascal

Paillier’s homomorphic encryption [114] scheme, which provides verifiable correctness

and trustworthiness without revealing information about the bids. This model and

a Paillier-based implementation of it are respectively described in Chapters 2 and 3.

Our cryptographic proofs are based on universally accepted assumptions.

We focus on two additional aspects of practicality. First, the auction will clear in

reasonable time and with reasonable communication requirements using commodity

hardware, even for a large number of bidders. Second, the computational architec-

ture must be consistent with practical business models. To achieve this we focus

on proofs of correctness rather than secure computation. Unlike previous solutions,

e.g., Naor et al. [110], and Suzuki and Yokoo [158] (see also the literature review

in Section 6.1.1), we require neither the existence of multiple auctioneers nor that

the auctioneers and/or bidders collaborate to conduct the auction. We believe that

a model involving a single auctioneer that is solely responsible for conducting the

auction and independent verification of the auction by third parties is more realistic

from a business perspective.

Chapter 5: Introduction to Cryptographic Auctions 99

We have carefully examined the role of all parties in cryptographic auctions for-

malized their roles in a cryptographically sound protocols. In addition to a seller,

multiple bidders, and an auctioneer, our models employ two commercial entities: no-

taries protect bidders by acting as witnesses to the submission of bids—primarily to

prevent the auctioneer from ignoring or modifying submitted bids, and a Time-Lapse

Cryptography Service (Chapter 4) provides a cryptographic commitment protocol that

prevents bidders from refusing to reveal commitments they make during the auction

protocol. The Time-Lapse Cryptography (TLC) Service is used to keep bids secret

before the close of the auction. The TLC service publishes a public key before the

auction begins, and delays the creation of the corresponding secret decryption key

until after the close of the auction.

Whereas earlier methods required the auction to be distributed across the com-

puters of multiple, independent auction operators, or required complex interactive

protocols involving computation by bidders and the auctioneer, our solution has a

simple, non-interactive, and familar computational architecture. Bidders prepare

commitments to their bids and send the commitments to the auctioneer and any wit-

nessing notaries. The auctioneer opens the commitments (but can do so only after

the auction closes), determines the outcome of the auction and publishes proofs of its

correctness. In return for this simplicity, we do not achieve all of the same privacy

guarantees as earlier solutions [86, 110, 72, 94].

We choose not to use cryptography to completely protect against the revelation

of bid information by the auctioneer after the close of the auction. We consider this

kind of manipulation to be less dangerous because it does not facilitate corruption

Chapter 5: Introduction to Cryptographic Auctions 100

during the auction. No information can be leaked by any party before the auction

closes, and after the auction closes no new bids can be introduced and no bids can be

altered. We also note that even when bid values stay concealed from the auctioneer

at great process complexity cost, a determined adversary can try to spy on a rival and

obtain information on her bid using corrupt insiders. Thus, an absolute guarantee of

secrecy is never attainable in real life.

While an important area of research, the cryptographic protocols currently avail-

able for enforcing end-to-end secrecy are, in our view, too cumbersome and challeng-

ing to understand to find wide business applicability. In particular, existing solutions

maintain complete secrecy of private data by sharing these data among multiple

parties who cooperate throughout the computation, and are trusted not to collude.

When these multiple parties are the bidders in an auction, the protocol becomes un-

wieldy; when they comprise a distributed auctioneer, that distributed auctioneer is

functionally a trusted third party. Instead of attempting to achieve perfect security

through cryptographic means, we appeal to hardware and systems solutions to pre-

vent ex post information leakage and employ cryptography to preserve secrecy before

the computation is fixed and prove its output correct.

Complete post auction-closing secrecy can be enforced, in cases where it is deemed

essential, by appeal to specialized hardware and monitoring software. A Trusted

Computing infrastructure, based on secure hardware and digitally signed software

(audited by third parties for correctness), installed in physically secure locations with

ongoing monitoring and auditing, can prevent the leaking of information with high

assurance [142]. In fact, with such deliberately opaque servers it is of the utmost

Chapter 5: Introduction to Cryptographic Auctions 101

import that an auction participant can independently verify the correctness of the

outcome of an auction, and not rely on blind trust that the servers’ programming was

free of any bugs that might yield incorrect output. Thus, such technological methods

to eliminate secrecy leaks are very well complemented by our methods for verifiable

correctness.

While providing the secrecy of bid information is our primary focus, privacy of

bidder identities can be accomplished by other business or cryptographic protocols.

For example, bidders may use legal proxies to place bids on their behalf to hide

their identity, or the auctioneer may employ a cut-and-choose mixing technique (as

described in Section 7.2.1) so that the mapping of winners to bidders is revealed only

where necessary by revealing the random re-encryption factors.4

To demonstrate the scalability of this technology, we conducted empirical timing

tests (Section 6.5) using commodity computing hardware common in 2006. We show

that for acceptable strength of the cryptographic security key, single or multi-item

auctions with 100 bidders can be prepared in around two hours of computation and

verified in less than half an hour, all on a modest (2.8 GHz Pentium 4) PC. We

also show that the computations scale linearly with the number of bidders. Because

our method is easily parallelizable, it is possible to accommodate auctions with even

tens of thousands of bidders in at most a day of computation on a 64-node network

of commodity PC’s. Over a decade ago, Franklin and Reiter [65] also found that

conducting cryptographic sealed-bid auctions was possible on commodity computing

hardware of the day, although their protocol differs substantially from our own.

4This point becomes important when proving the outcome of the auction; in the protocols we
describe, we do not attempt to keep secret that, say, bidder B3 was the winner, because we assume
B3’s true identity is already private if that is necessary.

Chapter 5: Introduction to Cryptographic Auctions 102

5.3 Additional Benefits: Better Robustness to

Collusion

Providing for verifiable and trustworthy auctions without revealing information

about bids brings another indirect benefit. A major concern in the use of auctions in

practice is that of bidder collusion [136]. By collusion we mean bidders coordinating

in a bidding ring, with the intention to manipulate the final price. The basic idea is

to bid jointly in order to limit competition, with the proceeds being shared among

members of the ring.5

Collusion between bidders is an especially difficult problem to address because it

necessarily exploits information asymmetries between the auctioneer and the bidders,

and is therefore hard to prevent and detect [151]. Unlike the recommendations of

the World Bank and other national and international agencies, our technology allows

for auction verification without revealing information about bids, and this provides

further robustness against bidding rings.

As evidence of the problems caused by bidder collusion, consider the following

examples in first-price sealed-bid auctions:

• Multiple firms were convicted of participating in bidding rings in auctions for

school milk contracts in Florida and Texas in the 1970s and 1980s [123].

• Following allegations of bidder collusion at Forest Service timber sales in the

Pacific Northwest in the 1970s, an empirical study finds evidence for collusion

5Porter and Zona [125] note that joint bidding is typically illegal unless the specified work could
not be performed without the combined capabilities of the participating firms or if the bidders could
not be competitive individually.

Chapter 5: Introduction to Cryptographic Auctions 103

in auctions conducted between 1975 and 1981 [19].

• In 1984, one of the five biggest highway construction firms in New York state

was convicted in federal court of rigging bids in auctions for state highway

contracts on Long Island in the early 1980s. Four other firms were listed as

unindicted co-conspirators [125].

First-price auctions are preferred over second-price auctions because they are less

susceptible to collusion.6 In first-price auctions, bidding rings are only sustained by

the threat of punishment because members have to submit bids lower than their true

value. Bidding rings are unstable without the ability to identify a bidder that deviates

and without repeated interaction [133, 71, 75]. Indeed, Ashenfelter [12] suggests that

auction houses such as Sotheby’s and Christie’s keep the identity of buyers secret to

combat rings so that buyers can break from a ring and buy anonymously.

Yet, a common feature in every one of the aforementioned real-world auctions

was that the auction was concluded with the public opening of bids. As discussed by

Porter and Zona [125], this has an unfortunate side effect:

“The... policy of publicly announcing the bids and the identity of bid-
ders allows cartel members to detect deviations from cartel agreements.
Undercutting or cheating would not go unnoticed.”

Indeed, the World Bank’s own official Procurement Guidelines [149] state that the

World Bank

“Bids shall be opened in public; bidders or their representatives shall be
allowed to be present. . . The name of the bidder and total amount of each

6In a second-price auction the collusive strategy is for the member of the ring with the highest
value to bid high and the rest of the members to bid low, or not at all. This is stable because no
member of the ring can do better through a unilateral deviation from the collusive agreement [133].

Chapter 5: Introduction to Cryptographic Auctions 104

bid, and of any alternative bids if they have been requested or permitted,
shall be read aloud (and posted online when electronic bidding is used). . . ”

Why, one might ask, is bid information made public when it can enable bidding

rings to sustain themselves through credible threats of punishment? Trepte [151]

makes the reason very clear. While noting the value of “restricting the detail and

content of post-award information,” he adds that ”the existence of such information

is essential if disappointed buyers are to be able to challenge unfair or unlawful pro-

curement procedures.” For this reason, we argue that our solution may have important

ramifications in terms of reducing opportunities for bidder collusion while addressing

corruption. Our auction protocol provides a balance of transparency, trustworthi-

ness and secrecy that reduces the potential for corruption while improving market

efficiency.

A related point can be made in the context of using our techniques to verify the

correctness of second-price auctions. The main effect, of course, is that we enable

a trustworthy and verifiabily-correct auction process. This prevents, in particular,

any concern about the manipulation through shill bidding discussed earlier. But

there is also a second benefit, that comes from not needing to reveal bid values in

establishing that the auction process was correctly conducted. Second-price auctions

support truthful bidding in a dominant strategy equilibrium, usefully simplifying the

bidding process for participants. On the other hand, this bidding strategy can have a

number of unpleasant side effects when bids are revealed after the auction closes. In

the context of procurement, a supplier will be reluctant to reveal her true cost basis

to a competitor [135]. Similarly, when purchasing government assets such as wireless

spectrum, a bidder will be recluctant to reveal her true value for acquiring assets

Chapter 5: Introduction to Cryptographic Auctions 105

to competitors. Governments may also be reluctant to reveal to the public that the

value of the highest bid was significantly more than the revenue collected.7

7For example, when the New Zealand government conducted a Vickrey auction for telecommu-
nications licenses, it was revealed after the fact that the winner had been willing to pay much
more [101].

Chapter 6

Practical, Secrecy-Preserving,

Provably Correct Sealed Bid

Auctions

6.1 Introduction

In this chapter, we present a practical protocol for sealed-bid auctions that pre-

vents the manipulations described in Chapter 5. An important factor in its practi-

cality is having a clearly understandable and convincing solution accessible to knowl-

edgable people who are nevertheless not experts on the intricacies of cryptography

and general zero knowledge proofs. To that end, we have carefully examined the role

of all parties in a sealed-bid auction and formalized their role in a cryptographically

sound protocol.

We deal with the real-world issues that arise in the actual implementation of such a

106

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 107

system. We define comprehensive security goals for our auctions. All bid information

must be secret from everyone, even the auctioneer, until the auction closes. After the

auction closes and results are computed and announced, the only information that

is revealed either states the outcome as defined in the auction rules, or information

implied by that outcome.1 At the same time, a proof of correctness of the results is

published by the auctioneer, allowing anyone to individually verify that correctness.

We also enforce that the auctioneer include all properly submitted bids. Finally,

even though bids are submitted by participants in concealed form, our system enforces

revelation of bids to the auctioneer after the closing time of the auction. To achieve

our goals we rely only on well known, universally accepted cryptographic assumptions

for security before the auction’s close, and explicitly do not trust the auctioneer or

any other party during this phase of the auction. In addition to a seller, multiple bid-

ders, and an auctioneer, our model employs two commercial entities: notaries protect

bidders by acting as witnesses to the submission of bids, and a Time-Lapse Cryp-

tography Service [129] provides a cryptographic commitment protocol that prevents

bidders from refusing to reveal commitments they make during the auction protocol.

We assume only commodity computing resources and a public key infrastructure

under which the auctioneer, seller, bidders, and notaries all possess public/secret key

pairs for digital signatures. Pascal Paillier’s homomorphic encryption [114] scheme

is used to provide verifiable correctness and trustworthiness without revealing infor-

mation about the bids. The Time-Lapse Cryptography (TLC) Service is used to

keep bids secret before the close of the auction. The TLC service publishes a public

1For instance, in a second-price single-item auction, the second highest bid price is revealed
because this is implied by the outcome.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 108

key before the auction begins, and delays the creation of the corresponding secret

decryption key until after the close of the auction.

While secrecy of bid information is our primary focus, privacy of bidder identities

is not a goal of our work and can be accomplished by other business or cryptographic

protocols. For example, bidders may use legal proxies to place bids on their behalf

to hide their identity, or the auctioneer may employ a cut-and-choose re-encryption

technique as described in Section 6.2.4 so that the mapping of winners to bidders is

revealed only where necessary by revealing the random re-encryption factors. This

point becomes important when proving the outcome of the auction; in the protocols

we describe, we do not attempt to keep secret that, say, bidder B3 was the winner,

because we assume B3’s true identity is already private if that is necessary.

We focus on two aspects of practicality. First, the auction must clear in reasonable

time and with reasonable communication requirements, even for a large number of

bidders. Second, the computational architecture must be consistent with practical

business models. To achieve this we focus on proofs of correctness rather than secure

computation. Unlike previous solutions, e.g., Naor et al. [110], we require neither

the existence of multiple auctioneers nor that the auctioneers or bidders collaborate

to conduct the auction. We believe that a model involving a single auctioneer that

is solely responsible for conducting the auction and independent verification of the

auction by third parties is more realistic from a business perspective.

We have chosen not to explicitly protect against an auctioneer revealing bid values

and quantities after an auction has closed and the outcome has been announced; in

Section 5.2, we appeal to Trusted Computing and similar systems technologies to

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 109

protect against such attacks.

To demonstrate the scalability of our technology, we have conducted preliminary

timing tests (Section 6.5). We show that for acceptable strength of the cryptographic

security key, single or multi-item auctions with 100 bidders can be prepared in around

two hours of computation and verified in less than half an hour, all on a standard

(2.8 GHz Pentium 4) PC. We also show that the computations scale linearly with

the number of bidders. Because our method is easily parallelizable, it is possible to

accommodate auctions with even tens of thousands of bidders in at most a day of

computation on a 64-node network of commodity PC’s.

6.1.1 Related Work

Much of the previous work on the use of cryptography for conducting verifiably

correct and trustworthy auctions has focused on the goal of complete privacy, where

not even the auctioneer learns information about bids after the close of the auction [86,

110, 72]; see Brandt [32] for a recent discussion. This is typically achieved through

assuming two or more trusted third parties, either through numerous auctioneers [72]

or with asymmetric models in which the commerical entity of an auction issuer is

assumed in addition to the auctioneer [110, 94]. Some protocols achieve complete

privacy through bidder-resolved multi-party computation [32]. In comparison, we

settle for verifiable correctness and trustworthiness in combination with complete

secrecy to all parties except the auctioneer; see also Franklin and Reiter [65], which

employs “verifiable signature sharing”, requires an electronic cash infrastructure, and

distributes this trust in the auctioneer among a set of servers. As discussed above, the

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 110

auctioneer in our solution cannot learn any information about bids until the auction

has closed. In return we achieve a non-interactive2 protocol that is especially simple

from a bidder’s perspective.

In justifying the focus on computationally secure methods to provide correct and

verifiable auctions, it is interesting to note that achieving information-theoretic guar-

antees on complete privacy is impossible in a single-item Vickrey auction [34], at least

when it is desired that the payment is only revealed to the winning agent. (One can-

not prove to another party that the winner’s payment was correct without revealing

information beyond that implied by the fact that this bidder had the highest bid.)

For trusted third parties we require only notaries, who provide a lightweight “wit-

ness” service and are independent business entities that already exist in practice [145].

The level of trust in them is quite low, as they never possess any nonpublic infor-

mation. The Time-Lapse Cryptography Service functions as a trusted third party,

although Rabin and Thorpe [129] describe a TLC service that distributes trust among

many parties using secret sharing, so that there is no single completely trusted party

and reconstruction of the decryption key is robust to node failures.

In addition to providing business realism (also see Lipmaa et al. [94] for a cri-

tique of earlier methods), we choose to adopt standard methods from homomorphic

encryption and eschew more complex cryptographic ideas such as secure multi-party

computation, obfuscation of circuits, and oblivious transfer. As Bradford et al. [31]

argue, many such complex protocols, particularly those requiring the ongoing par-

2Interactive cryptographic auction protocols require the active participation of bidders through-
out the auction process in order to obtain the auction results, generally via multi-party computation
or related methods. Non-interactive protocols such as ours require no such bidder participation; sub-
mission of bids is the only required bidder activity, and bidders’ verifications of auction correctness
can be performed with no additional interaction with the auctioneer.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 111

ticipation of bidders, suffer from “protocol completion incentive problems”, in which

bidders who know they have lost or change their minds can disrupt the protocol and

prevent the completion of an auction. We intentionally avoid such problems by having

a single partially trusted auctioneer compute the outcome.

We share with Lipmaa et al. [94] (see also [6, 21, 32, 147, 45]) the use of homomor-

phic encryption, but seek a simpler solution through the use of a single auctioneer in

place of the two server model adopted in their work. In their protocol, the seller and

an auction authority, who are trusted not to collude, work interactively to generate

zero-knowledge proofs of correctness. Cachin [41] proposes a technique based on ho-

momorphic encryption in which a semi-trusted single auctioneer provides a means for

two bidders to determine whose bid is higher in zero knowledge (in fact, not even the

auctioneer learns the bids). However, his extended protocol for cryptographic auction

similarly requires two auction servers which are assumed not to collude. Nakanishi

et al. [108] describe a similar protocol based on additively homomorphic encryption

and a set of auction servers who conduct a multi-party computation. Such methods

result in stronger privacy and secrecy properties at the cost of this additional process

complexity.

Rabin, Servedio and Thorpe [128] have recently proposed a somewhat different

cryptographic architecture suitable for conducting sealed-bid auctions with similar

properties that does not employ homomorphic cryptography. Instead, the system

uses a statistically secure encryption scheme based on cryptographic commitments

and proves all computations correct to an arbitrarily low probability of error.

Earlier work on multi-item auctions either assumes distributed trust [82, 45, 6],

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 112

or adopts multi-party computation techniques [32], and the current state of the art

for secure combinatorial auctions is still not very scalable [157, 147]. In comparison,

our approach can be extended to secrecy-preserving multi-item auctions (presented

here) and combinatorial auctions (Chapter 7). Specifically, our trusted auctioneer

can apply fast algorithms to the combinatorial optimization problem in determining

winners. The auctioneer must simply construct a proof that the outcome is correct

and need not involve multiple parties in computing the outcome.

Whereas previous architectures use cryptography for anonymity, we note that

existing real-world business entities (e.g., notaries as proxy bidders) also meet this

need. We therefore do not complicate our protocol with maintaining bidder anonymity

and consider it outside the scope of this work. Another practical issue, addressed

in previous work but not here, is that of noncoercibility [40, 145] of an auction.

Noncoercibility prevents a bidder from being able to credibly claim to a third party

that it bid in a particular way after the close of an auction. Auctions with this

property are more resistant to bidding rings, since the stability of bidding rings in

first-price auctions depends on being able to detect (and punish) deviations from

agreed upon rules.

6.2 Preliminaries

The standard auction model considers an auctioneer AU , bidders B =

{B1, . . . , Bk}, and a seller. This is a forward auction in that the goal is to allo-

cate one or more items to some set of bidders. Reverse auctions, with a buyer rather

than a seller, are suitable for procurement auctions and can be modeled in a similar

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 113

way. In a single item auction, each bidder Bi is modeled with a private value vi; she

bids to maximize her net utility (which is vi −p, her payment, in the event that she

wins the auction.) In a first-price, sealed-bid auction, each bidder Bi makes a bid

Bidi. This is a claim about her maximium willingness to pay. Bids are made without

any information about the bids (or values) of other bidders, and the item is sold to the

highest bidder, who pays the highest bid price. In a second-price sealed-bid auction,

the item is sold to the highest bidder, who pays the second highest bid price.3 See

Krishna [85] for an introduction to auction theory.

6.2.1 Desired Auction Properties

Based on the analysis in the introduction, we list desiderata for any sealed-bid

auction process. These go beyond the standard economic goals, for instance, efficiency

or revenue maximization:

• Non-repudiation by bidders: Once a bidder submits a bid, her bid is provably

unalterable. Moreover, a bidder is bound to reveal her bid to the auctioneer

after the auction closing time.

• Non-repudiation by auctioneer: The auctioneer’s exclusion of a properly sub-

mitted bid can be conclusively proven and thus becomes legally actionable.

• Trustworthiness: The auctioneer cannot know the bids until after the close of

the bid submission phase. Thus the auctioneer cannot collude with bidders by

sharing others’ bids during the auction.

3As noted earlier, although more susceptible to collusive bidding behavior, second-price auctions
have the useful property that it is a dominant strategy for a bidder to report her true value.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 114

• Secrecy: The bids are hidden to everyone until all bids are committed. At

the close of the auction, only the auctioneer knows any secret information. He

may keep the outcome secret, notifying only winners of their allocations and

payments, or make any part of the outcome public by revealing some or all of the

allocations and payments and proving them correct. Revelation of these values

does not reveal other secret information not implied by the values themselves.

• Verifiable correctness: All information revealed, whether private or public, is

proven correct. Bidders receive a proof of the correctness of their own allocation

and payments. The public, including all bidders, receives a proof of correctness

for all public information about the outcome of the auction and also the validity

of bids. The auction protocol enforces correctness; an auctioneer will not be

able to present valid proofs for invalid winners or incorrect payments.

In achieving these properties we make standard cryptographic assumptions. Be-

cause the security of our encryption is related to the computational intractability of

solving “hard” cryptographic problems, longer cryptographic keys can be adopted

over time as computational hardware gets more powerful. This will maintain the

same level of realized security at comparable computational running time.

6.2.2 Real-World Components

We recall that our auction system comprises an auctioneer AU , bidders B =

{B1, . . . , Bk}, and a seller. Bidders can also be proxies to provide anonymity. In

addition, we assume a universally accessible, tamper resistant clock (such as provided

by the United States NIST time servers) and the following components.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 115

Certified Bulletin Board

The auctioneer maintains a certified bulletin board. This can be a publicly known

website maintained and updated by the auctioneer. The auctioneer uses the bulletin

board to post all public information about the auction, including the initial auction

announcement as well as (encrypted) information about bids that have been submit-

ted and proofs that can be used to verify all publicly available information about the

outcome. All posts to the the bulletin board will carry appropriate digital signatures

identifying their originators.

Notaries

Notaries are reputable agents, such as law firms, accountants, or firms specializing

in providing a witness for bidders. When preparing to participate in an auction, a

bidder may select a set of notaries of her choosing from some set of notaries possibly

authorized by the auctioneer. Use of the notaries is optional; their only purpose is to

prevent a dishonest auctioneer from failing to post bid information from disfavored

bidders. In using a notary, whenever a bidder sends concealed bid information to the

auctioneer she also sends that concealed information to any notaries she has selected,

most notably commitments to bids and random help values. These notaries also

submit this information to the auctioneer, and act as witnesses in the case that a

bidder complains that an auctioneer does not correctly post her information to the

bulletin board. We require that a majority of the notaries is not corruptible. Note that

our process is structured so that no information about the actual bids is revealed to

the notaries, and, again, their only role is to serve as witnesses to the communications

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 116

in the auction in case of a dispute between a bidder and the auctioneer.

Time-Lapse Cryptographic Service

A bidder Bi, possibly in collusion with the auctioneer, might refuse to open her

commitment and reveal her encrypted bid E(Bidi).
4 One way to prevent this practice

of bid repudiation is to employ the “Time-Lapse Cryptography Service” named and

described by Rabin and Thorpe in Chapter 4 and [129].

The Service will at regular intervals post a new cryptographic public encryption

key TPK (Time-lapse Public Key), and after a fixed period of time post the associated

secret decryption key TSK (Time-lapse Secret Key). For our purposes, it suffices that

the public key be available before the bids are to be submitted, and that the secret key

be released soon after the auction closes. We envision for the purposes of this chapter

that the Service will publish a constant stream of keys with appropriate lifespans for

an auction, and the Auctioneer selects and specifies a key to be used that expires soon

after the closing time of the auction. For example, the Service might publish a set

of public encryption keys each hour, each with a different lifespan, e.g. three hours,

one day, one week, 90 days, etc. When the lifespan expires for a particular public

encryption key, the Service reconstructs and publishes its associated secret decryption

key.

For our purposes, the Service must not employ any single trusted third party who

knows either the bid information or any secret key that could decrypt the encrypted

bid information before the close of an auction. Additional relevant cryptographic

4The notation E(m) designates an encryption of a message m; see Chapter 2 for details of the
cryptographic notation we employ.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 117

details about the TLC Service are provided in Section 6.2.4, and a full treatment is

found in Chapter 4.

6.2.3 Overall Flow and Main Steps of Auction

Schematically, the auction process will proceed in three main stages (described

in more detail in Section 6.3). In the first stage, the auctioneer posts the auction

announcement on the bulletin board. The announcement, to be detailed later on,

includes a deadline time T for submitting bids. In the second stage, the bidders

commit to the encrypted forms of their bids and random data but post bid information

in a form that is concealed even from the auctioneer. Notaries are engaged in this

stage and witness these commitments posted to the auctioneer’s bulletin board. In

the final stage, the bidders must follow through and reveal the encrypted forms of

their bids to the auctioneer and the public. They do not decrypt or reveal their

unencrypted bids. The auctioneer and other bidders verify that these encryptions of

their bids are consistent with the posted commitments. The auctioneer then decrypts

the bids in secret, and computes the outcome of the auction according to the posted

rules for that auction. He then posts the parts of the outcome to be verified on the

bulletin board, along with public proofs that the selection of the winner(s) and their

payments was done according to the auction rules. After the last posting, any party

can verify the correctness of the publicly verifiable part of the outcome. A bidder can

also privately verify the correctness of her individual outcome via a proof offered by

the auctioneer if that outcome is to be kept secret.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 118

6.2.4 Basic Cryptographic Tools

Our system relies on universally accepted cryptographic tools. We describe the

tools we employ in our result, referring to other publications for established results and

providing proofs for new uses of existing tools. We will sometimes refer to a “prover”

P and a “verifier” V when discussing the secrecy-preserving proofs of mathematical

facts relating to our auctions. See the Handbook of Applied Cryptography [102] for a

general introduction to the applied cryptographic techniques and notation we employ.

Public Key Infrastructure

We assume cryptographically sound methods of establishing and exchanging pub-

lic keys used for all the cryptographic tools we employ, including the auctioneer’s

public/secret key pair for Paillier encryption and the public and secret keys pub-

lished by the time-lapse cryptography service. In addition, the auctioneer, notaries,

and all bidders require public/secret key pairs for digital signatures. The public sig-

nature verification keys of all parties must be mutually known and certified. We

notate digital signatures as follows: AU can sign message x, generating SignAU(x).

A bidder Bi’s signature of x is denoted Signi(x).

Sources of Randomness

Cryptographic key generation and probabilistic encryption require a good source

of random data. We postulate bidders’ and notaries’ ability to create enough highly

random data to create strong key pairs, encrypt and sign a small number of values,

and generate the secure random data string we introduced in Section 2.1.3 and recall

below. Such a source might be hardware that extracts randomness from radio static

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 119

or quantum noise in diodes. Such “hardware randomness generators” are already

employed in important cryptographic applications.

Secure Random Data

In order to prevent any party (including the auctioneer) from cheating or engaging

in steganographic communications with the outside by infusing deliberately tainted

random data into the cryptographic protocols, we require that all bidders commit to

a random data string when they bid, and that the auctioneer post a commitment to

a random data string when posting the auction rules. These strings are revealed only

at the close of the auction, and then combined using exclusive OR so that even if

just one of the strings is truly random, the combination thereof is also truly random.

We denote this auction random data string by σ. The resulting string σ is used to

“tie the hands” of the auctioneer: when proving the correctness of the auction, the

auctioneer must reveal data exactly as specified by the bits in σ.

The auctioneer publishes the algorithms to be used on data from the random

data string in the auction rules, for example, the method for choosing a random

permutation of integers in a specific range, which is employed in the course of proving

the auction results correct.

Time-Lapse Cryptography

The Time-Lapse Cryptography Service (introduced above as a real-world entity

and formalized in Chapter 4) provides for a binding and hiding commitment to bids

(so that the bidder may not change her bid and the auctioneer learns nothing about

the bid from its commitment); it also enforces the nonrepudiation of bids, so that

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 120

once a bidder has committed to her bid, she may not prevent the auctioneer from

eventually decrypting it. We assume the TLC service wherever we employ crypto-

graphic commitments in our protocol, and notate bidder Bi’s commitment to a value

x as the time-lapse encryption ETPK (x).

Each bidder Bi commits to her encrypted bid by encrypting Z = ETPK (E(Bidi))

(where the bid is first encrypted with the public key of the auctioneer), using a time-

lapse public encryption key TPK . The bidder then posts Signi(Z) on the bulletin

board. After time T+1, the decryption key TSK associated with TPK will be posted

by the TLC service. The release of the decryption key TSK will enable the auctioneer

(and everybody else) to decrypt Z = ETPK (E(Bidi)) after time T+1 and thus obtain

E(Bidi); this functions as the “decommit” operation—importantly, out of the hands

of the bidder.5

Where time-lapse encryption of long strings is required, a symmetric block cipher

key is created and encrypted using the public TLC key, then published. Data are

encrypted using the symmetric key; when the TLC secret decryption key is revealed,

the symmetric key can be recovered and the data decrypted. Thus the magnitude of

a time-lapse encrypted value x may be polynomial in the size of the TLC key given

the assumptions underlying time-lapse cryptography and any suitably secure block

cipher. We therefore assume any value in our protocol may be encrypted using a TLC

public encryption key.

5In practice, the method for time-lapse encryption of the encrypted bid should undergo a thorough
cryptanalysis to identify any potential attacks. Because of the homomorphic properties (and thus
malleability) of the underlying cryptosystems, we do not recommend direct ElGamal encryption of
a Paillier-encrypted value.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 121

Re-Encryption

If privacy is to be enforced by the auctioneer, or in cases where it is necessary

to keep secret the number of parties allocated any items (Section 6.4.2), the Paillier

encryption scheme we use permits the re-encryption of a known encryption of a value

(ciphertext) into another ciphertext so that both decrypt to the same input value

(plaintext). To re-encrypt a Paillier-encrypted value, say, E(Bidi, r), the prover com-

putes a random factor s ∈ Z∗n and computes sn ·E(Bidi, r) ≡ E(Bidi, r ·s) (mod n2).

This remains a valid encryption of Bidi, but only someone who knows s or the secret

decryption key φ can prove that fact.

Re-encryption is well-complemented by a “cut-and-choose” protocol so that a

prover P constructs 2v random re-encryptions of a set of values, then the verifier V

asks for v of the sets to be revealed by revealing the random re-encryption factors

used to construct them. V then checks that each re-encrypted set contains exactly

the original set of elements. For example, once the posted bids are on the bulletin

board, the auctioneer creates a number of re-encrypted auctions, verifies half of them

to be correct, and then proves the outcome of the auction on the other half. This

keeps the original bidders’ identities private.

The computational cost of re-encrypting a ciphertext is almost equivalent to en-

crypting a plaintext, because the dominant computation is the modular exponentia-

tion required by both operations.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 122

6.3 Single-Item Auctions

Given the general cryptographic tools developed in Chapters 2 and 3, we can now

describe a single-item cryptographic auction. We assume that the bidders B1, . . . , Bk

are known entities with publicly known digital signatures Signi. We further assume

that the winner and her payment depend only on the ordering of the values of the

bids and that the payment is one of the bids.

This class of auctions includes first-price and second-price auctions, and also allows

for auctions with reservation prices by a simple extension in which the seller also sub-

mits a bid.6 Thus, this class also includes revenue-maximizing auctions, as described

in Myerson [107], in symmetric environments in which all bidders are assumed to have

independent private values drawn at uniform from the same distribution.

For clarity, we focus here on an auction in which the complete outcome of the

auction—the winner and the payment by the winner—is made public and then proved

to be correct. The same techniques can be used to selectively prove part of the

outcome to some party, for instance to prove the winner but not the winner’s payment

is correct.

6.3.1 Protocol

Step 1. The auctioneer AU posts the following information on the bulletin board:

the terms of the auction specifying the item, the mechanism for selection of the winner,

6 In a Vickrey auction with a reservation price, in addition to bids Bid1, . . . ,Bidk there is a price
rp from the seller which is handled just as any other bid. The item is sold to the highest bidder
if the maximal bid is at least rp but goes unsold otherwise. (Think of this as “selling back to the
seller”.) When sold, the payment is the maximal value of the second highest bid and the reservation
price. Note that because the seller must commit to his reservation price just like any other bidder
there is no danger of shill bidding.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 123

the deadline T , an identifier ID of the auction, and a Paillier encryption key n. AU

knows the corresponding decryption key φ. The auctioneer also posts information

about any notaries that are to be used for the auction. He posts the time-lapse

encryption key TPK to be used by all participants in constructing their commitments.

Finally, the auctioneer posts a commitment to his random string ComAU(σAU) and

a specification of the method that will be used to extract random permutations from

the auction’s random data string σ.7

We emphasize that all of the above data DAU is posted on the bulletin board,

accompanied by AU ’s signature SignAU(DAU).

Step 2. Every Bi chooses a bid Bidi. She encrypts it as Ci = E(Bidi, ri) using

the public key n and a randomly chosen help value ri. In order to create efficient test

sets to prove bid sizes, we restrict the size of the bid so that Bidi < 2t < n/2 for

small t, say, t = 34. Every Bi also generates a random bit string σi of appropriate

length which will be used in the proof of correctness. Bidder Bi then commits to

Ci and σi by encrypting with ETPK to form a single commitment string Comi =

ETPK ([Ci, σi, ID]), which also includes the auction identifier ID. Finally, the bidder

signs this commitment, and sends Signi(Comi) to AU and her notaries, if used,

before time T . AU returns a signed receipt Ri = SignAU ([Comi, ID , T]).

Note that hiding of the encrypted bids and of the random strings by use of the

secondary encryption prevents anyone from gaining any knowledge of the data prior

to time T . In particular, neither the notaries nor the auctioneer have any meaningful

information.

7We recall from Section 6.2.4 the random strings σi XORed together to yield the auction random
data σ. AU must specify here the method used to extract a permutation of test sets from σ before
AU sees σ so that everyone knows AU is revealing a truly random selection of test sets.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 124

Step 3. At time T , the AU posts all the received commitments Com1, . . . ,Comk

on the bulletin board, as well as a random bit string σAU . AU also creates a number

of test sets TS1,TS2, . . . ,TSK , where K is a multiple of k, e.g., K = 80k. He signs

and posts the test sets on the bulletin board.

Step 4. Between time T and T + 1, any bidder Bi who has a receipt Ri for a bid

which is not posted can appeal her non-inclusion, resorting to her notaries if she has

used them.

Step 5. After time T + 1, everyone, including the auctioneer AU and all bidders

Bi, can recover all encrypted bids Ci = E(Bidi, ri) as well as all random strings

σi. This is done by employing the decryption key TSK posted by the TLC service

to decrypt all the commitments posted in Step 2. After time T + 1, AU posts the

encrypted bids, C1, . . . , Ck, and the random strings, σ1, . . . , σk, σAU , on the bulletin

board. Every bidder Bi can verify, for any bidder Bj, that the posted value Comj

corresponds to the ciphertext Cj and the random data string σj. In case of discrepan-

cies she protests. This check can be performed simply by decoding the commitments

as above and verifying the digital signatures on these commitments. Every interested

party constructs the auction’s random data string σ by combining the published

strings: σ = σ1 ⊕ . . .⊕ σk ⊕ σAU .

Step 6. Using the decryption key φ, AU recovers the bids Bid1, . . . ,Bidk for

computing the auction results and associated random help values r1, . . . , rk for con-

structing the proofs of correctness. The auctioneer then computes the winner of the

auction and the payment according to the auction rules. The auctioneer posts the

winner’s identity Bi and information defining the payment to be made by the winner

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 125

on the bulletin board. This information about payment can be posted in an encrypted

form if the payment is to be kept secret from nonwinning bidders. Finally, and most

importantly, the auctioneer also posts information that will enable any party to verify

that the correct result was implemented. These include proofs of the correctness of

the winner and payment, and proofs of the validity of each bid.

6.3.2 Verification

We now show how any verifier V (including any of the bidders) can verify on

her own that the winner and payment of the auction were determined according to

the rules of the auction. This will be done in a “zero knowledge” fashion, that is,

without revealing anything about the value of any bid except that implied by the

outcome of the auction. In addition, the auctioneer can choose how much of the

outcome is revealed. For example, the proof can validate that an encrypted payment

was correctly determined but without revealing any information about the value of

the payment.

The class of single-item auctions under consideration (including first-price and

second-price auctions) has the property that the winner and payment depend only on

the ordering of the bids. Take as an example the Vickrey auction and assume, without

loss of generality, that the prices posted by bidders B1, . . . , Bk are monotonically

decreasing (though there may be tied bids). AU announces that B1 is the winning

bidder, which is tantamount to the following set of claims:

{Bid1 > Bid2; Bid2 ≥ Bid3; . . . ; Bid2 ≥ Bidk} (6.1)

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 126

Note that the encrypted values

{C1, . . . , Ck} = {E(Bid1, r1), . . . , E(Bidk, rk)}, (6.2)

were posted in Step 5 of the protocol. To prove the claims, it suffices to show that

each Ci is an encryption of a valid bid 0 ≤ Bidi < 2t < n/2 for all i, and that

{C1 � C2, C2 � C3, . . . , C2 � Ck} (6.3)

Verifier V verifies these 2k−1 claims in a zero knowledge fashion using the tools de-

scribed above, which enables verification of the winner, item allocation, and payment

as described in the following paragraphs.

Recall that the auctioneer had posted 2k groups of 40 test sets in Step 3. He creates

proofs for each of the first k claims using k of these groups of 40 test sets, one for each

claim. He reveals all encryptions for the subgroup of 20 test sets determined by the

random string σ and the random method posted in Step 1 of the auction. With each

of the 20 other test sets AU performs the computation described in Section 3.2.3

(Range Protocol) and posts it on the bulletin board. V can verify that all the

revealed test sets are valid, that their indices were chosen correctly, and that the k

posted computations are of the form (3.8). This verifies the first k claims. In addition,

AU posts proofs for the k − 1 claims that Bid1 > Bid2 and Bid2 ≥ Bidi, 2 < i ≤ k

by using k− 1 groups of 40 additional test sets for each inequality using the methods

described in Section 3.2.1.

This ordering of bids is used to verify the winner as the bidder with identity

corresponding to submitted bid E(Bid1), and the item is allocated to this bidder.

In a Vickrey auction, the payment to be made by the winner is Bid2 and this can

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 127

be proved by sending a verifier V the random help value r2 from B2’s encrypted bid

C2 = E(Bid2, r2). V can then verify the correctness of its payment by re-encrypting

Bid2 with r2 and checking the result is C2.

In the case of a tie, where Bid1 = Bid2, this can also be proven using a

zero-knowledge equality proof. (Indeed, the auctioneer would not be able to prove

E(Bid1) � E(Bid2).) Tiebreaking in the single item case is done according to the

auction rules, either by conducting another auction or randomly selecting a winner

using the auction random data string σ according to rules defined at the beginning

of the auction.

6.3.3 Verifying Partial Information about Outcomes

As mentioned in the introduction, there exist many examples in which the public

disclosure of the bids or outcome of an auction is undesirable. Because there are a

number of factors that play a role in determining which data are to be revealed at

the close of the auction, our system provides the flexibility for the auctioneer to prove

specific facts about the bids or outcome of the auction to only the individuals who

need to know, without revealing anything more.

Many real-world auctions reveal such partial information, perhaps most notably

the U.S. Treasury auctions for U.S. public debt, where only partial information about

the bids is revealed. In that case the reputation of the Treasury provides the trust

necessary for them not to disclose complete auction information, but where such a

reputable auctioneer or seller is not involved, our correctness proofs provide the trust

necessary to conduct such an opaque auction.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 128

The flexibility of our system comes from the architecture of our correctness proofs;

a verifier computes mathematical operations on public values posted to the bulletin

board (the bidders’ encrypted bids, random strings, and auction rules); the auctioneer

then reveals a small amount of special data to the verifier that they compare to their

calculations to verify the proof. This allows the auctioneer to control exactly who

gets a correctness proof of any fact by private revelation of that special data. We

illustrate below the power of our approach by examples of various partial information

the auctioneer might reveal about bids and payments.

Bids. At one extreme, the auctioneer can reveal all bids to the public by revealing

the random help values used to encrypt the bids. At the other, the auctioneer need

not reveal any bid to any bidder to prove the payments correct. Yet there may be

legal or auction theoretic reasons to provide “partial transparency” of bids. Due to

the nature of the homomorphic cryptosystem employed, the auctioneer can reveal

interesting partial information about the bids that can be computed using linear

functions of the bid values. For example, the auctioneer might wish to reveal only

the mean bid—equivalent to the sum of all bids, assuming the number of bids is

public. He does this by revealing the random help value required to decrypt the

product of all encrypted bids (which is an encryption of the sum of all bids). The

auctioneer could also reveal other interesting statistics, such as the maximum and

minimum bid, the median bid, the mean of the bids excluding the highest and lowest

bid, or even the standard deviation of bids.

Payments. The auctioneer may also prove winners’ payments correct in a public

or private fashion. For example, instead of revealing winners’ payments to everyone,

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 129

each bidder can act as her own verifier. She computes an encryption of her payment

on her own, and then decrypts it with the auctioneer’s help. The auctioneer can

privately reveal just the payments—without the bids—to both the sellers and the

winners, and prove to all bidders who did not win that their bid was not high enough

to win. Thus the seller and every bidder are satisfied that the auction was conducted

fairly, yet no information about the outcome of the auction needs to be published.

Further transparency can be provided by requesting bidders “sign off” on their proven

outcomes with a digital signature, so that the auctioneer can show that every bidder

accepted the outcome. If a bidder refuses, the auctioneer can prove the outcome he

provided was indeed correct by publicly revealing it.

6.4 Multi-Item Auctions

Consider now auctions for multiple identical items. In these auctions, the auc-

tioneer has some number l of available identical items for sale. Real-life examples

include large lots of refurbished items on eBay, or U.S. Treasury bills. We consider

auctions in which bids are flexible and each bidder is willing to accept any number

of items up to a maximal limit and bid a price per item. However, there is nothing

about the framework that is limited in this way, and we will describe extensions to

“all-or-nothing” bids and “bid curves” [137, 84] in future work.

As before, we can implement a general class of auctions that includes the first-

price, uniform-price, and second-price (generalized Vickrey) auctions [85]. These are

auctions in which the allocation depends only on the order of the bids and payments

are defined as linear functions of the values of bids. For illustrative purposes we again

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 130

focus on the case in which the complete outcome of the auction, i.e. the allocation

and all payments, is made public and then proved to be correct. Easy variants

are available in which the correctness is selectively proved, either publicly for some

restricted information about the outcome or privately to individual bidders.

6.4.1 Protocol

Step 1. AU posts the auction information on the bulletin board as in Section

6.3.1. In addition, AU posts the total number of items available, l, and the maximum

allocation to any one bidder (if any), lmax.

Step 2. Each participating bidder Bi prepares two integer values (Bidi,Qtyi)

for each bid she wishes to submit to the auction, where Bidi is the amount that she

will pay per item and Qtyi is the maximum number of items desired by Bi.

As above, Bi also generates a random bit string σi and sends it to AU . Bi then

encrypts Bidi and Qtyi, using AU ’s public Paillier key n, as E(Bidi) and E(Qtyi)

and commits by sending AU and her notaries, if used, the commitment

Comi = [ETPK (E(Bidi)), ETPK (E(Qtyi)), ETPK (σi), ID], (6.4)

and digital signature Signi(Comi). AU issues a receipt for these commitments and

publishes them on the bulletin board in accordance with our standard protocol.

Step 3. As above, at time T , the auctioneer AU posts received commitments,

his random string σAU , and test sets on the bulletin board. The number of test sets

will depend on the type of the auction and the payment calculation; these numbers

are detailed in Section 6.5.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 131

Step 4. As above, bidders have between time T and T+1 to appeal non-inclusion,

which may involve resorting to the commitments sent to any notaries.

Step 5. As above, bidders’ encrypted bids and quantities E(Bidi) and E(Qtyi),

as well as their strings σi, are revealed between time T and T + 1. AU publishes

these values on the bulletin board. All bidders can check that the revealed values

correspond with earlier commitments.

Step 6. AU privately recovers bids Bid1, . . . ,Bidk and quantities Qty1, . . . ,Qtyk

using secret key φ, and uses the information to compute the correct outcome of the

auction. We again assume, without loss of generality, that the prices bid by bidders

B1, . . . , Bk are monotonically decreasing, though consecutive bids may be tied. We

then choose the threshold bid index, α, which is new in our multi-item setting, such

that bidders α, . . . , Bk do not receive any items. The sum of the quantities associated

with winning bids Bid1, . . . ,Bidα−1 is greater than or equal to the number of available

items l, and this is not true for a smaller threshold index. Thus all bidders Bi, such

that i < α, are winners. The threshold winner α− 1 may receive some subset of her

total demand. Formally, threshold index α is defined so that:[
α−2∑
i=1

Qtyi < l

]
∧

[
α−1∑
i=1

Qtyi ≥ l

]
(6.5)

Note that we have assumed here that there are enough bidders to cover all of the

supply. This can be handled without loss of generality, by also introducing a single

dummy bid at zero price for all supply, l. In addition to determining α, and thus

the winners in the auction, AU also posts proofs of which bidders won and their

allocations on the bulletin board, as well as proofs of the validity of each bidder’s bid

and quantity. He also computes proofs of correctness of each winner Bi’s payment. If

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 132

public verification of payments is required, AU posts these correctness proofs on the

bulletin board, along with the random help values needed to decrypt the payments.

If the payments are to remain secret, he privately sends the proof for Bi’s payment

and any associated random help values to each winner Bi.

6.4.2 Verification

The verification step in a multi-item auction is more complex than for the single

item auction, but relies largely on the same cryptographic primitives used in the

simpler single-item case. Each verification can be done in a zero knowledge fashion,

revealing no information beyond that implied by the outcome of the auction.

As before, AU first publicly proves the minimum bid-ordering information, that

all winning bids are strictly greater than the threshold bid Bidα, i.e., Bidi > Bidα−1

for all i < α− 1 and Bidα−1 > Bidj for all j ≥ α. This reveals only minimum public

information about the value of the bids; the same information that is implied by the

outcome. AU will also prove that the bid values are valid and without wraparound.

(See Section 3.2.3 for an explanation of wraparound.)

In addition, AU must also prove that the quantities of the items were encrypted

correctly, i.e., without wraparound. We assume that l < 2t < n/2 for number of

available items l and test set size parameter t. AU first proves that no bidder has

submitted a quantity greater than a specified maximum allowed allocation lmax ≤ l.

To do this, AU first encrypts E(l, 1) and E(lmax, 1); a help value 1 is used so that

anyone can verify those encryptions. AU then proves E(Qtyi) � E(lmax, 1) for all

1 ≤ i ≤ k. Next, AU can use encryptions of various sums of quantities to prove the

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 133

correctness of the threshold bid index α. Paillier’s homomorphic encryption system

allows for a zero-knowledge proof that a ciphertext represents the encrypted value

of the sum of two encrypted values; in particular,
∏α−2

i=1 E(Qtyi) = E(
∑α−2

i=1 Qtyi).

Given this, AU can establish Eq. 6.5 over the encrypted quantities:[
E(

α−2∑
i=1

Qtyi) � E(l)

]
∧

[
E(

α−1∑
i=1

Qtyi) � E(l)

]
(6.6)

Tiebreaking

In the event of a tie, with multiple bids equal in value to Bidα−1, the auctioneer

must also prove equality of these bid values and then establish correctness in allocating

to these tied threshold bidders. Various algorithms exist for allocating the items

among winners with equal bids at the threshold. One possibility is to randomly order

the threshold bidders and divide the items among them in “round robin” fashion until

the items are exhausted, with the condition that no bidder Bi is entitled to more than

the Qtyi items bid for.

In this case, we require additional proofs that the allocation is fair. In summary,

we use the random data σ jointly constructed by all auction participants to define

a publicly verifiable ordering π of w equal bidders,8 π(1 . . . w) ∈ {1 . . . k} such that

Bπ(1) is the first to be allocated an item, and so forth, and prove the round robin

allocation as follows. We notate li as the allocation to bidder Bi.

Step 1. Prove that the allocations to all bidders add to l, i.e.
∑k

i=1 li = l.

Step 2. Given ordering π of threshold bidders, compute j such that Bπ(j) is the

first bidder in the ordering to receive a partial allocation. Compute h such that Bπ(h)

8Generating such a random ordering is described in Section 6.2.4.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 134

is the first bidder in the ordering to receive lπ(j)− 1 items, i.e. the next bidder in line

when the items ran out. If no such h exists, set h = w + 1.

Step 3. Prove that all allocations were fair as follows: 3a. For 1 ≤ i < j, prove

lπ(i) = Qtyπ(i) and lπ(i) < lπ(j). 3b. For j < i < h, prove either that lπ(i) = lπ(j), or

both lπ(i) = Qtyπ(i) and lπ(i) < lπ(j). 3c. For h ≤ i ≤ w, prove that lπ(i) = (lπ(j) − 1),

or both lπ(i) = Qtyπ(i) and lπ(i) < lπ(j).

In words, we show that bidders either received their entire allocation or at most

one fewer than the first bidder in line to receive a partial allocation, and that the

ordering of the partial allocations is proper.

Payment

In a first-price auction, the auctioneer can prove a payment to a third party by

revealing the random help value used to encrypt winner B1’s bid. A verifier can

use this to recover Bid1 from the now public encrypted value E(Bid1) submitted

by the bidder. Similarly, in a uniform-price auction, whereby every bidder pays the

bid price of the losing threshold bidder Bα−1, AU can provide a public proof by

revealing Bidα−1 via the help value used by Bα−1. The uniform price auction is an

approximation to a Vickrey auction in this setting. It generates the same payment

as in the Vickrey auction to winning bidders i < α − 1, as long as the threshold

bidder has enough spare demand to cover the allocated capacity of any winner. The

payment by the threshold winner Bα−1 is always larger than in the Vickrey scheme.

We turn our attention to proving the correctness of prices in a generalized Vickrey

auction (GVA) for this multi-item setting [85]. As in the single item setting, the GVA

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 135

provides the useful property of truthfulness so that each bidder’s dominant strategy is

to bid her true value per unit and true quantity demanded. In a GVA mechanism the

number of items are allocated according to the price bid but the actual payment for

each winner depends on others’ bids. The Vickrey payment for bidder Bi is defined

as:

pvcg,i = Qty∗i ·Bidi − [V (B)− V (B−i)], (6.7)

where V (B) is the total revenue in the auction with all bidders, V (B−i) is the total

revenue in the marginal economy with bidder Bi removed, and Qty∗i denotes the

quantity allocated to bidder i in the auction. This has a simple interpretation: a

bidder’s payment is determined as the greatest amount other (displaced) bidders would

have paid for the same items had Bi not been participating in the auction.

We require a proof to establish the correctness of this payment. Let Qty−ij denote

the quantity awarded to bidder Bj in the marginal auction without bidder Bi. For a

non-marginal winner, i.e., i < α− 1, her GVA payment is:

Qty∗i ·Bidi −

[
Qty∗i ·Bidi +

∑
j 6=i,j≤α−1

Qty∗j ·Bidj

]
+
∑

j 6=i,j≤β−i−1

Qty−ij ·Bidj

=

 ∑
α−1<j≤β−i−1

Qty−ij ·Bidj

+ [Qty−iα−1 ·Bidα−1 −Qty∗α−1 ·Bidα−1] (6.8)

For the marginal winner, i = α− 1, her GVA payment is:

Qty∗i ·Bidi − [Qty∗i ·Bidi +
∑

j 6=i,j<α−1

Qty∗j ·Bidj] +
∑

j 6=i,j≤β−i−1

Qty−ij ·Bidj

=
∑

α−1<j≤β−i−1

Qty−ij ·Bidj (6.9)

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 136

Thus, the GVA payment by bidder Bi is a linear combination of the product of the

bid price and allocated quantity to bidders displaced by bidder Bi from the winning

allocation. In the case of a non-marginal bidder, this computation also accounts for

the effect on the allocation to bidder α− 1.

Consider the following verifiable proof structure for the term
∑

α−1<j≤β−i−1 Qty−ij ·

Bidj that is common to both kinds of winners:

Step 1. In generating the proof, AU must first establish a bid ordering for the

marginal auction without Bi, i.e., prove that β−i is the correct threshold bid index

by showing Bidj > Bidβ−i−1 for j 6= i, j < β−i− 1 and Bidβ−i−1 > Bidj for j ≥ β−i;

this can be done as in the main auction. Second, AU must prove that bidder β−i− 1

is the threshold winner in this auction, by proving the analog to Eq. 6.5. Third, AU

must publish encrypted values Payj = Qtyj · Bidj for all j > αi, j < β−i − 1 (and

similarly for the new marginal bidder, Payβ−i−1 = Qty−iβ−i−1 ·Bidβ−i−1), and prove the

correctness of all of these ciphertexts. This requires proofs of correct multiplication,

as described in Appendix 3.1. The proof of Payβ−i−1 in turn requires a proof of the

quantity allocated Qty−iβ−i−1 to this bidder, via a proof that a published ciphertext is

the encrypted value of l−
∑

j 6=i,j<β−i−1 Qtyj. Fourth, AU must publish the encrypted

value of the sum of these payments and a proof of its correctness.

Step 2. A verifier V can independently compute the encrypted Vickrey payment

as above and check the correctness of the proof.

Step 3. AU reveals the random help value in the resulting encrypted Vickrey

payment to V , who decrypts using that value and verifies it is correct by re-encryption.

The verifier V now knows that Bi’s Vickrey payment is correct while knowing

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 137

(almost) nothing more about any bidder’s bid value than can be derived from the

definition of Vickrey payments. In fact, the verifier V learns the number of bids

required to compute a Vickrey payment in the marginal economy E(B−i). We can

get around this through padding the input using dummy bids as described in the next

section.

The additional term, [Qty−iα−1 · Bidα−1 − Qty∗α−1 · Bidα−1] can be determined

in the case that bidder i is the threshold winner and i = α − 1 in an analogous

fashion. Encrypted values of the allocation quantities received by bidder i in the main

auction and in the marginal auction, i.e., Qty∗α−1 and Qty−iα−1, can be established

via subtraction from total items l of the total allocation to other bidders. Then, a

ciphertext for the difference, Qty−iα−1 − Qty∗α−1, and then the product (Qty−iα−1 −

Qty∗α−1)Bidα−1 can be published and proved.

Secrecy-Preserving Payment Proofs

While our above methods are correct, secure, and efficient in practice, they re-

veal a slight amount of additional information than that implied solely by the GVA

payments. In particular, the method described to prove a GVA payment reveals the

number of bidders whose bids in the marginal economy determine a bidder’s price.

This section outlines a more involved solution that eliminates the revelation of that

information at some increased cost in complexity and computation.

We recall that the GVA payment for bidder Bi is defined as:

pvcg,i = Qty∗i ·Bidi − [V (B)− V (B−i)], (6.10)

where V (B) is the total revenue in the auction with all bidders, V (B−i) as the total

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 138

revenue in the marginal economy with bidder Bi removed, and Qty∗i denotes the

quantity allocated to bidder i in the auction.

In order to prove the correctness of term [V (B)−V (B−i)] we currently determine

the threshold bidder β−i in the marginal economy (B \ i). Recall that the threshold

bidder β−i is defined so that all bids < β−i−1 receive a full allocation, bid β−i−1 may

receive a partial allocation, and bids ≥ β−i receive no allocation. But establishing

the index of threshold bidder β−i reveals information beyond that implied either

by knowledge of the outcome of the auction or by the amount of an agent’s GVA

payment, specifically information about the number of bidders that were displaced

by the presence of bid Bi.

To solve the problem we introduce a technique to prove the correctness of an en-

crypted term V (B−i) without revealing any information about the number of winners

in that marginal economy. This term can be used in combination with a proof of the

correctness of term V (B) and Qty∗i ·Bidi to prove correctness for the GVA payment

to bidder i.

To illustrate the idea we consider the case of proving correctness of the encrypted

value of V (B) for the main economy without revealing the index of the threshold

bidder. Note also that a dummy bidder is included with bid 0 and quantity demanded

l (the supply of items) when the total demand is less than l. Let k denote the total

number of bids in the input, including this dummy bidder when required.

In order to hide the true index of the threshold bidder the idea is to pad the input

with an additional k − 1 bids such that threshold index α given the padded input is

always defined so that α− 1 = k. Let γ denote the threshold index given the original

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 139

input of k bids. The new bids are defined as follows: there are k− γ + 1 bids defined

with Qtyj = 0 and Bidj = V for a maximal value V (higher than any posted bid),

and γ − 2 bids defined with Qtyj = 0 and Bidj = 0.

For example, if k = 5 then when γ = 2 (and only the first bid receives an alloca-

tion) then all k−1 new bids have Qtyj = 0 and Bidj = V . On the other hand, when

γ = 6 (and all bids receive some allocation) then all k − 1 new bids have Qtyj = 0

and Bidj = 0.

Lemma. The threshold index of the padded input is equal to k + 1 and no

information is learned about the threshold index in the initial index.

Moreover, the introduction of this padded input does not change V (B) because

the new padded bids demand no quantity and thus contribute nothing to the revenue

of the auctioneer.

One problem remains with this solution: how do we ensure that the auctioneer

can be trusted to introduce dummy bids with this property without revealing to the

verifier the mixture of high value and zero value bids introduced? The verifier must

not be able to tell whether a bid in the padded input is a dummy bid or an original

bid, but still be confident that the auctioneer has provided a set of bids that contains

exactly the posted bids and quantities along with correct padding.

For this we can again use the idea of “cut and choose”:

Step 1. The prover constructs 2v test sets TS1, . . . , TS2v. Each test set contains

several bid collections.9 TSi contains k collections of 2k − 1 bids, one collection for

each of m ∈ {0, . . . , k− 1} where there are m high value bids with quantity zero, the

9For clarity, we use the two words “collection” and “set”, though there is no technical meaning
differentiating the two terms.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 140

k original bids and quantities, and k− 1−m low value bids with quantity zero. Each

element of the collection is encrypted using the semantically secure Paillier scheme

used elsewhere. Instead of encrypting the original plaintext bids and quantities, the

auctioneer uses a re-encryption procedure (see Section 6.2.4) to yield an encryption of

the same value that cannot be identified as such. The 2k−1 elements of each collection

are permuted randomly; the k collections within each test set are also permuted

randomly. Now, each test set contains k collections of 2k−1 bids, where each collection

is the original auction’s bids padded with dummy bids and zero quantities. These

test sets are posted.

Step 2. The verifier randomly selects v test sets, requests that the prover identify

each of the elements in every collection as either a high value, low value, or posted

bid, and prove that fact by revealing the random help values (for dummy bids and

their quantities) or the random re-encryption factor s and the original bid or quantity

(for re-encrypted posted values). If there is a problem then the procedure is aborted

and the verifier requests a new list of 2v fresh test sets.

Step 3. There remain v unexamined test sets. The prover will use each of these

to construct a proof as follows: for each test set, the prover identifies one of the

collections of bids within that test set, and then completes the proof of the value for

V (B) using the padded input with that collection of bids. Not only must the payment

be the same for each padded input but the threshold index, given the padded input,

must always be k + 1. As before the value v may be selected to provide a desired

probability of error in the outcome.

Because we do not want to reveal which bid is in position α given marginal

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 141

economy (B \ i) and thus do not compute (and prove) the total revenue from bids

{α, . . . , α−i − 1} we prove instead the total value of V (B−i) in this new approach

rather than establishing directly the loss in revenue as a result of bid Bidi directly,

as in the previous section.

This approach can also be used to prove to each bidder the correctness of her al-

location without revealing the number of winners, and similarly to prove to any third

party the correctness of any single bidder’s allocation. As described in Section 6.3.3,

this may have special importance in auctions in which it is desirable for partial infor-

mation about the outcome to be privately proven to some parties; for example, it may

be desirable for the outcome to be secret while the seller, each bidder, and perhaps a

third-party auditor still receive a proof that the auction outcome is correct.

6.4.3 Extensions

We assume each bidder submits only one bid/quantity pair, but a single bid-

der could simply submit multiple bids in order to represent a more complex util-

ity function. The auction will have the correct behavior when used with first-price

or uniform-price payment schemes. For example, a bidder might wish to purchase

10 units if the price is $50, but 30 units if the price is $40. By placing two bids,

($50, 10), ($40, 20), the bidder will receive, for example, 30 units if the threshold for

winning bids is less than $40, 10 units if the threshold is between $40 and $50. While

this “additive-or” bidding logic does not permit bidders to specify completely arbi-

trary utility functions, it does provide additional expressivity. Note, though, that if

this language is used in an auction with GVA payments the bidder’s payment could

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 142

be too high. The logic of GVA requires removing both of its ($50,10) and ($40,20)

bids when computing its payment, but this would not automatically happen when

considering these as separate bids. Extensions to correctly handle GVA payments

with more expressive languages [112], as well as methods to adopt more expressive

languages in which bidders can submit a set of bids with explicit logical dependencies,

are reserved for future work.

6.5 Empirical Results

We implemented Paillier encryption and test set verification in C++ using the

LiDIA number theory package [93] on a commodity Linux workstation with a Pen-

tium 4 2.8 GHz processor.

The greatest computational cost in our protocol is the construction and verification

of test sets, and in particular the exponentiation of random help values (rn) required

to encrypt or (verifiably) decrypt a value. These calculations dominate all other

computation; for example, to sort one million random 64-bit bids takes less than one

second on our system. In a single-item auction, the auctioneer can prepare for an

auction of 100 bidders in about two hours, and each verifier can independently verify

the auctioneer’s proofs of correctness in less than half an hour. Both preparation and

verification scale linearly and are easily parallelized. Thus, with modest distributed

computation, even a multi-item auction with ten thousand bidders can be prepared

in a few hours and verified in reasonable time.

We present data for both 1024- and 2048-bit symmetric public encryption keys,

which are considered safe until 2010 and 2030, respectively [69]. Because the lifetime

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 143

of a security key is based on the difficulty of breaking it on available computing

power, we claim that, for the most part, an auction with “5-year” security at any

point in time will take at most about the same amount of time as it does today, as

improvements in computing power for breaking keys are likely to be comparable to

those in encryption.10

Table 6.1 shows the time it takes to compute various cryptographic operations on

our test machine. We observe that the time required to prepare or verify a test set

is essentially that required by the encryption and decryption. All test sets represent

234 discrete values.

For a single item auction of k bidders, the auctioneer must produce k proofs of

valid bids (i.e. Bidi < 2t for small t; we use 34), and k − 1 proofs of comparisons

to prove the ordering of the outcome. Using the bulk verification method suggested

in Appendix 3.2.3, such an auction requires 10 · (2k − 1) test sets, plus 25% for the

test sets that will be revealed to prove the test sets are valid. This gives us an upper

bound of 25k test sets required to conduct a trustworthy single-item auction.

For a multi-item auction with payments based on one bid (e.g. first-price or second-

price), we need only add to the above k proofs Qtyi < 2t, k comparisons Qtyi < lmax,

and 2 comparisons to prove Equation 6.5. This means we need about double the

number of test sets, 4k+ 1, to conduct such a multi-item auction; about 50k test sets

are needed for trustworthiness. We list the time taken to prepare these test sets and

correctness proofs in Table 2.

For verified GVA payments in multi-item auctions (Section 6.4.2), we also require

10Of course, if the cryptographic assumptions underlying our protocols are discovered to be untrue,
our claim does not hold.

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 144

proofs of multiplications for at most 2k + 1 products, namely, ≤ k proofs of the

products Qtyi ·Bidi and k+ 1 proofs of the products of the partial allocation to the

threshold bidder for the main economy E(B) and up to k marginal economies (that is,

excluding bidder Bi) E(B−i). Each proof of a product requires 4 exponentiations for

creating the MTS (“multiplication test set”) and 6 exponentiations to verify it. To

achieve a reasonably small probability of error, we need to repeat the multiplication

proof 80 times (3
4

80 ≈ 10−10). Thus each proof requires 320 exponentiations to create

and 480 to verify. Table 6.3 shows time required, again on a P4 2.8 GHz processor,

to verify Vickrey payments in the worst case for various sizes of multi-item auctions.

These computations are required in addition to the above computations for verifying

prices and quantities.

6.6 Conclusions and Future Work

We have presented a new protocol for sealed-bid auctions that guarantees trust and

preserves a high level of secrecy, yet is practical enough to run efficiently on commodity

hardware and be accepted in the business community. Because we focus on proofs of

correctness and secrecy during the auction, an auctioneer can still compute optimal

results efficiently and publish efficiently verifiable proofs of those results. Our protocol

rests on sound cryptographic foundations, and lends itself to interesting extensions to

further types of auctions, including support for all-or-nothing bids, bid curves, and

full combinatorial auctions; we intend to pursue these extensions in later work. We

believe that our practical, easily implemented approach can be extended to other areas

of privacy, including electronic transactions, trading systems, privacy-preserving open

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 145

outcry markets, and zero-knowledge public verification of private data. Along these

lines, authors Thorpe and Parkes have recently extended our methods to a continuous

double auction setting for information hiding in securities exchanges [150].

To further explore the practicality of our solution, David Austin has built a proto-

type of our protocol. His Python implementation comprises a fully functional, cross-

platform web server and standalone client for creating, bidding on, and verifying

sealed-bid auctions. Because it is implemented in Python, it runs at approximately

half the speed of our empirical tests, which were conducted using optimized C++,

but is still fast enough for practical use.

Other future work includes improving the efficiency of our protocols. Due to the

dominance of range proofs in auctions, employing more efficient techniques to prove an

encrypted value in a particular range are likely to reduce the computation required to

prove an auction correct (see Section 3.2.3, and [36, 44, 30, 79, 128] cited there). Use

of specialized cryptographic hardware for performing modular exponentiation of very

large integers instead of standard 32- and 64-bit hardware may also yield significant

time savings. Finally, it may be that for many auctions, the auction data need only

be secure during the auction, and not for years later, and thus shorter cryptographic

keys might be employed at a significant savings in computational cost.

While this chapter focuses on auctions in which price is the only consideration,

non-price factors such as technical quality, terms of payment, and service agreements,

are of course also important in auctions used for procurement. However the effect

can be to make the rules of the auction “soft” and provide new opportunities for

corruption, since the auctioneer has new flexibility to manipulate the outcome of the

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 146

auction in return for a bribe [134, 38].

Of course, the use of cryptographic methods to verify the correct outcome of an

auction requires objective criteria for determining the outcome based on the bids. It

is useful, then, that concerns about corruption have led the World Bank and other

bodies to move towards requiring quantifiable decision making, with the revelant

“scoring” criteria published as part of the rules of the auction [151, 13, 149].

This makes quality assessment objective and reduces the corruption concerns to

those of bid rigging in price-based sealed-bid auctions. As such, it is of significant

interest in future work to develop provably correct, and trustworthy auctions by

appropriate extensions to our technology. We also plan to study the use of similar

technology in cryptographic open-bid settings, beyond the combinatorial clock [124]

auctions described in Chapter 7.

Table 6.1: Time to perform basic operations

Operation Time (s.) Time (s.)
(1024-bit) (2048-bit)

Computation of rn 0.045 0.287
Encryption 0.045 0.287
Decryption with r 0.045 0.287
Decryption with φ 0.014 0.089
Decryption with rn 0.000 0.001
Constructing a TS 3.01 19.32
Verifying a TS 3.00 19.30
Proving 0 ≤ x < 2t given TS 0.001 0.001
Verifying proof of 0 ≤ x < 2t 0.070 0.41

Chapter 6: Practical, Secrecy-Preserving, Provably Correct Sealed Bid Auctions 147

Table 6.2: Time to prepare and verify auctions

Operation Number of Bids
100 1000 10000

Single-item Auctions
Preparation (1024-bit) 2.1 hr 21 hr 8.7 days
Verification (1024-bit) 25 min 4.2 hr 42 hr
Preparation (2048-bit) 13.4 hr 5.6 days 56 days
Verification (2048-bit) 2.7 hr 27 hr 11 days

Multi-item Auctions
Preparation (1024-bit) 4.2 hr 42 hr 17.5 days
Verification (1024-bit) 52 min 8.7 hr 3.6 days
Preparation (2048-bit) 27 hr 11.2 days 112 days
Verification (2048-bit) 5.4 hr 54 hr 22 days

Table 6.3: Verification of Vickrey payments for multi-item auctions

Operation Number of Bids
100 1000 10000

Preparation (1024-bit) 48 min 8 hr 3.3 days
Verification (1024-bit) 72 min 12 hr 5 days
Preparation (2048-bit) 5.1 hr 51 hr 21 days
Verification (2048-bit) 7.7 hr 77 hr 32 days

Chapter 7

Cryptographic Combinatorial

Clock Proxy Auctions

We present a practical cryptographic protocol for conducting efficient, provably

fair and secrecy-preserving combinatorial clock-proxy auctions. During the clock

phase, bidders submit encrypted bids and prove for themselves that they meet activity

rules. Bidders can also compute the total demand without revealing any information

about individual demands. The effect is to make the clock-proxy auction function

as a trusted sealed-bid, proxy auction despite the price discovery phase. Once the

auction closes, all bids are revealed to the auctioneer who can then employ efficient

branch-and-bound algorithms to determine the outcome of the proxy auction. We

demonstrate the use of homomorphic encryption to prove the correctness of solutions

to problems of mathematical optimization. The outcome of the clock-proxy auction

must be accompanied by a cryptographic proof that is published by the auctioneer

and establishes the correctness of solutions to optimization problems by reasoning

148

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 149

about properties of linear optimization. Any party can verify the correctness of the

outcome and the fairness of the complete process.

7.1 Introduction

While there now exist practical protocols for cryptographic auctions of identical

items, and practical methods of computing optimal outcomes in non-cryptographic

combinatorial auctions, we know of no practical protocol for conducting a crypto-

graphic combinatorial auction, in which a seller offers various quantities of distinct

goods, buyers bid on bundles of these goods, and cryptography provides both secrecy

and provable correctness. By secrecy, we mean that the auctioneer cannot exploit bid

information to change the outcome of the auction, and by provable correctness, we

mean that the auctioneer is obligated to issue proofs of correctness to prove he did

not deviate from the posted auction rules.

Indeed, the optimization problem associated with combinatorial auctions is NP-

complete; computing the outcome of such an auction in a secure manner is therefore

a significant challenge. We describe a cryptographic auction protocol that it meets

our secrecy and provable correctness requirements, elicits accurate bids, and can be

implemented in a realistic business setting on cost-effective computing hardware. As

an important component of this protocol, we develop a general framework for proving

the correctness of a solution to mathematical optimization problems where the input

and constraints are encrypted.

The particular combinatorial auction that we study is the combinatorial clock-

proxy auction (CCP) [15], a simple and efficient protocol for conducting combinatorial

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 150

auctions. It was originally developed for auctions of wireless spectra but is applicable

to other complex domains. Its principal merits are that it combines a simple price

discovery (“clock”) phase with a last-and-final round implemented as a sealed-bid

combinatorial (“proxy”) auction.1

In the clock phase, the auctioneer creates a “clock” for each item for sale that

represents the current price at which that item is to be sold, starting with low prices.

In a sequence of similar rounds, bidders submit a bundle of the items they desire at

the current clock prices. Whenever the demand exceeds the supply for a good, the

clock price increases for that good in the next round. The clock auction ends when

there is no excess demand for any good. At this point bidders can submit additional

bids, which, together with the clock bids, form the bids that define the input to the

proxy auction. The proxy auction is a generalized second price, sealed-bid auction

that reduces to the Vickrey-Clarke-Groves (VCG) mechanism in special cases while

avoiding some of VCG’s undesirable economic properties in other cases [16], including

problems related to low revenue and vulnerability to collusion by losing bidders.

In our cryptographic combinatorial clock proxy (CCCP) auction, all bid informa-

tion is encrypted, and these encryptions are posted to the public. No party, including

the auctioneer, can decrypt any values until all bids have been submitted in both

phases. After all bids are in, only the auctioneer receives the decryption key, com-

putes the outcome in private, reveals individual outcomes to each bidder, and issues

efficiently checkable proofs that the reported outcomes are correct given the public

encrypted bids. This complete secrecy until the auction closes removes opportunities

1Porter et al.[124] earlier described a combinatorial-clock auction and Parkes and Ungar [120, 121]
and Ausubel and Milgrom [16] earlier described variants on the proxy auction.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 151

for collusion while assuring that the process remains trusted and verifiable by all par-

ticipants, offering an unprecedented balance of efficiency, privacy, and transparency.

In non-cryptographic auctions, trust is made possible at the cost of privacy: dis-

closure. Indeed, this is one path that Ausubel et al. [15] suggest. But this can be

undesirable for a number of reasons: bidders may not want competitors to learn

about the values of their bids even after the fact; it may be politically undesirable

to reveal that the winning bidder was willing to pay much more that was charged

via the auction rules, and revealing bids received during the clock phase may lead

to opportunities for collusion.2 Ausubel et al. [15] also argue that the confidentiality

of values is of primary importance in an implementation, and suggest that in some

areas of the auction, some values should be hidden even from the auctioneer: “Only

the computer need know.” Our techniques complement such a “black box” system

by guaranteeing the results are correct, not simply that the programs on the system

are believed to be correct.

We advance several contributions in the present work. During the clock phase,

we employ homomorphic cryptography to protect the secrecy of bids while allowing

bidders to prove they satisfy activity rules and allowing everyone to compute the

aggregate demand for goods that determines the next round’s prices. As in our

previous work on non-combinatorial sealed bid auctions [119], we employ time-lapse

cryptography [129], to provide secrecy during the bidding process while enforcing

nonrepudiation: guaranteed revelation of the bids to the auctioneer when the bidding

2In a recent FCC auction for the 700MHz spectrum the government has for the first time removed
all feedback about the particular bids submitted in each round. Each bidder receives individualized
feedback about its own bid activity. Clearly this higher degree of secrecy brings along the need for
increased trust in the auctioneer.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 152

is complete. This avoids protocol completion incentive problems [31] in which bidders

who realizing they will lose or change their minds can refuse to complete a distributed

commercial protocol.

In the primary technical contribution, we demonstrate how to use our crypto-

graphic framework to prove the correctness of solutions to general classes of linear

optimization problems; this is how we efficiently compute the auction outcome and

prove it correct. Our auctioneer employs powerful branch-and-bound mixed-integer

programming search techniques to compute the outcome in private, avoiding costly

secure computation for the optimization task; he can then prove that the outcome is

correct with efficiently checkable proofs. This allows us to support much larger-scale

combinatorial auctions than in the current literature while maintaining the same level

of provable fairness.

7.1.1 Related work

A body of existing research considers the use of cryptographic methods to pro-

vide trust without compromising privacy; see Brandt [33] and Parkes et al. [119]

for a recent discussion. Much of the previous work focuses on non-combinatorial

sealed bid auctions with complete privacy, where no party learns anything except the

outcome [65, 72, 110, 94]. We advanced in [115, 119] the security model we adopt

here, that of an auctioneer who must prove every action correct, and who learns bid

information only after the auction closes—preventing meaningful disclosures.

We are only aware of one collection of research, by Yokoo and Suzuki, that consid-

ers cryptographic combinatorial auctions in depth; while their pioneering work offers

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 153

a theoretical solution to an important problem, their solutions, which require expo-

nential computations to prove the auction correct, scale only to very small auctions in

practice. One method they provide is based on dynamic programming using polyno-

mial secret sharing to compute the optimal solution to the combinatorial optimization

problem without revealing the inputs [146]. Another method that they describe em-

ploys homomorphic encryption [147], as is natural to adopt for our system, but again

fails to scale because computation is performed explicitly on each of the exponentially

many possible allocations of goods. The same authors later extended their work to

remove the need for a third-party auctioneer [156], but are limited by the scalability

of dynamic programming in this domain and also by additional process complexity

implied by such a completely distributed solution. Finally, a related paper by Naor,

Pinkas and Sumner [110] proposes the use of garbled circuits to compute the out-

come of a combinatorial auction. Though the work is important for its foresight and

theoretical affirmative results, we know of no practical implementation of obfuscated

circuits that has been applied to significant real-world problems on the scale of a

commercial combinatorial auction.

7.2 Cryptographic preliminaries

Several cryptographic systems support the secrecy-preserving, provably correct

computation we employ to conduct the auction. Because Paillier’s cryptosystem [114]

supports all of the operations we employ and is widely accepted in secure protocols,

we use it in our exposition of a complete system to conduct a CCCP auction. That

said, there is nothing that necessitates the use of Paillier’s system; in fact, other

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 154

solutions can be constructed that are computationally more efficient but complicate

the protocol. These include, among others, Pedersen [122] commitments and ElGamal

encryption [58], based on the hardness of computing discrete logarithms modulo a

prime, and the provably correct secure computation system described by Rabin et

al. [128].3 We reserve for future work a complete discussion of how these and other

systems might also support our protocol.

The Paillier-based implementation from Chapter 3 of our general framework de-

scribed in Chapter 2 offers us a full set of provably correct, secrecy-preserving math-

ematical operations on encrypted inputs.

7.2.1 Mix Networks

Due to special mathematical properties Paillier encryption enjoys, it is possible

for a Prover (in our application the Auctioneer) to create a random permutation S ′

of a set of encryptions S so that a verifier believes that S ′ encrypts precisely the same

set of values that S does. In the spirit of our work, this can be done in a manner not

revealing any information about the encrypted values.

In the Paillier cryptosystem, one can generate a new “random-looking” encryp-

tion of a particular element by multiplying it by a encryption of 0 — we call this a

“re-encryption factor”. The auctioneer can create many random permutations of the

encrypted values and commit to the re-encryption factors in each permutation. The

verifier then asks the auctioneer to reveal the re-encryption factors for some of the

3We have devised a similar protocol to the one we describe based on Pedersen commitments;
while this protocol is computationally more efficient, it is mathematically more sophisticated, and
we present the solution here because of the simplicity a protocol with a single cryptosystem enjoys.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 155

permutations, and verifies that the factors are well-formed (that is, they are encryp-

tions of zero) and that the permutation is correct. The remaining permutations, for

which the factors remain unrevealed, are now verified correct with high probability.

Cryptographers have formalized this idea as a “shuffle”, or “mix network”.4 See

Abe et al. [4, 5] for early work on such permutation networks, and Boneh and Golle [28]

for an excellent formalization of mix networks, a brief survey of other solutions, and

an interesting efficient protocol for proving a mix network is correct with high (but

not overwhelming) probability.5 We will employ a mix network to create a verifiable

random permutation of the encrypted bids that are submitted to the proxy auction.

This will allow the branching decisions of the branch-and-bound proof tree to be

published without revealing any information about the actual underlying inputs to

the linear optimization problems; bidders can thereby be satisfied with their outcome

without learning private bid information.

7.3 Combinatorial Auction Preliminaries

We consider a multi-unit combinatorial allocation problem with goods G =

{G1, . . . , Gm} and bidders B = {B1, . . . , Bn}. There are Cj units of each good Gj

available and each bidder Bi has a valuation function vi(si) on bundles si ∈ Zm≥0,

where sij ≤ Cj denotes the number of units of item Gj in the bundle. An efficient

allocation solves V ∗ = maxs∈F
∑

i vi(si) where F = {s :
∑

i sij ≤ Cj, ∀j ∈ G} and

s = (s1, . . . , sn) denotes the allocation of items to bidders. We assume quasi-linear

4The latter term should not be confused with hard-to-trace network communications protocols
that are sometimes referred to by the same name.

5Boneh and Golle’s efficient solution should not be employed without using an additional mech-
anism to verify its correctness. See [28].

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 156

utility ui (or payoff πi), so that bidder Bi’s utility for bundle si, given payment

yi ∈ R≥0, is πi = ui(si, yi) = vi(si) − yi. We make the standard assumptions of

normalization, with vi(si) = 0 when sij = 0 for all items Gj, and free disposal, with

vi(si) ≥ vi(s
′
i) for s′i ≥ si.

The payments in the proxy auction implement a particular outcome on the buyer-

optimal core. Consider the payoff vector π = 〈π1, . . . , πn〉 induced by an efficient

allocation s∗ and payment vector y = 〈y1, . . . , yn〉. Let π0 denote the payoff to the

seller, which is the total revenue received by the seller with π0 =
∑

i yi = V ∗−
∑

i πi.

A payoff profile 〈π0, π〉 is in the core if π0 +
∑

i∈K πi ≥ V (K) for all K ⊆ B, where

V (K) = maxs∈F
∑

k∈K vk(sk). This states that no coalition of K ⊆ B buyers and

the seller can improve its total payoff by leaving the auction and allocating the items

amongst itself, leaving all members weakly better off. Simple algebra shows that the

core payoffs can be equivalently defined as Core =

{π :
∑

i∈W\K

πi ≤ V ∗−V (K), ∀K ⊆ W,πi ≥ 0, πi ≤ vi(s
∗
i)},

where W is the set of winners in the efficient allocation s∗.

The buyer-optimal core defines a payoff vector that solves π ∈ arg maxπ∈Core

∑
i πi.

We can relate the buyer-optimal core to the outcome of the Vickrey-Clarke-Groves

(VCG) mechanism. The VCG mechanism defines payments so that the payoff to

bidder i is πvcg
i = V ∗ − V (B \ {i}), i.e., each bidder’s payoff is the marginal value it

contributes by its presence. The buyer-optimal core is unique and coincides with the

VCG outcome when the VCG outcome is in the core. But in general we have
∑

i πi <∑
i π

vcg
i and the revenue to the seller is greater in a buyer-optimal core outcome

than in the VCG mechanism. In the particular instantiation of the proxy auction

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 157

that we consider in this chapter, when the buyer-optimal core is non-unique, the

final payments are computed to minimize the maximal difference to the VCG payoff

across all buyer-optimal core outcomes. This particular choice follows the suggestion

of threshold payments in Parkes et al. [118] in the context of a combinatorial exchange,

and as refined in the context of the proxy auction by Day and Raghavan [52].

7.4 Conducting the Clock Auction

Our presentation of our main results begins by considering the first phase of CCCP,

which is the clock auction phase. The clock phase proceeds in rounds until demand

does not exceed supply for any good. In each round t, a price vector pt = 〈pt1, . . . , ptm〉

associates prices with each good: ptj is the price for good Gj in round t. The price

vector is initialized to low prices (although not necessarily uniformly across all goods)

for the first round, t = 1, and is increased in each successive round based on the

amount of excess demand. Bidders submit a bid sti ∈ Zmgeq0 in each round. These bids

are ultimately included within the proxy bids that form the input to the proxy phase.

The main challenge that we face in the clock phase is to allow for the price

discovery process but without allowing any party—the auctioneer included—to learn

anything about any bids not already implied by the public information. Following

the description of Ausubel et al. [15], we allow the price increase on a good in a round

to depend on the amount of excess demand on that good.6 One requirement, then,

is that any party (the auctioneer included) must be able to determine the excess

6Ausubel et al. [15] also discuss the idea of using intra-round bids in which the auction proceeds
in a smaller number of discrete rounds and bidders express quantity demands in each round at all
prices along a price trajectory that will be traced during the round. We save this extension for
future work.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 158

demand on each good in the current round without learning anything else about the

current bids. It will also be necessary to allow any party to verify that the bids meet

a revealed preference activity rule (RPAR) without revealing any information.

All bids made during the clock phase must also be submitted as proxy bids in the

proxy phase. We ensure this and prevent non-repudiation through the use of a time-

lapse cryptography (TLC) service [129]. At the start of the auction, the auctioneer

in CCCP announces the initial price vector p1 and the supply C = 〈C1, . . . , Cm〉

and designates a public time-lapse cryptographic key N , as described in Section 6.2.4.

Because the secret key corresponding to N (and based on the factorization of N) is not

revealed until after all bidder information has been submitted, the auctioneer cannot

reveal private information that could affect the outcome. The forced reconstruction

of N guarantees that the bids can be opened by the auctioneer when the auction is

complete.

7.4.1 A Sequence of Clock Rounds

At the beginning of round t, the auctioneer publishes the current clock price vector

pt = 〈pt1, . . . , ptm〉. Then, each bidder Bi publishes an encrypted version of her bid

given the current prices: E(sti) = 〈E(sti1, r
t
i1), . . . , E(stim, r

t
im)〉. Bidders publish these

encrypted bundles to all bidders, the auctioneer and any verifiers, either by broadcast

or to a common “bulletin board” during a fixed period of time for round t. This

encrypted bundle is represented as a vector of length m, in which each coefficient stij

is an encryption of the quantity Bi wants for good Gj at price ptj. The values rtij are

independent, fresh random help values that each bidder selects in accordance with the

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 159

probabilistic homomorphic encryption scheme, and kept secret. Encryptions of zero

must be included for any undesired item to keep the number of items in the bundle

secret.

Bid Validity and Activity Rules

Each bidder must now prove that the bid is valid and satisfies an activity rule.7

The basic idea in a revealed-preference activity rule (RPAR) is to require bidders

to follow a demand-revealing strategy that is consistent with some fixed valuation

function across all clock rounds. Consider a current round t and some previous round

t′ < t, corresponding price vectors pt and pt
′
, and Bi’s associated demands sti and st

′
i .

A straightforward bidder with valuation vi prefers sti to st
′
i when prices are pt:

vi(s
t
i)− pt · sti ≥ vi(s

t′
i)− pt · st′i

and prefers st
′
i to sti when prices are pt

′
:

vi(s
t′
i)− pt′ · st′i ≥ vi(s

t
i)− pt

′ · st′i .

Adding these two inequalities (the values of the bundles cancel) yields the activity

rule:

(pt − pt′) · (sti − st
′
i) ≤ 0.

Before proving the RPAR, bidders must prove that their current demands are valid

by using an interval proof: each Bi proves for the demand for good Gj, 0 ≤ stij ≤ Cj.

That is, the demand lies in the interval between 0 and the auction’s capacity for that

good.8

7While we talk about the “bidder” proving various facts about the bid history to the auctioneer
and any other interested party, we of course intend the proofs to be generated by a computer program
running on secure hardware controlled by the bidder, both to maintain the security of any private
information and because the cryptographic computations should not be carried out by hand.

8We also require that the capacities Cj are less than half the modulus of the cryptosystem (N/2),

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 160

Each bidder can now readily prove that she satisfies the activity rule using homo-

morphic cryptography via the clock prices and the published encrypted bids. This

must be established in round t with respect to all previous rounds t′ < t. First,

since the price vectors pt
′

and pt are public, anyone can compute the price difference

vector p̂ = 〈p̂1, . . . , p̂m〉 = pt− pt′ . Second, using the encrypted demand vectors E(sti)

and E(st
′
i), the homomorphic properties of the cryptosystem allow computing Bi’s

encrypted demand difference vector ŝi = 〈ŝi1, . . . , ŝim〉 = sti − st
′
i :

E(sti) = 〈E(sti1, r
t
i1), . . . , E(stim, r

t
im)〉

E(st
′

i) = 〈E(st
′

i1, r
t′

i1), . . . , E(st
′

im, r
t′

im)〉

E(ŝi) = 〈E(sti1, r
t
i1)

E(st
′
i1, r

t′
i1)
, . . . ,

E(stim, r
t
im)

E(st
′
im, r

t′
im)
〉

=〈E(sti1−st
′

i1, r
t
i1/r

t′

i1), . . . , E(stim−st
′

im, r
t
im/r

t′

im)〉

We then want to compute the encrypted dot product of the price difference vector

and the encrypted demand difference vector, that is, E(p̂ · ŝi). Again using the

homomorphic properties of the cryptosystem, we can compute this single coefficient

as follows,

E(p̂ · ŝi) = E(ŝi1, r
t
i1/r

t
i1′)

p̂1 × . . .× E(ŝim, r
t
im/r

t′

im)p̂m

=E(p̂1 × ŝi1, rti1/rt
′

i1)× . . .× E(p̂m × ŝim, rtim/rt
′

im)

=E(p̂1 × ŝi1 + . . .+ p̂m × ŝim, rti1/rt
′

i1 × . . .× rtim/rt
′

im)

We adopt r̂i to notate the random help value encrypting the dot product (the last

formula above): r̂i = rti1/r
t′
i1 × . . .× rtim/rt

′
im. We now have an encryption of this dot

but as the moduli are typically hundreds or thousands of bits, this poses no practical problems.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 161

product—a single value that proves the activity rule when it is less than or equal

to zero.9 Consequently, each bidder now proves using another interval proof (see

Section 3.2.3) that this encrypted value is less than (but relatively close to) zero. Our

example shows that Bi can compute the precise random help value corresponding to

the encryption of a dot product of an encrypted vector with a public vector. This

allows Bi to prove facts about the result like any other value it encrypted and even

though the decryption key has not yet been constructed.

Computing Aggregate Demand

At the conclusion of each round, the aggregate demand for each item must be

computed. This is done in a similar way, using the homomorphic properties of the

cryptosystem. The aggregate demand vector st for all goods at the end of round t is

simply:

st = 〈
n∑
i=1

sti1, . . . ,
n∑
i=1

stim〉

Given the encrypted demand vectors, we can compute an encryption of the aggregate

demand vector st as follows:

E(st) = 〈
n∏
i=1

E(sti1, r
t
i1), . . . ,

n∏
i=1

E(stim, r
t
im)〉 (7.1)

= 〈E(
n∑
i=1

sti1,
n∏
i=1

rti1), . . . , E(
n∑
i=1

stim,
n∏
i=1

rtim)〉 (7.2)

By multiplying each bidder’s encrypted demand for an item together, we obtain

an encryption of the sum of all bidders’ demands for that item; the random help

value of this encryption is the product of the random help values from all bidders’

9If the bidder does not prove the activity rule, then the bid is invalid and the auction rules should
dictate whether the bidder must resubmit or is disqualified for the round.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 162

encrypted demands. Since the secret decryption key does not yet exist, decryption

can only be performed by unlocking the encrypted value with its random help value.

While the random help value could be directly constructed from the other values,

such a direct computation would reveal too much, because each encrypted demand’s

random help value would unlock that particular demand. We thus employ another

well-known cryptographic protocol to compute the random help values needed to

unlock the aggregate demand for each good, which we detail in Section 3.3. This

process is repeated after each round t, for each good Gj, to compute the above

aggregate demand vector (Eq. 7.2). Bi constructs shares of the random help value

associated with the demand for good Gj, so that the product of these shares equals the

random help value rtij. Bi then distributes these shares among all bidders. Once all

the shares are received, the bidders multiply their received shares together, yielding

random factors of the help value
∏
i = 1nrtij. Then, bidders broadcast these random

factors to all bidders, and multiply them together to yield the desired help value.

This allows anyone to decrypt the encrypted sum of the aggregate demand for that

good and verify the result. Recall that since the encrypted individual demands are

public, one can compute an encryption of their sum by multiplying the encryptions.

We remark without proof that this sub-protocol to compute the random help

values is information-theoretically secure and reveals no information other than the

results. Furthermore, it requires only two broadcasts and scales linearly in the number

of items for sale. Moreover, bidders who refuse to participate in this protocol to

compute the aggregate demand can be disqualified, and the demand recomputed

without them. If a bidder submits incorrect values during this protocol, then the

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 163

computed values rtj will be discovered to be incorrect. Although the process we

describe cannot detect which bidder submitted incorrect values, the auctioneer can

resort to a more sophisticated verifiable secret sharing protocol (e.g., [48]) that can

identify non-compliant bidders. The ability to use such protocols if necessary should

discourage malicious bidders from attempting to disrupt our protocol: they can always

be discovered and disqualified. The auctioneer can also recover and reveal disqualified

bidders’ prior bids once he receives the time-lapse decryption key.

While this is a simple protocol for bidders within the auction to follow, other

methods of computing aggregate demand are possible. One notable example is the

threshold variant of Paillier cryptography advanced by Damg̊ard and Jurik [51].

7.4.2 Transition to the Proxy Phase

Let T denote the number of rounds in the clock phase. Each bidder has submitted

a bid on 〈s1
i , . . . , s

T
i 〉 bundles at public prices 〈p1, . . . , pT 〉. A bidder can now:

(a) improve any bid submitted during the clock phase

(b) include bids on additional bundles

These additional bids are committed by each bidder, by encrypting with the key

associated with the TLC service and then sharing them, for instance posting them to

a public bulletin board. When the auctioneer receives the time-lapse decryption key

he will then prove that each bidder meets the activity rules that constrain her ability

to bid in this transition from clock to proxy.

For (a), we first require each bidder Bi to associate a bid price bi(s
t
i) with every

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 164

bid. This bid price must satisfy

bi(s
t
i) ≥ pt · sti (7.3)

For (b), each bidder can also submit additional bids, which we index k > t to

indicate that they are received after the close of the clock phase. Consider some

bundle ski , either one of the clock bundles or one of these additional bundles, and its

associated bid price bi(s
k
i). Any such bid must satisfy the following constraints:

bi(s
k
i)− pt · ski ≤ α(bi(s

t
i)− pt · sti), ∀t ∈ {1, . . . , T} (7.4)

This requires that the bidder would not have been much happier (by some relax-

ation parameter α ≥ 1) by bidding this bundle in any clock round than the bundle

that it did bid in that round. We will also require each bidder to pad her bids (with

zero bids), so that the total number of bundles that receive a bid is constant across

all bidders. Let K denote the number of such bids.

Once this transition round closes the auctioneer receives the time-lapse decryption

key and will now generate a proof that all bids satisfy these activity rules. If a bidder

submits a non-compliant bid at this phase, the auctioneer can prove the bid is non-

compliant using our framework and remove any such bids from the computation of

the outcome.

To establish the activity rule, then for every bidder Bi and round t ∈ {1, . . . , T},

the auctioneer computes provably correct encryptions of the dot products pt · sti for

values bid during the clock phase. He further computes, for every bidder Bi, the

t(K−T) dot products pt ·ski ,∀t ∈ {1, . . . , T}∀k ∈ {T+1, . . . , K}. These dot products

are computed in the same way encrypted dot products are computed at the end of

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 165

Section 7.4.1. To prove Eq. 7.4, he shows that the bidder prefers each final proxy bid

〈ski , bi(ski)〉, T < k ≤ K, he computes the encrypted differences of these encrypted dot

products and encrypted bid values bi(s
k
i) and bi(s

t
i) (respectively) and multiplies the

second result by the public constant α; this allows him to use a simple interval proof

to demonstrate the inequality.

7.5 Conducting the Proxy Auction

The proxy phase of the CCP auction is used to determine the final allocation of

goods and the final payments. This requires solving a sequence of linear optimization

problems. Given that the winner-determination problem for combinatorial auctions

is NP-hard, it is essential that the bids are now revealed to the auctioneer. This

will enable the auctioneer to leverage efficient methods of integer programming in

determining the outcome. We reiterate that this revelation occurs after the auctioneer

can influence any of the bids with this information.

We show how to use the homomorphic properties of cryptosystems to establish

the correctness of an encrypted solution to an integer program. This is the main

technical innovation. In particular, we work with branch-and-bound trees and explain

how to use cryptographic methods to establish that a solution to an integer program is

optimal by reference to establishing various linear constraints implied by a fathomed

(i.e. solved) branch-and-bound tree. What we find appealing about our approach is

that it is completely agnostic to the particular heuristics by which a branch-and-bound

proof tree is generated (e.g. depth-first, breadth-first, memory management, branch-

selection heuristics, etc.). Rather, the system works directly with the information

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 166

that is established upon conclusion of the search.

We confine our solution to what can be considered a standard, textbook treatment

of branch-and-bound search (e.g., see Wolsey [155]). In doing so, we impose two main

restrictions on the use of branch-and-bound algorithms: (a) no pre-processing, and

(b) no cut-generation. While modern optimization solvers, such as ILOG’s CPLEX,

do make extensive use of both of these methods, good performance can be achieved on

reasonably sized problems without either feature. Our mechanism is already orders of

magnitude more efficient to verify than the methods described in earlier cryptographic

combinatorial auction protocols. We reserve for future work further consideration of

computational optimizations.

7.5.1 Branch-and-Bound Search

To illustrate the principle of branch-and-bound search we will consider the winner-

determination problem (WDP) in the proxy phase. In defining this, we index the

proxy bids si = 〈si1, . . . , siK〉 from each bidder i. Recall that K is the total number

of bids received from each bidder (by padding if necessary.) Let bi = 〈bi1, . . . , biK〉

denote the associated bid values. The integer programming (IP) formulation for the

WDP is

max

{∑
i

∑
k

xikbik : s.t. x ∈ F, xik ∈ {0, 1}, ∀i,∀k

}
(7.5)

where

F =


∑

i

∑
k sikjxik ≤ Cj, ∀j ∈ G,∑
k xik ≤ 1, ∀i ∈ B

 , (7.6)

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 167

Bidder Bid Variable Items Price
1 1 x11 {A,B} 3
2 1 x21 {B,C} 3
3 1 x31 {A,C,D} 3
4 1 x41 {C,D,E} 2
5 1 x51 {E,F} 4.5
6 1 x61 {G} 3
7 1 x71 {D} 1

Table 7.1: A simple example to illustrate a branch-and-bound tree

and these constraints ensure that no more units of a good are allocated than in the

supply and that no more than one bid is accepted from any single bidder.

In describing branch-and-bound, let z denote the value of the best solution found

so far (initialized to −∞), and let x denote that solution (undefined when no solution

has been found.) This is the incumbent solution. The first step in branch-and-bound

is to solve the linear-programming (LP) relaxation,

max

{∑
i

∑
k

xikbik : s.t. x ∈ F, xik ≥ 0, ∀i,∀k

}
(7.7)

Let L0 = {x : x ∈ F, xik ≥ 0,∀i, ∀k} denote the LP-relaxation of the solution

space. Let x0 denote the solution on L0 and z0 the value of this solution. If x0 is

integral then branch-and-bound can stop with x := x0 and z := z0. The solution x0

will in general be fractional, meaning that one or more of the variables has a value

that is neither 0 or 1.

To make sense of this consider the simple example in Table 7.1 (adapted from

Sandholm et al. [138]) in which we assume 7 bids, each from a unique bidder, and 6

goods all in unit supply. The optimal solution is to allocate to bids {1,5,7} for a total

value of 8.5. But the solution to the LP relaxation is fractional, with an assignment

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 168

〈0.5, 0.5, 0.5, 0, 1, 0, 0.5〉 and total value of 9.5. When this occurs, a branching decision

is made on one of the fractional variables. Continuing with the example, suppose

that we branch on x71 ≤ 0 and x71 ≥ 1. This generates two new sub-problems, one

defined on solution space L1 = {x : x ∈ F, x71 ≤ 0, xik ≥ 0, ∀i,∀k} and one defined

on solution space L2 = {x : x ∈ F, x71 ≥ 1, xik ≥ 0, ∀i,∀k}. Branch-and-bound

continues by picking one of these and solving the associated linear program. Let

(Lp, xp, zp) denote the associated LP and solution. In any one of the following three

cases, this becomes a “fathomed” (or solved) leaf:

(a) the subproblem is infeasible

(b) the subproblem has an integral optimal solution; if z < zp then z := zp and

x := xp.

(c) the subproblem is feasible and the solution fractional, but βzp ≤ z for some

β ≤ 1 that controls the optimality tolerance.

In our example, the solution to L2 is integral and we would set z := z2 = 8.5

and x := x2 = 〈1, 0, 0, 0, 1, 0, 1〉. This leaf is now fathomed. But the solution to L1

is fractional (x1 = 〈0.5, 0.5, 0.5, 0, 1, 0, 0〉) and has value z1 = 9 � z = 8.5. In such

a case, branch-and-bound search will generate two additional subproblems, typically

by doing something like branching on the most fractional variable. The unsolved

subproblems are stored on the “open list.” Branch-and-bound finally terminates when

the open list is empty, returning the incumbent as the solution. Finishing with the

example, when we branch on x11 ≤ 0 and x11 ≥ 1 we obtain two leaves that are

fathomed. The LP relaxations generate integral solutions and their value is less than

that of the solution already found.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 169

Figure 7.1: Branch-and-Bound Proof Tree

While there are many sophisticated strategies for managing the details of a branch-

and-bound search, for our purposes all that is required is a fathomed branch-and-

bound tree, i.e. one for which all leaves have been fathomed. An example of a

so-called proof tree for the example is shown in Figure 7.5.1.

7.5.2 The General Approach

In this section we describe the general approach to establish the correctness of

the solution to an integer program (IP). Along the way we also provide a method

to establish the correctness of the solution to a linear program (LP). Recall that the

input to the IP is published in encrypted form. In describing our approach we assume

that the solution to the IP is revealed to all parties, but this is not necessary. All

relevant steps can instead be performed using an encryption of the solution if the

solution itself is to remain private.

The cryptographic proof is constructed around a proof tree as generated at the

termination of a branch-and-bound search. To perform these steps on the encrypted

inputs, we first note that IPs, LPs and their duals are all linear inequalities and

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 170

linear equations in the objective. Therefore, we can prove a set of constraints is

satisfied, or that a solution has a particular objective value, using the verifiable addi-

tion, subtraction and multiplication operations and equality and inequality tests on

Paillier-encrypted values. All that is required are encryptions of all the private inputs

(the bids in our case).

Because we have formulated all inputs as integers, it is theoretically possible to

obtain LPs with rational coefficients at every point in the proof tree, which implies

that they have rational solutions. Thus our extension of integer arithmetic to the

rationals (Section 2.1.5) enables us to calculate exact solutions to rational LPs. In

practice, it is likely that the results will be computed using a computer program that

yields a floating-point or real number as a result. We can instead convert this value to

a rational number and prove that the constraints are satisfied with acceptably small

error; see Section 2.1.7.

The proof of the correctness of a solution x∗ to a IP proceeds with the following

steps:

1. Any permutation-invariance in the class of problems being solved is leveraged

for the purpose of secrecy by generating a random permutation using a mix

network as described in Section 7.2.1. This proves to verifiers that the set of

encrypted values in the proof tree is the same as the set of inputs, but makes

the correspondence between those sets is unknown.10

2. The branching decisions that define the proof tree are revealed. (For instance,

10A complete permutation invariance is not required for this step. For example, in the context of
the combinatorial auction application, we seek a permutation of the order of the bids submitted by a
particular bidder and also a permutation across bidders. But we should not mix-up bids submitted
by one bidder with bids submitted by another bidder.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 171

“at the root the left branch is x6 ≤ 0 and the right branch is x6 ≥ 1” and so

on.) The amount of information that this reveals depends on the amount of

permutation invariance in the class of problems. For example, if all inputs can

be “mixed” with all other inputs then this reveals no information.

3. The solution x∗ to the IP is revealed along with a claim β ≤ 1 about its op-

timality (e.g., β = 9999/10000 would state that the solution quality is within

multiplicative factor 9999/10000 of the optimal solution.) The encrypted solu-

tion E(x∗) is published and shown to be a valid encryption of x∗: this is because

many of our operations only apply to two encrypted operands, and for those we

need to use E(x∗) rather than the unencrypted x∗.

4. Let q∗ denote the leaf associated with the optimal solution. This is revealed by

the prover. The prover then proceeds to:

(a) Publish E(V ∗) and prove that its value is correct (i.e. the value is an en-

cryption of the objective value of the IP given solution x∗).

(b) Prove that x∗ satisfies the constraints of the LP formulated at leaf Lq
∗

(i.e.

prove inequalities defined in terms of the encrypted input to the IP and also

the additional inequalities implied by the branching decisions.)

(c) Prove that x∗ is integral. (See Section 2.1.5.)

5. Consider every leaf q (including the optimal leaf) in turn. For every such leaf,

the prover then proceeds to:

(a) Let yq denote the solution to the dual LP at leaf Lq and Dq the value of that

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 172

dual solution. Publish the encrypted dual E(yq) solution and the encrypted

dual value E(Dq) at this leaf.

(b) Prove that the dual solution satisfies the constraints of the dual LP formu-

lated at leaf Lq.

(c) Prove the correctness of the dual value E(Dq) by reference to the dual

formulation, and that βE(Dq) ≤ E(V ∗).

This procedure encompasses both leaves that are fathomed by infeasibility and

leaves that are fathomed by bound in the same way. Note that a leaf that is infeasible

in its primal form has a dual solution with value −∞ by the duality theory of LP.

Therefore, the prover can always construct a feasible dual solution to prove that

there is no better (primal) solution in the feasible solution space that corresponds to

a particular leaf. It should be easy to see how to generalize the above approach to a

mixed integer program.

When the original problem is an LP rather than a IP then there is no proof tree

to deal with, and the procedure is simply: (a) publish E(V ∗) and prove this value is

correct; (b) prove that x∗ satisfies the constraints of the LP; (c) publish an encrypted

dual solution E(yq) and associated dual value E(Dq); (d) prove that the solution is

dual feasible, and that βE(Dq) ≤ E(V ∗).

7.5.3 Winner Determination

To instantiate the general approach in the context of the proxy auction we provide

the IP formulation for the winner-determination problem (WDP) along with the dual

problem to the LP relaxation at a leaf of a branch-and-bound tree. Recall that

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 173

(sik, bik) denotes the kth proxy bid submitted by bidder i, where bundle sik contains

sikj units of item j ∈ G. The IP formulation for the WDP is:

max
xik

∑
i∈B

∑
k

xikbik WDP(B)

s.t.
∑
i∈B

∑
k

sikj xik ≤ Cj, ∀j ∈ G (7.8)

∑
k

xik ≤ 1, ∀i ∈ B (7.9)

xik ∈ {0, 1}, ∀i ∈ B, ∀k

where xik indicates whether the kth bid from bidder i is accepted. We label this

formulation WDP(B) to make explicit that this is problem is defined for all bid-

ders and to allow for variations WDP(L) defined on a subset L ⊆ B of bidders.

Constraints (7.8) ensure that the supply constraints are satisfied. Constraints (7.9)

ensure that no bidder receives more than one bundle of items.

The linear-programming relaxation of WDP(B) is defined by replacing xik ∈ {0, 1}

with xik ≥ 0. In defining the dual (and overloading notation from the clock phase,

which is no longer needed), we introduce variables pj to denote the dual variable for

constraints (7.8) and πi to denote the dual variable for constraints (7.9). Given this,

then the dual problem is:

min
p,π

∑
j

Cjpj +
∑
i

πi DWDP(B)

s.t.
∑
j

sikj pj + πi ≥ bik, ∀i, k (7.10)

pj ≥ 0, πi ≥ 0

A sequence of branching decisions leading to a fathomed leaf in the search tree

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 174

introduces additional constraints to WDP(B) and modifies the dual problem at the

leaf. Let (i, k) ∈ OUT indicate that branch xik ≤ 0 has been taken and (i, k) ∈ IN

denote that branch xik ≥ 1 has been taken. Given these constraints, the restricted

primal and dual pair becomes:

max
xik

∑
i

∑
k

xikbik RWDP(B)

s.t.
∑
i

∑
k

sikj xik ≤ Cj, ∀j ∈ G (7.11)

∑
k

xik ≤ 1, ∀i (7.12)

xik ≤ 0, ∀(i, k) ∈ OUT (7.13)

xik ≥ 1, ∀(i, k) ∈ IN (7.14)

xik ≥ 0, ∀i,∀k

min
p,π,δ

∑
j

Cjpj +
∑
i

πi −
∑

i|(i,k)∈W

δi DRWDP(B)

s.t.
∑
j

sikj pj + πi ≥ bik, ∀(i, k) /∈ (OUT ∪ IN) (7.15)

∑
j

sikj pj + πi − δi ≥ bik, ∀(i, k) ∈ IN (7.16)

pj ≥ 0, πi ≥ 0, δi ≥ 0

Dual variable δi corresponds to constraints (7.14) in RWDP(B). The variable that

dualizes constraints (7.13) drops out of the dual formulation because it appears with

coefficient zero in the objective and appears in a non-binding constraint. Taken

together with the general approach of Section 7.5.2, we now have all the pieces to

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 175

see how to establish for a verifier the correctness of the allocation determined in the

proxy phase. Once the solution x∗ is published and associated with a leaf of the

branch-and-bound tree, and once it has been shown to satisfy the constraints of the

appropriate RWDP(B) formulation for that leaf and to be integral, the remaining

work in proving the optimality is in terms of the DRWDP(B) formulations at each

leaf. All the information required to complete these proofs is either available in the

encrypted proxy bids (e.g. sikj, bik), publicly known (e.g. the capacity Cj), or defined

by the branching decisions (i.e., {OUT , IN }).

7.5.4 Proxy Payments

The payments in the proxy auction are those on the buyer-optimal core that

minimize the maximal deviation across all buyers from the VCG payoff profile.11

Solving for this point will require using constraint generation but the cryptographic

proof will be constructed after-the-fact in terms of just the final set of constraints.

By a slight reformulation of the method in Day and Raghavan [52], the payoffs to

11This is a particular instance of a family of payment rules that break ties in different ways but
have very similar economic properties.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 176

winning buyers i ∈ W can be computed in the following LP:

max
π,m

∑
i∈W

πi − ε m EBOP

s.t.
∑
i∈W\L

πi ≤ V ∗ − V (L), ∀L ⊆ W (7.17)

πi +m ≥ πvcg
i , ∀i ∈ W (7.18)

0 ≤ πi, ∀i ∈ W

0 ≤ m,

with πi = 0 for all i /∈ W , and for some small ε > 0. The objective is to maximize

the total buyer payoff, but then for small ε to break ties in favor of minimizing the

maximal deviation m from the VCG payoffs across all such buyers. Constraints (7.17)

are the core constraints and constraints (7.18) force m to adopt the maximal difference

to VCG payoffs. Given a solution π∗ to EBOP, the payments collected from each

winning buyer i ∈ W are bi(s
∗
i)− π∗i .

EBOP is an LP and has no integer variables. But notice that part of its input

has required solving IPs (since constraints (7.17) are defined in terms of V ∗ and

V (L)). More difficult, there are an exponential number of constraints (7.17). Day

and Raghavan [52] suggest using constraint generation to construct a subset L ⊆ 2W of

coalitions, with constraints (7.17) reformulated as
∑

i∈W\L πi ≤ V ∗−V (L), ∀L ∈ L.

Let EBOP(L) denote the relaxed form of EBOP in with just this subset of constraints.

New constraints are introduced until it can be established that:

max
L⊆W

∑
i∈W\L

πi − (V ∗ − V (L)) ≤ 0 (7.19)

This establishes that none of the missing constraints is binding. (In practice, this

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 177

is also the separation problem that is solved in generating a new constraint.) Given

a solution π∗ to EBOP(L), the separation problem can be formulated and solved via

an IP as a simple variation on the regular WDP:

max
xik

∑
i∈W

(
1−

∑
k

xik

)
πi − V ∗ +

∑
i∈W

∑
k

xikbik SEP(π∗)

s.t.
∑
i

∑
k

sikj xik ≤ Cj, ∀j (7.20)

∑
k

xik ≤ 1, ∀i ∈ W (7.21)

xik ∈ {0, 1}

Putting this all together, the methodology for establishing the correctness of the

final payments is as follows:

1. Publish the set L of coalitions of winners that are used to establish the cor-

rectness of payments. (Note that this does not reveal any information if a mix

network was used on the inputs.) Publish the parameter ε > 0.

2. Publish the solution E(π∗) and E(m∗) to EBOP(L). Publish the vector of proxy

payments p∗ = 〈p∗1, . . . , p∗n〉. Prove that p∗i =
∑

k x
∗
ikbik − π∗i for all buyers i.

3. Publish and establish the correctness of E(πvcg), for πvcg = 〈πvcg
1 , . . . , pvcg

n 〉.

Publish and establish the correctness of E(V (L)) for all L ∈ L.

4. Publish and prove the solution to the separation problem SEP(π∗).

5. Prove that the solution to EBOP is primal feasible.

6. Publish an encrypted solution to the dual problem and prove it is dual fea-

sible. Prove the value E(D∗) ≤ βE(V ∗) for some parameter β ≥ 1, e.g.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 178

β = 100001/100000.

Step 3 requires proving facts about solutions to different winner determination

problems. For the VCG payoff, πvcg
i = V ∗ − V (B \ i) and thus this needs the value

of E(V (B \ i)) to be proved correct. This can be done following the approach in

the previous section for the WDP. Similarly, we need to prove the correctness of

E(V (L)) for subsets L ⊆ B. Note that both kinds of proofs can be verified without

revealing the solution to these subproblems, and that no useful information leaks from

publishing branching decisions in the branch-and-bound search because of the use of

a mix network.

Step 4 can be reduced to an instance of the WDP and proved analogously. To see

this, notice that the objective can be reformulated as

maxxik
(
∑
i∈W

πi − V ∗) +
∑
i∈W

∑
k

xik(bik − πi), (7.22)

and that (
∑

i∈W πi − V ∗) is a constant. Thus, this is a winner determination

problem formulated on the winners W and with the bid values of the winners replaced

with adjusted values bik − πi. In Step 6 we need the dual to EBOP(L). Introducing

variables zL and zi for the generated subset of constraints (7.17) and constraints (7.18)

respectively, the dual LP is:

min
zL,zk

∑
L∈L

(V ∗ − V (L))zL +
∑
i∈W

πvcg
i zi DEBOP(L)

s.t.
∑
L:i/∈L

zL − zi ≥ 1, ∀i ∈ W (7.23)

−
∑
i∈W

zi ≥ −ε (7.24)

zL, zi ≥ 0

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 179

The correctness of the solution to EBOP(L), which is a linear program rather

than an IP, can then be verified by following the specialized methodology outlined at

the end of Section 7.5.2.

7.5.5 Announcing Results

The above steps are sufficient to prove to any interested party that the allocation

and payments are correct. But because we employed a mix network to prevent bidders

from learning the position of their bids in the proof tree, we still need to convince

an individual bidder that the particular allocation announced for them is correct for

them.

This is easy to achieve by privately revealing to each bidder only the correspon-

dence between their original proxy bid that was accepted and its position in the

permutation generated by the mix network. The bidder will then be satisfied that

the outcome proven is correct from her perspective because she can verify that her bid

was allocated in the optimal allocation. She will similarly believe that the payment

corresponding to the bidder that submitted the bid, and hence her payment, is cor-

rect. We note that this does now imply an extremely tiny amount of information that

is leaked by our system, over and above that implied by the outcome of the auction.

Namely, each bidder learns where in the various proof trees her own accepted bid was

branched on. But this appears to disclose no useful information to the bidder.

Chapter 7: Cryptographic Combinatorial Clock Proxy Auctions 180

7.6 Conclusions

We have described a scalable cryptographic method to enable trusted but secret

combinatorial auctions. In particular, we have fully captured the intricacies of the

clock-proxy auction in our solution. It bears additional emphasis that in striving for

a practical solution we require that the auctioneer is trusted not to reveal information

about bids after the auction closes. This is the same tradeoff that we made in our

earlier work on non-combinatorial auctions [119]. In making this tradeoff, we achieve

a system that is provably correct and trustworthy, and we believe computationally

and commercially practical.

Chapter 8

Cryptographic Securities

Exchanges

While transparency in financial markets should enhance liquidity, its exploitation

by unethical and parasitic traders discourages others from fully embracing disclosure

of their own information. Traders exploit both the private information in upstairs

markets used to trade large orders outside traditional exchanges and the public

information present in exchanges’ quoted limit order books. Using homomorphic

cryptographic protocols, market designers can create “partially transparent” markets

in which every matched trade is provably correct and only beneficial information

is revealed. In a cryptographic securities exchange, market operators can hide

information to prevent its exploitation, and still prove facts about the hidden

information such as bid/ask spread or market depth.

181

Chapter 8: Cryptographic Securities Exchanges 182

8.1 Introduction and Related Work

Market information plays a crucial role in modern securities exchanges. Published

trades inform the public about the value of a particular security. Bid and ask quo-

tations in limit books inform traders about other traders’ interest in a security and

at what prices orders are likely to be filled. Price change and trading volume infor-

mation for equities track the (mis)fortunes and public awareness of corporations and

equities markets. In theory, this market information should all benefit traders by

forcing traders who have private information to disclose it via their trades. Unfortu-

nately this information can also facilitate parasitic and unethical trading practices,

and simple nondisclosure can itself lead to new exploits by market insiders who can

benefit from the now private information. Balancing these forces is a significant chal-

lenge in market design, and our cryptographic tools offer an attractive solution to this

problem: market designers can achieve unprecedented control over deciding exactly

what must be transparent, and the ability to prove that what is revealed is correct.

The application of similar cryptographic tools in other commercial protocols has

been well studied in the academic literature (open and sealed-bid auctions [94, 157],

electronic cash [64], etc.) Yet, surprisingly little has been written about the con-

tributions cryptography can make to securities markets, in particular the open call

auction and continuous double auction protocols that underly most modern securi-

ties exchanges. Important prior work in this area includes Giovanni Di Crescenzo’s

pioneering work exploring privacy for stock markets [53], the secure double auction

protocols Wang et al. employs homomorphic ElGamal encryption in [154], and Mat-

suo and Morita describe a “Secure Protocol to Construct Electronic Trading” in [98].

Chapter 8: Cryptographic Securities Exchanges 183

The work of Bogetoft et al. in [26], based on secure multiparty integer computa-

tion, proposes an application to securities exchanges, although in their protocol, “all

trade is executed at the same market clearing price” and orders that do not clear

are rejected. In our case, we wish to support both market orders and the limit order

book that is an integral component of modern financial markets. Szydlo’s work on

zero-knowledge proofs for disclosure of portfolio risk [148], more relevant to Chap-

ter 9 than this one, proposed the use of homomorphic cryptographic commitments

to the disclosure of stock portfolio holdings. Although some of this related work,

particularly [53], considers the privacy of trader identities, our own work concerns

only the revelation of quantitative information about trades—not the anonymity of

the traders—which we view as an orthogonal problem.

While the objective in most cryptographic work for auctions has been to hide

information (secrecy), our objective is to enable a market designer to combine an

appropriate level of partial transparency with provably correct behavior. We also

do this in a setting informed by real-world demands, specifically, an exchange with

both limit and market orders, and in which multi-party computation by all parties is

infeasible.

Our design allows market designers to specify exactly what they wish to reveal,

and reveal only that information while proving it, and the market operation, are

correct. Immediate applications of our work can be seen in preventing unethical and

parasitic trading practices in the major exchanges as well as providing for a means

for trading large block orders without revealing information that can be exploited.

Evidence for the need for information hiding in markets can be seen by recent SEC

Chapter 8: Cryptographic Securities Exchanges 184

investigations and criminal convictions of unethical traders, and the development of

new alternative trading systems (ATS’s) that privately match large block trades. We

detail how market information is misused and the securities industry’s responses in

Section 8.2.1.

In situating our work, we first discuss the role of information in securities markets

from the perspective of market microstructure, a rich area of financial research that

studies the role and exchange of information in markets and how market design prin-

ciples serve to foster or inhibit information exchange. Market microstructure studies

questions such as: What are the costs and benefits of transparency in financial mar-

kets? What determines the bid-ask spread for a particular stock? Do large orders

really move the market? What is the effect of (not) publishing insider trades?

For simplicity, we will consider a single, electronic clearing network in which spe-

cialists, broker/dealers, or retail traders may place limit or market orders for shares of

a particular equity (e.g. IBM stock) in a continuous double auction. We will explain

the roles of each of these parties in the market, the types of transactions they may

participate in, and why they do. We consider the various forms of information that

these parties reveal through their actions (or inactions) and what information the

markets reveal to them, and how they can profit from that information.

After considering the role of participants and information in our market, we con-

struct a cryptographic framework that enables this information to be finely controlled

and disseminated according to the specific rules established by a market operator. We

observe that presently these types of information control are not achievable in finan-

cial markets because of a lack of trust: it is this transparency that proves correctness

Chapter 8: Cryptographic Securities Exchanges 185

of the market transactions. Yet requiring full transparency to achieve correctness is

a blunt method that can be exploited. We decouple these considerations.

Our proposed system proves correctness and provides for any level of transparency;

being able to prove facts without directly revealing the numbers behind them offers

market designers a more expressive set of possibilities for reporting market status. Our

construction and protocols use the homomorphic cryptography describe in Chapter 3

and several related works [114, 51, 115, 154, 148] to prove the correct operation of

the market according to its published rules and also to credibly reveal the required

market information to the participants. Another advantage of our solution is that

unencrypted quotes from the primary market can easily be integrated into our en-

crypted order book and matched against standing block limit orders; there is no need

to fragment orders into different market centers.

It is not our intention to advocate particular kinds of transparency but rather to

offer a finer level of control to market designers. Indeed, this application of cryptog-

raphy seems to us to open up interesting new questions for the field of finance. We

conclude with worked examples and report the result of an initial analysis of the cost

to support a realistic order flow on current hardware.

8.2 Introduction to Securities Exchanges

In this section we provide an overview of how equities are traded in order to

motivate our contributions to those without a background in finance. The study of

market microstructure in finance is most applicable to our work; Larry Harris’ book

Trading & Exchanges [73] is a well respected textbook on the field; we also found

Chapter 8: Cryptographic Securities Exchanges 186

three recent survey papers of market microstructure [24, 95, 144] helpful in framing

our contributions.

In many cases, we will simplify the complex workings of modern financial markets

in order to illustrate the core principles that are relevant to our work. We clearly

indicate these simplifying assumptions in our exposition. We use as our model a

market for a single equity for a single company and assume that all trades in that

market take place on an electronic clearing network (ECN) running a continuous

double auction with an open limit order book. We assume that the market operates

at fixed daily opening and closing times and trading does not take place anywhere else

when the market is closed. For simplicity, we do not consider short sales or buying

to cover, which are equivalent to selling and buying long positions for our purposes.

The market maintains an order book in which all outstanding limit orders are

recorded. Depending on the transparency rules of the market, all, some, or none of the

limit orders on the order book may be available to the public. Real-world exchanges

(NYSE, NASDAQ, Chicago Board of Trade) offer various degrees of transparency for

their order books.

For the purposes of the cryptographic properties of our exchange, there is no

important difference between dealers, brokers, specialists, or investors. In our simpli-

fied model, everyone may post limit orders and has access to the same information.1

Therefore we only consider two classes of participants: the (market) operator, i.e. the

exchange or its agent, and traders, in which we include specialists, broker/dealers,

and institutional and retail investors.

1A simplified way to look at it is that dealers, brokers and specialists provide liquidity to the
market to support the trades investors want to make. Possibly the most important function of
liquidity providers’ use of limit orders is enabling investors to place market orders.

Chapter 8: Cryptographic Securities Exchanges 187

As we present our model, we introduce formal definitions that we use later in our

protocol construction. We model the market state as the current state of the limit

order book B and trade history H. The order book B is private, but the trade history

H is public. (H can be public because any values logged therein are maintained in

encrypted form.) The market operator also maintains a public, encrypted order book

B̂ that is equivalent to B except that all bids and quantities are encrypted. Each

order placed receives a unique identifier i regardless of whether it is a bid or ask order

which is associated with the order and its components. Ask and bid orders, ai and bi

respectively, enter the market when placed and exit the market when withdrawn or

executed. An order is the tuple (pi, qi, ti, si ∈ {a, b}) representing the price, number

of shares, the time the order was placed on the market, and the side of the market:

whether the order is an ask (sell) or a bid (buy). When an order is taken off the order

book, it is removed from the state of the order books B and B̂ and the history H is

updated with the execution or cancellation that resulted in its removal.

We will also refer to a function with access to a complete price ordering of the

orders on the market o(s ∈ {a, b}, rank) whose arguments are the side of the market

(ask or bid) and the order’s rank where the most competitive price on either side has

rank = 0. Its output is the unique identifier i for the ask or bid with the given rank .

For example, we might write the current bid/ask spread as po(a,0)−po(b,0), or the market

depth (measured in shares) of the most competitive ten bid orders as
∑9

r=0 qo(b,rank).

This ordering is maintained by the market operator; it is convenient for showing how

the market operator proves correct operation of the market. Obviously, the ordering

o(s, r) changes whenever an order enters or exits the market. This function is also

Chapter 8: Cryptographic Securities Exchanges 188

used to support the market invariant that all orders are maintained in strict priority

order as described in Section 8.3.

In modern equities markets, orders fall into two basic categories: market orders

are an instruction to buy or sell a specific quantity of a security, and are filled as soon

as possible at the best available price on the market; limit orders are an instruction

to buy or sell a specific quantity of a security at a specific price, and are filled only

when another participant in the market is willing to make the opposite trade.

More complex orders that use real-time market information are possible, depend-

ing on broker support; for example, a stop loss order at a particular price instructs

the broker to sell a position at the market when the market reports a trade at or

below that price.2 In practice, some traders also use orders based on real-time data

as a substitute for limit orders because of the information revealed by limit orders or

to get a better price; for example, an order such as “Buy 1,000 shares at the market

if there are any trades below $20.00” might be used instead of a limit order to “buy

1,000 shares at $19.99” in order to keep the trader’s intentions secret and potentially

get a better price if the stock price dropped sharply. It might be that in a partially

transparent market in which limit order prices are hidden, traders would be more

inclined to use limit orders in these cases.

2Limit orders cannot substitute for stop orders. Limit orders are persistent, and less competitive
than the current equilibrium price; stop orders react to market movements and are at more com-
petitive prices. Our framework can be extended to support stop orders with concealed prices; the
operator would maintain a side list of stop orders and prove when their target prices are reached by
executed trades, all without revealing either the trade price or stop order price.

Chapter 8: Cryptographic Securities Exchanges 189

8.2.1 Market Information and Its Misuse

In this section we explore how transparency can be exploited, then examine at a

high level the types of market information whose transparency may be regulated by

cryptographic systems.

Misuse of Market Information.

The information provided by transparency can be exploited by unethical or cre-

ative traders. To illustrate this hidden cost of transparency, we detail two common

practices, one unethical and the other “parasitic”: front-running and penny-jumping,

respectively. Larry Harris’ chapter “Order Anticipators” in Trading & Exchanges

explores these and other related practices in depth [73]. We speculate that these

exploitations of transparency may be part of the cause for the conflict between pub-

lished theoretical market microstructure results that show transparency should im-

prove liquidity and other empirical results that are ambiguous with respect to this

question [130].

“Front-running” is the unethical practice of a party with private information about

an incoming large order to the market running in front of that order to take a po-

sition in the hope of making a quick profit when the large order arrives. For exam-

ple, a trader knowing that a mutual fund is going to buy a $10M position in IBM

stock might buy a smaller position beforehand with the expectation that the mutual

fund’s purchase will drive the price higher. Front-running and allegations of it are

widespread. In 2001, Dreyfus agreed to pay $20.5 million to settle accusations that

their fund manager Michael Schonberg engaged in front-running [1]. In 2003, the

Chapter 8: Cryptographic Securities Exchanges 190

NYSE announced its Enforcement Division had investigated several specialist firms

for rule violations including front-running and decided to bring disciplinary action

against them. Seven specialist firms agreed to pay over $200 million to settle charges

brought as a result of these allegations [2]. In July 2006 a Manhattan jury convicted

former specialist firm Van der Moolen managers Michael Stern and Michael Hayward

of fraud for trading stocks on the firm’s account before filling clients’ orders in order to

boost Van der Moolen’s profits and their own compensation [35]. In early 2007, The

New York Times reported other allegations of front-running: “The [SEC] has begun a

broad examination into whether Wall Street bank employees are leaking information

about big trades to favored clients. . . ” [8]. In a final example that lends credibility

to our claim that cryptography is important to the operation of the markets we pro-

pose, Citi, Merrill Lynch and Lehman ex-traders were prosecuted for eavesdropping

on traders’ communications and profiting on that private information [141].

“Penny-jumping” is not illegal, but Harris describes the practice as “parasitic” [73]

because it exploits market information, but traders who engage in the practice do not

actually contribute new information to the markets. Specifically, a trader identifies a

large limit order on the order book (e.g. 25,000 shares at $25.00) and places a smaller

limit order one tick above that order (e.g. 1,000 shares at $25.01). The penny-jumper’s

order will be filled first, and he expects that, in the short term, his upside is greater

than his downside, because his downside is protected by a free trading option created

by the large limit order while his upside is theoretically unlimited. If following price

movements are locally random, it is likely that the stock will trade at a higher price

before the large order is filled. Moreover, that reasoning ignores the possibility that

Chapter 8: Cryptographic Securities Exchanges 191

a large “buy” order might signal other traders that the stock is desirable and thereby

have an upward effect on its price. If the price happens to decline before it increases,

the large order will be filled, and the penny jumper exits his position via the large

order for a one-tick loss (e.g. after 20,000 of 25,000 shares have been filled).3

There is also evidence that knowledge of large (“block”) trades is similarly ex-

ploited. According to Stoll [144], large blocks of stock are not sent to the open

market because “The risk of pre-trading portions of the block in this manner is that

other traders will become aware of the block and will sell in anticipation, perhaps

driving the price down. . . ” and because other traders can exploit knowledge of large

orders in other ways (as above). While Stoll further claims that “empirical evidence of

block trades is quite mild,” Keim and Madhavan [80] (as cited in [95]) find in an em-

pirical study that the average (one-way) price impact for a seller-initiated transaction

is -10.2% from a benchmark three weeks before a large block trade, after adjustment

for market movement.

Historically, block trades are filled by “upstairs markets” where brokers shop

around by calling other brokers for the best deal. Keim and Madhavan “attribute this

large price impact to information ‘leakage’ arising from the process by which large

blocks are ‘shopped’ in the upstairs market.” [95] The reason for hiding information

in block trades is mainly to protect the traders before the large transaction occurs.4

3There is another downside risk: the limit order may be canceled at any time, eliminating the
free trading put option.

4Gemmill [66] offers an empirical analysis consistent with this view of the effects of post-trade
reporting of block trades on the London Stock Exchange. He finds ex post disclosure of block trades
does not have a dramatic effect on liquidity.

Chapter 8: Cryptographic Securities Exchanges 192

Responses to the Block Trading Problem

A common response to concerns of unethical and parasitic practices is to construct

a market in which partial or no information on orders is reported; many of these

exchanges, called “dark pools”, have found some success but for others, institutional,

liquidity-focused investors remain justifiably wary of some of them [78].

In the past few years, a number of major banks have collaborated with or built

new ATS’s (Alternative Trading Systems), generally with the purpose of making

block trading more efficient. In late 2006, Citi, Goldman Sachs, Lehman Bros., Mer-

rill Lynch, Morgan Stanley and UBS launched a “Block Interest Discovery Service”

(BIDS) for automatically matching large block orders without revealing them to the

primary markets. Around the same time, Citi, Lehman Bros., and Merrill Lynch

also joined Credit Suisse and Fidelity in launching LeveL, another ATS. Still another

clearing network, Liquidnet, specializes in helping institutions find counterparties for

pairwise large block trades and has captured a small but significant share of order

flow. Goldman Sachs’ SIGMA platform consolidates liquidity from many parties and

claims this gives clients better execution. NYSE Euronext plans a 2008 launch of a

similar electronic block trading platform for European markets [37].

Each of these systems is designed with three purposes: first, they seek to provide

block traders with the opportunity to trade with minimal market impact; second, they

keep traders’ identities anonymous; and third, they keep information about intended

trades as secret as possible until the trade is executed. The BIDS platform also seeks

to mitigate the dissemination of information by revealing trading intentions only

after two parties have presented legitimate opportunities to trade. Another approach

Chapter 8: Cryptographic Securities Exchanges 193

is taken by Pipeline, which maintains an electronic “board” of the most commonly

traded equities. Equities light up when there is block trading interest, but do not

reveal whether the interest is to buy or sell. Blocks are traded in extremely large

units (e.g. 10,000 or 25,000 shares).

Liquidnet’s matching system is integrated into traders’ order management sys-

tems and identifies opportunities for two parties to trade based on existing liquidity.

Liquidnet also provides an important role as a trust broker: only parties who are

known to be trading in good faith for liquidity reasons are permitted to participate

in the Liquidnet network. Liquidnet bans traders who are believed to exploit the

system, so that traders who use Liquidnet are less fearful of Liquidnet’s knowledge

of their orders [77].

POSIT, a service of Investment Technology Group, features block trading services

that more closely resemble an exchange, in that it runs both scheduled matches and

ongoing crossing of block trades. (Its BLOCKalert system is similar to Liquidnet, by

integrating with order management systems to identify trading opportunities.) For

its scheduled matches, POSIT MatchSM takes orders throughout the day and clears

the market at specific times. Orders that cross are filled at the midpoint of the bid-

offer spread on the primary market, so the system does not need to consider prices.

While its protocols are similar to those we propose, POSIT makes no guarantees of

execution and provides no correctness proofs—the systems rely completely on trust.

Several problems remain with these unregulated dark pools. First, if prices are

hidden, an unscrupulous market operator could simply fill a favored party’s bid be-

fore higher bids. Indeed, regulators have begun to mandate transparency to protect

Chapter 8: Cryptographic Securities Exchanges 194

investors, in light of specialists and broker/dealers exploiting private market informa-

tion to their advantage [144, 95, 2, 1, 35]. Second, traders with private information

may seek to extract liquidity from unknowing institutitonal investors participating

in the dark pools. Or, traders may seek to discover and front-run block orders in a

dark pool by placing probe orders designed to search for liquidity. Since institutions

place limit orders with no guarantee of whether they will be filled, those who do place

large orders may find that that information is discovered by strategies that search for

liquidity by placing many small orders that sense a large block.5 Some ATS’s, for

example, Pipeline, enforce a strict, large block order size to prevent such attacks.

The popularity of and growth in ATS’s is clear: LiquidNet reported on its website

in May 2008 that its network traded an average of 80 million shares per day in the

first quarter of 2008. Pipeline traders exchanged 36 million shares in January 2008,

also according to its website. These numbers have been increasing by double digit

percentages year over year, reflecting the increased interest in block trading and the

need for services that hide exploitable information.

While alternative trading systems certainly reduce the exploitation of order in-

formation, they do not provide any correctness guarantees. These approaches also

typically require that the block trades be separated from the primary securities ex-

changes. This has had a fragmenting impact on securities trading: because there

are so many ATS’s where liquidity might be lurking, sophisticated computer engines

now search across many sources of (often “dark”) liquidity in order to get the most

competitive prices [78]. Many bulge bracket firms boast an aggressively-named offer-

ing in algorithmic trading that seeks out liquidity from dark pools, including Credit

5See [78] for a detailed discussion of such “probe orders” and similar attacks.

Chapter 8: Cryptographic Securities Exchanges 195

Suisse’s “Guerilla” and “Sniper”, Citi’s “Dagger”, and Banc of America Securities’

“Ambush” and “Razor”.

Although the present work ignores privacy in these transactions, commercial so-

lutions typically highly value trader anonymity. This indicates that cryptographic

research in maintaining trader privacy (e.g. Di Crescenzo [53]) may also find a warm

reception in the industry.

8.2.2 Developing a Cryptographic Securities Exchange

Our model is of a simple securities exchange in which a market operator keeps a

private order book B and publishes its public analog B̂ with encrypted prices and

quantities, and (optionally encrypted) history of its actions H. Incoming limit orders

are placed on the book or matched with existing limit orders; incoming market orders

are matched with limit orders; the operator proves its actions correct.

Our primary goal is to prevent various adversaries from exploiting information

present in limit order books to the detriment of traders who wish to place limit orders.

These adversaries primarily include other traders and market insiders (market makers,

specialists, exchange employees) who attempt to (unethically or parasitically) profit

by exploiting limit order information.

Rindi [130] uses the term “partial transparency” in her examination of three

regimes of pre-trade transparency in a market for a risky asset based on an open

limit-order book: “under full transparency agents can observe the order flow and

traders’ personal identifiers; under partial transparency they can observe the order

sizes and under anonymity they can only observe the market price.”

Chapter 8: Cryptographic Securities Exchanges 196

We consider each of these information classes in turn. For existing orders, the

type of the order is implied; if it is in the book, it is a limit order. Incoming orders

may be market or limit orders; we assume that is disclosed. In call auctions, the

transaction type (buy or sell) can be kept secret until the auction closes, but it is not

meaningful to hide whether an order is to buy or sell in continuous double auctions.

As noted before, timed expiration of orders is unimportant.

The price per share pi associated with an order ai or bi on the book may be

fully transparent (pi = $20.06), partially transparent ($20.00 ≤ pi ≤ $20.25), or kept

completely private (pi =?). Similarly, the quantity qi and time posted ti may be fully,

partially, or not transparent.

The parameters of multiple orders may be related by inequalities. Two orders may

be related by price (e.g. pi ≥ pj), quantity (e.g. qi = qj) or time posted (e.g. ti < tj).

Partial or complete orderings for price and time of all orders in a limit book can

be constructed using these methods, as will become important for more expressive

partially transparent revelations. Quantity becomes important when proving order

flow and correct execution of trades.

Finally, one might wish to prove information about linear functions on the param-

eters of multiple orders, or compute linear functions without revealing unnecessary

additional information about the orders themselves. Examples of these functions

include:

• Bid/ask spread between the two most competitive orders

• Market depth within p cents of the mean between the outstanding bid and ask

(measured in number of shares)

Chapter 8: Cryptographic Securities Exchanges 197

• Bid-ask spread between the two least competitive orders comprising a market

depth of q shares

• Prices (if any) at a market depth of q shares

• Average number of hours outstanding orders above price p have been on the

market

Using recent advances in homomorphic encryption, market designers can construct

markets in which this kind of information can be revealed and proved correct without

revealing additional information about underlying orders.

Information, and related proofs, need not be issued in real-time, and in fact in

many cases market designers may prefer delayed revelation. In our system, market

designers can decide exactly when to reveal market activity, and even construct differ-

ent disclosure rules for different trade sizes. For example, the market might disclose

small trades within 30 seconds and large trades within 1 day.

8.3 The Cryptographic Securities Exchange

We have described the model of our market as a limit order book with a history.

We consider the state of the order book B, the encrypted public order book B̂, and

the history H to be the core state of our market. Various actions by the participants

in the markets update this state. We formally define these actions, who may perform

them, and how the update the state of the market depending on its state. The order

book and history begin as empty states.

Chapter 8: Cryptographic Securities Exchanges 198

In our present model we maintain an important invariant inB and B̂: all orders are

maintained in a strict priority ordering as defined by the ordering function o(s, rank).

Despite regulations that prescribe order routing priority, the priority of trades within

active markets is a complicated process beyond the scope of the present work. For

example, smaller orders at slightly less competitive prices or more recently submitted

might be filled instead of a large order that is the longest standing at the most

competitive price.

We model these priority rules as follows, from highest to lowest:

1) Most competitive price (pi is maximal)

2) Longest standing (ti is minimal)

3) Best “fill”, measured by the percentage of shares filled of the larger of the two

orders (
|qi−qj |

max(qi,qj)
is maximal).

We do not consider a formal mechanism for proving the time priority of an order

correct, in part because we see no benefit in encrypting the timestamp of an order:

orders are posted when they arrive, and that reveals the time they were posted.

Further, this information is not readily exploitable.

We assume a bulletin board that orders are posted to; the market operator is

required to accept new orders by adding them to the history H as soon as they

arrive. We also assume that at the beginning of each new trading session the public,

encrypted order book B̂ has been verified by tracing through the previous day’s

history in H.

Chapter 8: Cryptographic Securities Exchanges 199

8.3.1 Assumptions

Our protocol rests on certain realistic assumptions. The operator and all traders

possess the means for generating secure digital signatures. A universal, tamper-

resistant clock must be accessible by all parties, such as that maintained by the

US NIST, to preserve the integrity of timestamps. To prevent the operator from

improperly failing to disclose instructions, there is a universally accessible bulletin

board—not maintained by the operator—that records all activities of all parties and

publishes them for anyone to see.6 (All private data remain secure by encryption.)

We assume the hardness of the composite residuosity problem supporting Paillier’s

homomorphic encryption scheme [114]. We assume that a computer network may be

monitored for activity, and that even large amounts of activity can be examined for

any information “leakage”.

8.3.2 Encryption Method

We employ the homomorphic encryption scheme described by Pascal Paillier [114]

and extensions published by Damg̊ard and Jurik [51], Parkes et al. [115], and a use

of Boudot’s efficient range proofs [30]. We write the encryption of a value m with the

market operator’s public key and random help value r as E(m, r). The properties of

this cryptosystem allow construction of mathematical proofs of certain facts over the

ciphertexts. For example, given only E(m1, r1) and E(m2, r2), one can prove a value

6We assume a bulletin board strictly separate from the operator so that traders’ orders may be
presumed received and posted on time without respect to their content. Because the operator can
decrypt incoming orders, it is important that all incoming orders be posted by a neutral third party
to require the operator to prove its actions are correct; a corrupt operator could delay or ignore
incoming orders to benefit favored traders.

Chapter 8: Cryptographic Securities Exchanges 200

is within a constant range, e.g. m1 < n/2; inequalities, e.g. m1 > m2; or generate new

ciphertexts that are the sum of others, e.g. E(m1 +m2, r1 ·r2) = E(m1, r1) ·E(m2, r2).

We require these primitives for proving the correct operation of the market.

8.3.3 Processing Incoming Orders

Before orders arrive in any trading session, we recall that we assume the operator

has proven the public, encrypted order book B̂ correct by reference to the orders

posted on the bulletin board in previous sessions. This means that all transactions

may be performed with respect to existing orders in the order book without need for

further proofs of their correctness or rank in the order book.

Limit Orders.

Any trader in our model may place a limit order according to the following proto-

col. Each limit ask order ai is given a unique id i by the bulletin board and enters the

market in the following manner. Note that the same method applies for bid orders bi

by interchanging “ask” and “bid” and reversing inequalities (< becomes >).

Step 1. The trader encrypts the price p and quantity q and sends (E(p, rp), E(q, rq), a)

to the bulletin board. The bulletin board creates a unique identifier

i, adds a timestamp ti based on the current clock, publishes âi =

(E(pi, rpi
), E(qi, rqi), ti, a), computes the digital signature SIGN BB(âi) and

both publishes it and sends it to the trader as a receipt. Only the operator

can see what the pi and qi are.

Chapter 8: Cryptographic Securities Exchanges 201

Step 2. The trader privately sends the random help values rpi
, rqi to the operator.7

Step 3. The operator privately decrypts the values in âi to compute ai = (pi, qi, ti, a),

and verifies that the random help values correspond to the ciphertexts pro-

vided.

Step 4. The operator logs in H that order ai was received at time ti.

Step 5. The operator compares pi to the best ask price, po(a,0) and the best bid price,

po(b,0) and proceeds in one of four ways:

• If the incoming ask order is priced at less than or equal to the highest

priority bid, i.e. pi ≤ po(b,0), the operator matches ai with all outstanding

bid orders whose prices are ≥ pi up to the quantity qi in order of priority.

If there are not enough to fill ai, it becomes the most competitive ask

order on the order book afterward.

• If the incoming ask order is priced between the highest bid and the

lowest ask price, i.e. po(b,0) < pi < po(a,0), the operator adds it to the

order book.

• If the incoming ask order is priced equal to the lowest ask price, i.e.

pi = po(a,0), the operator adds it to the order book.

• If the incoming ask order is priced higher than the lowest ask price, i.e.

pi > po(a,0), the operator adds it to the order book.

7This is required to prevent other traders from exploiting the malleability of the homomorphic
encryption scheme to submit bids based on a function of another trader’s bid, e.g. “his bid plus 10
cents.” Knowing the random help value implies knowing the decryption, so provided the cryptosys-
tem is secure and the random help values are secret, no trader can submit a correct random help
value for a ciphertext based on another trader’s encrypted values.

Chapter 8: Cryptographic Securities Exchanges 202

Step 6. The operator updates H on the bulletin board with the details of any trade

that resulted from receiving ai.

Step 7. The operator recomputes the ordering function o(s, rank) such that the rank

of all orders in B is defined and correct.

Step 8. The operator updates its private B and publishes B̂ on the bulletin board

with the new set of encrypted orders.

Step 9. The operator issues proofs of correctness of its actions on the bulletin board.

Specifically, it proves the necessary inequalities to pigeonhole the incoming

limit order ai in its proper priority ordering, maintaining the invariant that

the all outstanding orders in B and B̂ are ordered according to priority.

Step 10. Anyone who wishes may verify the operator’s public proofs.

Market Orders.

A trader in our model may also place a market ask order ai (or bid bi). The

protocol differs from the limit order protocol given above only in Step 5:

Step 6. The operator matches the incoming market ask order ai with the k highest

priority bid orders bo(b,0,...,k) such that the k− 1 highest bids do not fill ai but

k do, and executes the trade(s) on all matched orders.

Executing Trades on Matched Orders.

The operator must prove that the quantity of the k multiple limit orders a large

order is matched with is greater than or equal to the quantity of the market order,

Chapter 8: Cryptographic Securities Exchanges 203

and that the sum of the quantities of the most competitive k−1 limit orders is strictly

less than the quantity of the market order.

Two orders ai and bj are matched when the bid price meets or exceeds the ask

price, i.e. pj ≥ pi. If the quantities are equal, qi = qj, the trade is executed and both

orders are removed from the order books B and B̂ and the transaction is logged in the

history H. Formally, to log the transaction the operator adds a journal entry to H

hi,j = (âi, b̂j, ti,j) with its signature SIGN MO(hi,j). The time ti,j is the time reported

by the universal clock at the time the order was executed. The operator also posts

the following proofs on the bulletin board:

• A proof that pj ≥ pi given E(pi, rpi
) and E(pj, rpj

).

• A proof that qj = qi given E(qi, rqi) and E(qj, rqj).

If the quantities differ, the order for fewer shares is fully filled and the order for

more shares is partially filled. Then, the smaller order (w.l.o.g. ai) is removed and

the larger order (w.l.o.g.) bj’s quantity is updated in the order books B and B̂.

Formally, the entry bj in B is replaced with bj = (pj, (qj − qi), tj, b), and in B̂ with

b̂j = (E(pj, rpj
), E(qj, rqj)/E(qi, rqi), tj, b). Anyone can verify the correctness of the

new published b̂j by computing the quotient of the previously published encrypted

values E(qj, rqj) and E(qi, rqi), which is known to be an encryption of their difference.

The transaction is logged in the history H as above with a similar journal entry

hi,j = (âi, b̂j, ti,j) and signature SIGN MO(hi,j). The operator also posts the following

proofs on the bulletin board:

• A proof that pj ≥ pi given E(pi, rpi
) and E(pj, rpj

).

Chapter 8: Cryptographic Securities Exchanges 204

• A proof that qj > qi given E(qi, rqi) and E(qj, rqj). This is done by showing that

(E(qj, rpj
)/E(pi, rpi

)) ·E(−1, 1) is the encryption of a value (qj − qi− 1) < n/2.

(This proves that no wraparound occurred; we subtract 1 from qj − qi to prove

a strict inequality.)

One minor issue in a market without transparent prices is that a limit order may

be submitted to the market that is more competitive than it needs to be to clear.

For example, a trader might post a new limit order to sell at $20.05 when there is a

standing order to buy at $20.09. In transparent markets, this would obviously never

happen except in cases of error. Choosing the clearing price for such situations is

a matter of market design. With the primitives we have described, it is possible to

prove correct a clearing price based on the standing order’s price, the incoming order’s

price, the mean of the two (within one tick), or indeed any linear function of the two

prices, without revealing the price itself or any information not implied.

Once two orders are matched and the proofs posted, a clearing agent will be

responsible for transferring the ownership of the shares at the correct settlement price.

The market operator will send the clearing agent the random help values necessary

to verify the correctness of the execution price and number of shares from the history

posted on the bulletin board. The agent then verifies the trade and settles it.

In addition to sending information to the clearing agent, any information published

about the state of the market is proven at this point on the bulletin board. For

example, the auctioneer might reveal the random help values associated with the

determined clearing price and matched quantity to provide “last trade” tick data, or

update proofs of market depth, bid/ask prices, etc. Typically the “market price” of

Chapter 8: Cryptographic Securities Exchanges 205

a security for any period is the price at which it was last traded during that period;

thus, publishing provably correct market prices is straightforward.

8.3.4 Post-Trade Reporting

The market operator can report clearing prices by revealing the random help

values of the encrypted orders in the history H after any specified delay. Immediate

revelation may be a problem in the event a partial fill is revealed and the remainder

is still on the market: its price is now public. Facts similar to those provable for limit

orders may be proven about trades after the fact, for example, volume, average price,

closing price, etc. Post-trade transparency is as easily controlled by market designers

as transparency during other phases of market activity, and we leave the question of

appropriate reporting rules open for this reason.

8.3.5 Adversaries and Attacks

The adversary we are most concerned about in this work is the unethical or par-

asitic trader who exploits (presently public) market information for profit in a way

that discourages placement of limit orders. A secondary class of adversary is a dis-

honest market operator who may attempt to profit by exploiting the now private

market information via trading or disclosure for compensation. We do not consider

as adversaries parties with private information external to the market’s operation,

such as employees with proprietary information about traded companies.

Chapter 8: Cryptographic Securities Exchanges 206

Traders

We first consider attacks by parties who do not possess any insider access to the

market operator or its systems. These traders may either attempt to circumvent the

cryptographic security of the system or exploit the information provided in new ways.

Provided cryptographic keys of adequate security are chosen to prevent a brute-force

attack, cracking the encryption scheme itself is believed to be intractable under the

Decisional Composite Residuosity Assumption described in Paillier’s work [114].

The semantic security of the probabilistic Paillier cryptosystem protects the en-

crypted values against chosen plaintext attack. (For example, using a deterministic

encryption of prices would be insecure, because an adversary could try all realistic

prices and identify the values.) Paillier’s scheme is not secure against an adaptive cho-

sen ciphertext attack; indeed, the malleability of the scheme that enables the homo-

morphic properties we employ implies this insecurity. However, mounting a successful

chosen ciphertext attack against our protocol does not seem a significant threat, as

the only way a value can be decrypted is in the event someone is willing to trade it.

Thus, any party attempting to gain information by submitting a chosen ciphertext

as information must also be willing to execute any trades based on that information.

We have not identified any additional parasitic trading practices that could be

employed using a cryptographic securities exchange. Since we are not adding any

information into the marketplace – only allowing designers to restrict information –

we believe that there are no new exploits that would not be possible in an ordinary

market with an open limit book.

This said, we reiterate that some parties may attempt to gain information from

Chapter 8: Cryptographic Securities Exchanges 207

the marketplace by placing orders. For example, one could discover the price for

the most competitive ask order by placing an order to buy one share at the market.

Alternatively, a trader might place limit orders at various prices to see where they

fit into the order book, in order to gain information about the price points, and then

retract them. However, no trader may observe anything about the market without

fundamentally changing the market: a “probe” share purchased revealed the price for

that share only, and afterward, the number of shares at that price remains unknown

and becomes smaller; probe limit orders enter the market and always bear the risk of

being executed.

Several solutions to this problem come to mind. First, at a significant but tractable

complexity cost, the marketplace could maintain not a strict ordering over all orders,

but a partial ordering in which only the minimum information required to prove

correctness is revealed. Thus incoming orders that were not competitive (and likely

to be filled) would be proven only to be less competitive than the most competitive

order. This would significantly limit the ability of a trader to count trades above

a particular price by placing limit orders. Second, the market operator or market

makers could place random numbers of zero-quantity limit orders on the marketplace

so that there would be a large number of orders at every price point. Third, market

designers could limit such exploitative practices by limiting order frequency, sizes, or

specifying a minimum duration on the market.

Finally, for ultimate security, the market operator can employ a mix network

(see the discussion in Section 7.2.1) to mask all of the remaining orders after each

transaction, discarding canceled orders and adding new limit orders and empty orders

Chapter 8: Cryptographic Securities Exchanges 208

for zero shares to mask the number of orders in the market. Each cleared order would

be proven correct by proving price ordering across the entire market, then proving

which trades should be executed (if any). Such an approach would prevent observers

from tracking the position or number of existing orders to glean extra information

from the market. Of course, such a protocol would be significantly more expensive

from a computational perspective, but given that large block trade commissions can

exceed $1,000 per trade on some ATS’s, it is certainly economically feasible to provide

such a service.

The Market Operator

A more insidious attack is if a dishonest market operator, possibly in collusion

with another trader, exploits its valuable private information or gives preference to

particular traders. We recall our assumption of a bulletin board operated by a third

party to prevent the market operator from discarding dispreferred orders, or delaying

their publication until after preferred orders are listed. With this, an unscrupulous

market operator cannot issue valid proofs of correctness of matched trades, but he

could still selectively reveal information to preferred traders. We reiterate that de-

spite this implied trust in the market operator, our architecture provides for two

improvements over existing markets: information can be specifically controlled and is

possessed by only one party (instead of the entire market), and the market operator

may not manipulate the market by front-running or matching orders on any basis

other than the published rules.

That said, the partial trust of the operator is a strong assumption, and solutions

Chapter 8: Cryptographic Securities Exchanges 209

to enhance that trust merit discussion. One answer is to distribute the trust in the

market operator among a group of parties, similar to the approach Bogetoft et al.

describe [26]. This may be challenging from a business perspective but nonetheless

possible. Another solution involves careful network, hardware and software security,

employing special purpose hardware (e.g. that used in Trusted Computing architec-

tures) that only runs software approved and signed by a third party, employing a

trustworthy and auditable source of random data, and monitoring all network traffic

to detect any communications that might leak information.

8.4 Example Order Book and Transactions

This section describes incoming orders and how trades are identified and executed.

Table 8.1 shows a sample order book B. The public, encrypted order book B̂ is

equivalent, except that the quantities and prices are encrypted. R indicates rank .

Orders are always ranked in priority order. Each order’s rank is defined according

to the priority rules outlined above (best price, oldest) and randomly selected in the

case of a tie.

We first consider an incoming market order to purchase 700 shares of the stock.

The trader constructs b̂ = (, E(700), , b) and posts it on the bulletin board. The

bulletin board assigns ID i = 25 and timestamp ti = 09:44:32 and publishes b̂i =

(, E(700), ti, M). For clarity, we will use i for the ID of each incoming order in the

following text to more clearly distinguish it from the limit orders.

The market operator sees the market order on the bulletin board, decrypts b̂i to

bi = (, 700, ti, b), and matches two trades (a14, a12) to fill the order. It adds journal

Chapter 8: Cryptographic Securities Exchanges 210

entries to the history H and publishes proofs on the bulletin board:

• H ← hi = b̂i

• H ← h14,i = (â14, b̂i, t14,i = 09:44:33)

• H ← h12,i = (â12, b̂i, t12,i = 09:44:33)

• Quantities: q14 + q12 ≥ qi and q14 < qi

• Priority: q12 < q13

The operator then updates B (and B̂) by removing order a14 and updating q′12 =

300− (700− 600) = 200 (and q̂′12 = E(q12)/(E(qi)/E(q14))). Anyone can verify that

the updated encrypted quantity q̂′12 is correct by comparing it with functions of the

quantities of the other orders.

In a second example, a trader posts a new limit ask order â =

(E($20.03, E(1200), , a) to which the bulletin board assigns i = 15, ti = 09:46:02.

The market operator sees it, decrypts it, and concludes it is more competitive than

the most competitive bid. He adds journal entries to H, removes bo(b,0), matches ai

with b22 and adds the remainder a′i to B and â′i to B̂, preserving the priority order

invariant, and publishes:

• H ← hi = âi

• H ← hi,22 = (âi, b̂22, ti,22 = 09:46:04)

• Proof of correct quantities: qi > q22

• Proof of clearing price (as required) and price position: pi ≤ p22, pi > p24

Chapter 8: Cryptographic Securities Exchanges 211

R ID Time Qty Ask
3 11 09:34:42 2500 $20.13
2 13 09:39:23 500 $20.10
1 12 09:39:23 300 $20.10
0 14 09:41:06 600 $20.09
R ID Time Qty Bid
0 22 09:37:14 1000 $20.05
1 24 09:43:42 500 $20.02
2 23 09:41:23 800 $20.00
3 21 09:30:06 1700 $19.96

Table 8.1: Order Book B1

R ID Time Qty Ask
3 11 09:34:42 2500 $20.13
2 13 09:39:23 500 $20.10
1 12 09:39:23 200 $20.10
0 15 09:46:02 200 $20.03
R ID Time Qty Bid
0 24 09:43:42 500 $20.02
1 23 09:41:23 800 $20.01
2 26 09:50:33 200 $19.98
3 21 09:30:06 1700 $19.96

Table 8.2: Order Book B4

Chapter 8: Cryptographic Securities Exchanges 212

In a final example, a trader posts a limit bid order b̂ = (E($19.98, E(400), , b)

to which the bulletin board assigns i = 26, ti = 09:50:33. The market operator sees

it, decrypts it, and places it in the order book in the appropriate position It adds a

journal entry to H, adds the order bi to B and b̂i to B̂, preserving the priority order

invariant, and publishes H ← hi = b̂i and the proofs of priority pi < p23 and pi > p21.

The order book is now as shown in Table 8.2.

8.5 Conclusions and Future Work

Clearly, providing controllable transparency of market information in securities

exchanges together with proofs of correctness (both of information and of the market

operation) is an important application of homomorphic cryptography. The protocol

presented here is simple to understand, closely related to existing financial market

protocols, and does not rely complex cryptographic primitives that might discourage

its use among traders. Finance research has already started to study the implica-

tions of different levels of partial transparency, seeking to ensure liquidity and limit

exploitation. Cryptography can be used to prove correct operation according to spec-

ified rules even under partial transparency.

We envision a broad range of future work based on the protocol we have presented

and similar ideas. For instance, market designers might want support for more ex-

pressive order types, such as fill-or-kill, immediate-or-cancel, order-cancels-order, or

stop orders maintained by the market. Our protocol could also easily be extended to

open call auctions or periodic clearing models (such as POSIT). The market operator

might wish to prove a less revealing ordering of the limit orders in the order book.

Chapter 8: Cryptographic Securities Exchanges 213

Support for other specialists and liquidity providers’ functions could be added by

selective revelation.

Other more creative exchanges are possible in our setting. For example, integrat-

ing other ECN’s with a cryptographic securities exchange may be of particular use in

bridging the gap between block trades and ordinary securities trading. Cryptographic

derivative markets for options and indices whose prices are tied to the activity in un-

derlying securities’ order books are another important possible extension of our work.

In the next chapter, we explore models of cryptographic combinatorial securities ex-

changes, where entire baskets of securities may be exchanged, rather than blocks of

a single security.

We have conducted an initial empirical analysis of the computation cost for run-

ning such a system, and arrived at a conservatively high estimate of 5 cents (US)

to place and verify an order. Our experiments used a low end, dual Pentium IBM

x-server with no special cryptographic hardware. This is inexpensive enough to be

feasible in practice, although we leave a full efficiency analysis, perhaps in conjunction

with a prototype, to future work.

Chapter 9

Cryptographic Combinatorial

Securities Exchanges

We present a useful new mechanism that facilitates the atomic exchange of large

baskets of securities in a combinatorial exchange. Cryptography prevents informa-

tion about the securities in the baskets from being exploited, enhancing trust. Our

exchange offers institutions who wish to trade large positions a new alternative to

existing methods of block trading: they can reduce transaction costs by taking ad-

vantage of other institutions’ available liquidity, while third party liquidity providers

guarantee execution—preserving their desired portfolio composition at all times. In

our exchange, institutions submit encrypted orders which are crossed, leaving a “re-

mainder”. The exchange proves facts about the portfolio risk of this remainder to

third party liquidity providers without revealing the securities in the remainder, the

knowledge of which could also be exploited. The third parties learn either (depending

on the setting) the portfolio risk parameters of the remainder itself, or how their own

214

Chapter 9: Cryptographic Combinatorial Securities Exchanges 215

portfolio risk would change if they were to incorporate the remainder into a portfolio

they submit. They submit bids on the commission, and the winner supplies nec-

essary liquidity for the entire exchange to clear. This guaranteed clearing, coupled

with external price discovery from the primary markets for the securities, eliminates

the difficult combinatorial optimization problem. This latter method of proving how

taking on the remainder would change risk parameters of one’s own portfolio, with-

out revealing the remainder’s contents or its risk parameters, is a useful protocol of

independent interest.

9.1 Introduction

In Chapter 8 we introduced the idea of a cryptographic securities exchange for

individual equities, motivated by the unfavorable price impact and possible exploita-

tion of information associated with block trades.1 In that chapter, we consider an

exchange of single securities, and, typically, securities are traded as single asset types

in most alternative trading systems.

In this chapter, we consider a cryptographic combinatorial securities exchange,

where entire baskets of securities may be bought or sold, rather than single positions.

This has important applications for portfolios of securities where entering the various

positions in the portfolio piecemeal would subject the investor to increased portfolio

risk. After all, if a large portfolio is optimized to have certain correlations among

its assets, and it takes hours to find a counterparty to fill various positions in the

portfolio, the orders filled first will have a different risk profile than the intended

1Exchanges of very large positions of securities.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 216

portfolio.

For example, say a particular investor believes that Toyota will outperform Ford,

but does not wish to undertake any risk from general market or automotive sector

movements. He takes a long position in Toyota and a short position in Ford of the

same size. If the automotive sector or the general markets move up, then the gains

in Toyota will offset the losses in Ford. The investor’s problem is that he needs to

enter these trades at exactly the same time. If he is taking a large position in this

portfolio, then he would be exposed to risk in general market and automotive sector

movements between the time he closed the first and second position. Our exchange,

which provides for atomic trades that are guaranteed to clear, eliminates such risks.

9.1.1 Existing Commercial Protocols

In Chapter 8, we pointed out a few problems with the existing alternative trad-

ing systems (ATS’s) for block trades. Institutions still fear that knowledge of their

liquidity can be exploited in various ways, and rely on information brokers like Liq-

uidnet who strictly limit membership to the trading network to parties who are only

trading for liquidity reason. A second problem is that there is typically no guarantee

of execution. Finally, there is no mechanism for trading an entire basket at once,

eliminating portfolio risk while the execution of the trades is going on.

We work to ameliorate all of these concerns: our proposal enhances trust by not

only keeping trades secret until the market is to clear but also proving the results

correct; it also improves liquidity by giving the our exchange an efficient mechanism

to guarantee execution for all of the trades submitted to it— while still keeping the

Chapter 9: Cryptographic Combinatorial Securities Exchanges 217

particular equities in the incoming institutions’ baskets secret; and it provides an

atomic basket trading paradigm.

Currently for large basket trades (involving more than one security), the trans-

actions are too complex for the pairwise trade matching that existing ATS’s like

Liquidnet and Pipeline offer. Institutions who need to trade a basket of securities

atomically to maintain the integrity of a diversified portfolio are not willing to un-

dertake the risk of executing the trades one security at a time. Thus, institutional

investors who wish to trade several large positions at once in a basket order typically

hire an investment bank. They describe the basket to a small number of trusted in-

vestment banks who agree to provide liquidity, without disclosing the exact securities

that comprise the basket in advance—information that could be exploited. When de-

ciding how much to charge for liquidating a basket, the banks learn only certain risk

parameters, such as index membership, daily trading volume, and market correlation;

these enable them to estimate their risk and costs in the absence of complete data.

Our new cryptographic combinatorial exchange provides the improved efficiency

of institution-to-institution trading with the reduced portfolio risk from guaranteed

execution of atomic basket trades. Cryptography makes such an exchange feasible

by providing necessary trust: exploitable data remain secret, and every action and

result can be proven correct.

In our combinatorial exchange, institutions submit baskets of buy and sell orders

which are filled by other institutions’ sell and buy orders (respectively). The unfilled

orders comprise a remainder basket, which clears the exchange when filled by a coop-

erating third party (assumed to be an investment bank). Prices for each security are

Chapter 9: Cryptographic Combinatorial Securities Exchanges 218

determined by the primary markets, so that the exchange need only discover trading

interest.

Because direct disclosure of the remainder would permit exploitation of that in-

formation, institutions submit their baskets in an encrypted form which can then be

used to derive an encrypted remainder. Then, the exchange can prove facts about this

encrypted remainder to the investment banks without revealing its contents. More-

over, we describe how to construct a proof of how a bank’s risk on a portfolio changes

by taking on the remainder, by using encrypted forms of the remainder and that

portfolio. This enables the banks to accurately estimate commissions to charge the

exchange for providing the necessary liquidity.

The guarantee of order execution makes this market extremely attractive. The

institution need not wait for another trader to indicate interest: if there is opposite

interest, it will be used; if there is not, then the bank provides the liquidity. This offers

an unprecedented market efficiency: the exchange offers a mix-and-match of cheap

institution-to-institution liquidity wherever possible, only using the more expensive

bank-provided liquidity where necessary. It also means that institutions can count

on their order being filled completely in a reasonable amount of time, eliminating

portfolio risk from partial fills and reducing the risk of holding securities while trying

to trade them.

Another advantage of guaranteed order execution is that it prevents exploitation

of even dark market centers by orders designed to search for liquidity; traders do not

need to show their hand by entering an order into the dark pool because they are

guaranteed their order will be filled.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 219

This approach may also be more compatible with recent securities regulations. In

the United States, the National Best Bid and Offer (NBBO) system and National

Market System (regulated by the so-called “Reg NMS”) govern the prices at which

publicly traded securities may be exchanged; Europe recently adopted a new Markets

in Financial Instruments Directive (MiFID) that has a similar mandate. Regulatory

compliance is a significant challenge for block trading systems that wish to hide

data, and it may be difficult to legally operate an exchange in which standing limit

orders are meant to be kept secret from any national market. Our model, which

only discovers liquidity and derives prices from the primary markets, should be more

compatible with ever-tighter regulation.

We believe this to be the first characterization of a cryptographic combinatorial

exchange: a number of participants submit bundles to buy and sell goods (in our ex-

ample, securities), and the market finds an optimal allocation of trades to maximize

the benefit of all participants. While such combinatorial exchanges typically require

significant computation to find optimal allocations,2 our exchange makes two impor-

tant simplifications that eliminate the hard combinatorial problem. First, prices are

defined externally by the primary markets, and second, our clearing of the remainder

via a third party means that all bundles are filled and the market clears at equilibrium.

9.1.2 Related Work

Szydlo [148] first proposed the application of zero-knowledge proofs to disclosing

facts about equities portfolios. In his highly relevant and pioneering work, a hedge

2Indeed, even defining “optimal” in such an exchange is challenging!

Chapter 9: Cryptographic Combinatorial Securities Exchanges 220

fund proves that its portfolio complies with its published risk guidelines without re-

vealing the contents of its portfolio. Szydlo’s proofs are not situated in a transactional

context, but rather in the context of a hedge fund reporting portfolio risk character-

istics that are based on the claimed securities in the portfolio. In our case, we are

interested in proving portfolio risk in order to liquidate a newly derived remainder

basket computed from a combination of many incoming baskets, not a private port-

folio that will never be revealed.

Another difference in our work is the use of encryption over commitments. En-

cryptions allow the exchange to issue proofs about combinations of the institutions’

baskets without requiring their continued involvement. Were we to employ commit-

ments, we would require institutions to decommit their baskets before computing the

remainder; this provides an opportunity for repudiation. While the homomorphic

Pedersen commitments Szydlo employs are more efficient than homomorphic encryp-

tions, we desire nonrepudiation: once a basket is committed to in a transaction, the

trader may not later refuse to reveal that basket. Since any non-repudiatable commit-

ment is equivalent to an encryption,3 we elect to employ encryptions directly. This

may also mitigate so-called protocol completion incentive problems (see [31] for a re-

lated discussion in the context of auctions), because traders who lose their incentive

to participate cannot benefit from refusing to complete the protocol.

Surprisingly little academic research has been published on applications of cryp-

tography in securities trading; we refer the reader to our discussion in Section 8.1 for

a brief survey of relevant recent work.

3To enjoy nonrepudiation, a commitment must be deterministically invertible. A function that is
binding, hiding, and invertible (presumably via some secret) is clearly equivalent to an encryption.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 221

More work has been done on combinatorial exchanges, in which buyers and sellers

come together in a common exchange to trade bundles of various goods (where bundles

may have instructions to buy or sell, or both.) In the general case, solving the price

and winner determination problems in a combinatorial exchange is extremely diffi-

cult; in our cryptographic combinatorial securities exchange, we get around these by

taking all prices from the fair prices already established by the primary markets (price

determination), and employing “liquidity providers” who guarantee enough liquidity

for the entire exchange to clear (winner determination). See Parkes et al. [117], and

Smith et al. [143] for a formal treatment of combinatorial exchanges and related work.

Parkes et al. [116] have also implemented an “iterative combinatorial exchange”, an

interesting new mechanism that provides for more efficient price and winner determi-

nation.

9.2 Cryptographic Combinatorial

Securities Exchanges

Our cryptographic combinatorial securities exchange offers basket traders guar-

anteed execution and efficient liquidity discovery. It keeps information completely

secret until it is necessary, eliminating opportunities for fraud, and proves every re-

sult correct without revealing unnecessary information.

Our protocol is simple: institutions submit encrypted baskets; the exchange closes;

the exchange creates an encrypted remainder and proves risk characteristics to third

party liquidity providers; these investment banks bid on their commission; and the

Chapter 9: Cryptographic Combinatorial Securities Exchanges 222

winning bank clears the market by liquidating the remainder. Prices clear at prices

determined by the primary markets.

The basic cryptographic protocols supporting provably correct, secrecy-preserving

computation over private inputs described in Chapters 2 and 3 are sufficient to con-

struct our exchange. Our protocol does not depend on specific features other than

those therein, we do not burden our exposition with specific implementation details.

Rather, we assume implementors of our protocol will select an underlying cryptosys-

tem appropriate to their specific needs at the time. Moreover, these protocols are

practically efficient and support the calculations of risk and interval proofs essential

to our protocol. We discuss the implications of the partial trust in a third party and

mechanisms for mitigating such trust in Section 9.6.

9.2.1 The Protocol

We consider n trading parties Pi, where i ∈ [1, n], each of which submits a basket

Bi, comprised of m securities Sj, where j ∈ [1,m]. Thus in a universe of 6 securi-

ties, B3, P3’s basket, might be 〈0,−20000, 32000, 0, 45000, 0〉. The double subscript

notation Bij denotes the (unencrypted) quantity of security j in Pi’s basket; in our

example, B35 = 45000. E(Bij) is the encrypted form of one such value. Zeroes are

included to hide the number of distinct equities in the basket, though a fixed basket

size simplifies future computations.

Since most underlying cryptosystems employ modular arithmetic, short positions

can be easily represented as “negative numbers” (that is, very large numbers that are

the additive inverses of the corresponding positive number).

Chapter 9: Cryptographic Combinatorial Securities Exchanges 223

An encryption of a basket of equities is simply a set of quantities, one for each

equity in the universe, including zeros. For visual comfort, we may write E(Bi)

as the encryption of an entire basket, which is in fact m separate encryptions:

〈E(Bi1), E(Bi2), . . . , E(Bim)〉.

Step 1. The market operator announces clearing times, the universe of equities

to be traded on the exchange, and any rules governing the composition of baskets

participating in the exchange. If time-lapse cryptography (TLC) [129] or a similar

technique used to enforce nonrepudiation requires posting of public information (for

example, a public TLC encryption key), the market operator posts that.

Step 2. Before each clearing time, each trader Pi chooses which equities she

wishes to trade and creates basket Bi and encrypted form E(Bi). Each then creates

a commitment to her basket, Comi(E(Bi)), and publishes that commitment where

the exchange and other parties to the transaction can see them.

Step 3. When the clearing time is reached, the traders decommit: they publish

encryptions of their baskets and any proof necessary to prove their prior commitments

were valid. (If a trader fails to decommit, and a nonrepudiation technique is used,

the commitment is forced open and the encryption of his basket is published.)

Step 4. Either the market operator, or each individual Pi, proves, using the

now public E(Bi), that the basket Pi submitted conforms to any announced basket

composition requirements. Because Pi encrypted the basket herself, she is capable of

proving her basket meets any exchange requirements (see Section 9.5) without the

cooperation of the market operator.

Step 5. Everyone can compute the “remainder” basket BR by computing a func-

Chapter 9: Cryptographic Combinatorial Securities Exchanges 224

Security B1 B2 B3 B4 R

ABC +500 -200 0 0 +300
DEF +300 -800 +300 +200 0
GHI 0 + +100 + -300 + 0 = -200
JKL +200 0 -400 +300 +100
MNO -800 0 +500 0 -300

Table 9.1: Example set of cross-clearing portfolios with a “remainder”

tion on all of the encryptions of traders’ baskets. Table 9.2.1 illustrates an example

of this on unencrypted values, while using our standard notation, we write:

BR = 〈
n⊕
i=1

E(Bi1), . . . ,
n⊕
i=1

E(Bim)〉 (9.1)

= 〈E(
n∑
i=1

Bi1), . . . , E(
n∑
i=1

Bim)〉 (9.2)

Step 6. The market operator privately decrypts the baskets, and obtains the

unencrypted remainder basket.

Step 7. The market operator proves facts about the composition of the remainder

basket BR to the third party liquidity providers, who individually or jointly determine

transaction costs for the remainder basket and agree to provide liquidity to the pool.

Step 8. After the market-clearing liquidity has been secured, the market operator

announces the protocol is complete, and issues each institution a proof of its share of

the commission based on the other encrypted baskets.4 The market clears at prices

fixed in accordance with a published standard procedure. For example, the market

might clear at the midpoint between the bid and ask quoted on the current primary

4Our work concerns itself with the privacy of trade information, not the identity of the traders.
Other cryptographic protocols may be employed to provide any required anonymity.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 225

market, or an agreement to trade at the volume-weighted average price for a particular

period of time. The mechanics of clearing securities trades are beyond the scope of

this work; we assume that all parties trade with a trusted intermediary who accepts

all long positions and distributes all short positions, clearing the market.

9.3 Secrecy-Preserving Proofs of

Impact on Portfolio Risk

In the introduction, we describe how large basket orders are traded by revealing

portfolio risk measurements of the baskets themselves, rather than the actual risk

undertaken by the banks accepting the baskets. We propose a secure system that

makes price discovery for basket trades more accurate by offering banks limited but

more specific characteristics of their actual risks — how the risk of their inventory

changes — not the characteristics of the incoming basket.

Our system acts as a partially trusted third party, accepting encrypted forms of the

institution’s portfolio and the bank’s book, and providing a set of risk characteristics

of the bank’s resulting book after the integration of the equities in the portfolio. The

system proves these characteristics correct in a zero-knowledge fashion based on the

encrypted inputs, to assure the bank that it received an accurate picture even if it does

not win the bid. (Presently, only winners can verify the correctness of the submitted

values because they are the only party who ever discovers the actual contents of the

basket.)

Finally, we remark that wherever we refer to a bank’s “inventory”, the bank may

Chapter 9: Cryptographic Combinatorial Securities Exchanges 226

submit any representative portfolio to the system and compute the risk of accepting

the basket on the basis of risk changes in this particular portfolio. This may be due

to reluctance to reveal the exact portfolio to even a partially trusted third party, or

to achieve improved price discovery by a specially tailored portfolio.

9.3.1 Mechanics of the Protocol

The protocol is comprised of a series of simple steps: the parameters of the trans-

action are agreed on; the two transacting parties publish their encrypted information

to all; the two parties send secret information to the partially trusted third party; the

third party issues proofs to one party about the portfolio risk; and that party verifies

the proofs using the published information.

Step 1. The institution and bank agree on a set of risk characteristics to evaluate

in the resulting book. This step protects the secrecy of the institution’s information

while providing enough information to the bank to quote an accurate price. The

institution may also require that certain outputs be reported as “bounds”, where

the results are only quoted accurately enough for the bank to price the portfolio

by proving they lie within a certain small range. This is of extreme importance to

prevent the banks from “backing out” private information from the encrypted data

by carefully constructed queries. See also the more detailed discussion in 9.3.2.

Step 2. The institution prepares a list of triples:5

� Identifying code (ticker, CUSIP, etc.)

5The dark square � indicates an encrypted private value; the open square � indicates the infor-
mation is unencrypted.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 227

� Number of shares

� Value quotation (e.g. previous close × shares)

The encryptions are carried out in accordance with the underlying cryptographic

protocol.6

The institution shares these encrypted data with the system and the banks. For

complete security, the basket should include all equities in the trading universe, with

encrypted zero values for quantity and total value being used for any equities not

in the portfolio. Short positions are naturally represented by negative values. This

also allows the institution to keep the total number of equities in the basket secret if

desired.

Step 3. Each bank prepares a similar data set of triples for its inventory, into which

the basket would be integrated, and shares this encrypted portfolio with the system.

It does not need to share it with the institution.

Step 4. For each bank, the system privately decrypts the institution’s portfolio and

the bank’s inventory and computes the resulting portfolio and its risk characteristics.

It then creates a list of statistics about the resulting portfolio and proofs of their

correctness as described below in Section 9.3.3. It reveals these proofs to each bank,

which in turn verifies that they were computed correctly using its encrypted portfolio

and the encrypted portfolio provided by the institution.

Step 5. The bank examines the new risk characteristics of the resulting portfolio,

estimates carrying and execution costs and submits a bid to the institution. (In prac-

tice, the computed characteristics might be sent to a portfolio management software

6Providing the value quotation is a matter of convenience, as the encrypted value can be computed
as the encrypted product of public previous close price and the encrypted number of shares.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 228

system that compares the “before” and “after” portfolios to automatically estimate

risk and hedging costs.)

9.3.2 What Information Should Be Revealed?

Presently, institutions submit the characteristics of their baskets to banks in

spreadsheets with specific numbers in each category. This process “leaks” information,

especially where the number of equities in a particular category is small. Occasion-

ally, the information can create obvious implications: for example, if there is only one

equity listed in the telecommunications sector, comprising 89,000 shares whose total

value is $3,546,650, the bank probably has an excellent idea of the company’s name.

Institutions sometimes “white out” some information in their basket descriptions to

prevent such information leakage, usually to eliminate obvious information leaks.

Yet even when such information is redacted, rigorous statistical analyses of the

information submitted can still yield information about the composition of the bas-

kets, and this is also possible in more complex situations where a large number of

equities contribute to one line-item. Since values are often supplied to the penny, if

the number of equities, total dollar amount as of a particular market close, and total

number of shares is known, it is possible that a computer could efficiently search the

possible baskets created by equities in that sector and propose a small number of al-

ternatives to the bank. While we have no reason to believe that the reports are being

so exploited by the banks, eliminating any potential information leakage while still

providing accurate risk assessments is an important benefit of our proposed system.

Because the cryptographic framework we describe supports interval proofs on en-

Chapter 9: Cryptographic Combinatorial Securities Exchanges 229

crypted values (or functions on encrypted values) the system can reveal approximate

risk characteristics that are sufficient for price discovery but are more resistant to

statistical analysis to back out the composition of the baskets. For instance, instead

of reporting the sector breakdown exactly, the system can report values rounded to

the nearest percentage point or thousands of dollars or shares. Although there is no

reason that institutions can’t submit baskets with such obfuscated data, they would

not be able to prove it correct without cryptography. The ability to reveal “just

enough” information (while still proving it correct) is an important feature of our

proposal.7

9.3.3 How the Information Is Revealed

Our protocol is a useful extension of Szydlo’s work referred to in Section 9.1.2; but

rather than proving portfolio risk of a single portfolio, we are interested in revealing

facts about a hypothetical portfolio that results after a bank with a large inventory

(which it wants to keep private) accepts a basket of equities (which the institution

trading the basket wants to keep private.)

Once our protocol is followed, the system privately knows the combined portfolio,

and the bank knows its own portfolio and the encrypted quantities of equities in

the incoming basket. To reveal a fact, the system obtains the result of the desired

computation and sends the result to the bank, along with special verification data

that allow the bank to verify the result. The form of these data depends on the

type of system employed; in this work we assume a general framework based on

7See Section 9.6 for a discussion of why this feature is best supported by protocols based on a
partially trusted third party.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 230

the cryptographic primitives described in Section 2.1.4. The bank then performs a

computation using the hidden data provided by the institution and data from its own

portfolio, and verifes the result of the computation using the special verification data

provided by the system.

We recall from Section 2.1.4 the following primitive operations necessary to reveal

the portfolio risk profile:

• Compute a polynomial function of multiple encrypted values, or encrypted val-

ues and constants

• Decide whether one encrypted value is greater than another

• Decide whether one encrypted value is (not) equal to another

9.3.4 Computing the Combined Portfolio

After Step 3 above, the system now knows both the institution’s incoming basket

and the bank’s inventory. It verifiably computes the new quantities for every equity

in the universe by creating a “combined portfolio” with the combined quantity and

value of each equity. (Again, we assume that short positions are represented by a

negative number of shares and negative total value.)

Computing this verifiable, encrypted combined portfolio is simple; in many cases,

the banks can also compute the encrypted combined portfolio (but importantly learn

nothing from it.) For each equity in the portfolio, the system computes the sum

of the institution’s and bank’s number of shares and total value. It then publishes

the new encrypted portfolio and proves to the bank that this encrypted portfolio is

Chapter 9: Cryptographic Combinatorial Securities Exchanges 231

equivalent to the sum of the bank’s inventory and the encrypted institution’s basket.

We recall that both the baskets and the bank’s inventory are represented as a list of

triples: 〈Equity ID, E(shares), E(value). Using the cryptographic primitives above,

the system can simply add up the number of shares and the values for each equity in

the universe to obtain a new combined portfolio.

The encrypted values comprising this “combined portfolio” can now be used to

prove facts about it in zero-knowledge as described in the following sections.

9.3.5 Portfolio Value and Dividends

In most cases, the incoming basket order will involve long and short trades, and an

important element of the risk is the “skew” — the difference between the total value

of the short and long trades. Sometimes, when an institution is trading a basket with

a significant skew (or even entirely one-sided) it may not wish the size of the skew

to be known. In this case, the bank might respond not with a specific cash price,

but rather a discount quotation, an agreement to accept the equities in the basket at

a particular volume-weighted average price, or other quotation based on the market

prices of the equities after they are revealed. Because the bank can accurately assess

its risk profile in accepting these, it can offer more competitive discounts or execution

quotes for less risky baskets, or, similarly, charge more for a riskier basket.

The institution and the bank may agree to reveal:

� The full value of the long and short sides of the trade:

The system provides a proof that allows the bank to decrypt the sum of all long

trades and the sum of all short trades.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 232

� The value or range of the “skew” only:

In this case, the system provides the bank a proof of the sum of the portfolio’s

value plus all long positions’ values minus all short positions’ values. It might

reveal the precise skew, or only that the skew lies within a particular interval.

� No information about the value of the incoming basket:

In this case, the position values, quotes, and number of shares must all be kept

secret; the risk profile of the resulting portfolio can still be evaluated by other

means.

A similar approach can be applied to dividends, where the bank receives aggregate

calculations of historical and expected dividend payments, so that it can estimate any

dividend payments it will make (for short sales) and receive (for long positions).

9.3.6 Portfolio Composition Statistics

For risk management and hedging calculations, the bank may wish to know the

composition of the combined portfolio based on various factors, including:

• Market sector (technology, health care, consumer goods, etc.)

• Market capitalization

• Index membership

• Dividend amount (as a percentage of share price)

• Average daily trading volume (possible in terms of both shares and notional

value)

Chapter 9: Cryptographic Combinatorial Securities Exchanges 233

• Historical price volatility

Using our system, the institution need not reveal any information about the in-

coming basket’s sector breakdown — for example, if there are balanced long and short

trades in technology, and zero trades in utilities, this is indistinguishable to the bank

from a portfolio with zero technology and balanced utilities trades, provided that the

balanced trades do not change the risk profile of the bank’s inventory. This provides

additional secrecy to the institution while still meeting the needs of the bank.

The system calculates the portfolio composition and proves it to the accepting

bank, who verifies the result using its own encrypted portfolio and the encrypted

basket provided by the institution. Because the system can offer proofs that each

sector’s breakdown lies within a particular interval (say to the percentage point or

1/10 of 1%), the institution can reveal enough information for the bank to offer an

accurate price while making reconstruction of the portfolio infeasible.

Using the general cryptographic operations described above (see Section 2.1.4), the

bank now can compute verifiable breakdowns for the various aspects of the portfolio

as follows.

We use the notation S to represent the total number of shares, and V to represent

total portfolio value. Each of the ` elements’ shares are written as s1, . . . , s`; their

total values are v1, . . . , v`. In an example of a breakdown of market capitalization, s1

might represent the sum of shares of securities whose market cap is over $10 billion,

and s10 represents microcaps of less than $50 million. Obviously, which “bucket” an

equity belongs to is public information for any breakdown; the bank simply doesn’t

know the equities’ quantities. The bank now has the encryptions of these values:

Chapter 9: Cryptographic Combinatorial Securities Exchanges 234

E(S), E(V), E(si), E(vi).

In the following example, the system proves the breakdown of equities based on

the value of each bucket vi in the breakdown. A similar technique can be applied to

the number of shares, although the market value breakdown is generally more useful.

We assume a constant K that reflects the desired granularity of the data as a number

of “units”; for percentage points, the protocol would set K = 100.

Step 1. Because the bank knows the breakdown for each equity (e.g. market cap,

market sector, etc.), it can compute encrypted sums of the number of shares and total

value for each item in the breakdown by summing up the encrypted number of shares

and total value from the combined portfolio. The bank also recalls the encrypted

total number of shares and encrypted total value of the basket. We recall that this is

the combined portfolio, where any long and short trades in the incoming basket have

already been incorporated into the bank’s inventory.

Step 2. The system first proves the sums are correct, namely, E(S) ≡
∑`

i=1(si) and

E(V) ≡
∑`

i=1E(vi). (In this case,
∑

represents applying the ⊕ operator to calculate

an encryption of the sum of two encrypted values’ plaintexts.)

Step 3. The system then prepares an encrypted “unit size” Z by computing Z

such that8 ZK ≤ V and (Z + 1)K > V . The system proves this by providing the

bank E(Z) and a trivial encryption E(K) and proving that E(Z)⊗E(K)�E(V) and

(E(Z)⊕E(1))⊗E(K)�E(V). Thus there are K “units” of size Z in the breakdown.9

8ZK was an unintended pun.
9Care must be taken so that V mod K is not too large, because this could skew the results. The

system can even show the bank that value by revealing the verifiable result E(V)	 (E(K)⊗E(Z)),
or proving that it is less than a small constant. Since K is public, the bank can refuse a K that is
too small.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 235

Step 4. For each element of the breakdown, the system prepares an interval proof

of how many “units” that element comprises. It begins by calculating and revealing

two integer constants ai, bi and their “trivial” encryptions E(ai), E(bi); the bank can

verify these are correct encryptions. For example, ai might be 10 and bi 12, to show

the result is between 10 and 12 units.

Step 5. The system completes the interval proof, showing that E(ai) ⊗ E(Z) �

E(vi) � E(bi) ⊗ E(Z). This proves that aiZ ≤ vi ≤ biZ. This bounds the value of

the portfolio in bucket i without revealing any further information.

Step 6. Steps 4 and 5 are repeated for each “bucket” in the breakdown until the

entire portfolio has been classified. The bank might check that
∑

i ai ≤ K ≤
∑

i bi

to be sure that the breakdown provided is appropriate.

9.3.7 Other Measurements of Risk

Because of the flexibility of the mathematical operations that can be performed

on the recipient bank’s basket and the incoming basket, other, more complicated

risk measurements are possible. While the above examples are of completely linear

functions, which permit the recipient to estimate the incoming baskets from the out-

put risk characteristics and his own inputs, our system provides for computation of

polynomial functions of modest degree by using repeated multiplications of encrypted

values to calculate exponents. This permits the computation of more complex risk

analysis measurements whose definition under our framework we leave for future work.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 236

9.4 Pricing and Payment

Two types of prices must be computed: the price at which each security is valued

when the exchange clears, and the price that the third parties charge for providing

the market-clearing liquidity. We treat these in turn, referring to the winning third

party (which might be a consortium) as the investment “bank”. We note that if

our second protocol is used independently between a single institution and one or

more investment banks for proving characteristics about a single basket trade, the

institution’s basket functions as the remainder.10

Because each of the securities in the exchange is presumed to be traded on a pri-

mary market, we adopt the common practice in block trading to allow the primary

market to dictate a fair market price for the securities at the time of trading. The

financial industry uses many reasonable methods for price determination in block

trading, and we do not advocate a particular pricing model over another—provided

that the trading prices are determined in a manner exogenous to the exchange. Ex-

amples of these methods include average prices over time such as the volume-weighted

average price (VWAP), or simply the midpoint of the bid and offer at the time the

market clears.

After the proofs are obtained, the third parties have learned enough information

to calculate a price for the incoming basket. They can accurately assess the changes

in risk on their own inventories if they accept the basket, and by measuring those

changes, estimate hedging costs for equities it will carry and execution costs for

unwinding the trades it does not wish to keep.

10In fact, this is equivalent to our exchange with a single participant.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 237

9.4.1 Compensating the Liquidity Providers

The bank can be compensated in many ways; the simplest is for the bank to quote

a brokerage commission that it accepts for executing the trades. If the bank perceives

greater risk, the bank can charge a higher commission. Other pricing mechanisms

are possible: if the cash value of the portfolio is revealed, the bank can quote a price

based on that; if the skew is not revealed, then the bank can quote a price based on

a discount factor or volume-weighted price after the transaction is agreed on. The

institution can choose among the various banks’ offers, and notify the winner. Once

the transaction is complete, the bank accepting the basket will be able to verify that

the information provided was correct when it receives the remainder portfolio — but

we reiterate that an advantage of our protocol is the banks that do not win still have

convincing proof that the information was correct: the institution can’t favor one

bank over another.

Another interesting possibility is for the liquidity providers to publish determinis-

tically verifiable valuation functions for their risk premium calculations. Using these,

they can submit a representative portfolio to the exchange, obtain the changes in risk

on their portfolio, then the exchange runs their calculations on the encrypted risk

data and publishes a verifiable, encrypted result. These results would then be used to

prove the payments correct, or could even be used in a verifiable sealed-bid auction

to prove which of the liquidity providers’ calculations yielded the most competitive

bid for liquidating the remainder.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 238

9.4.2 Simply Allocating Liquidation Costs

The commissions for obtaining this liquidity from the third parties must now

be distributed among the institutions participating in the exchange. One approach,

which reveals very little, is to distribute the costs among the participants according

to their proportion of the notional value of trading across the exchange. Since re-

vealing the proportion of an institution’s share of the volume across the exchange

also allows the institution to compute that volume, the exchange operator reveals

the total notional value traded and proves that amount correct using the encrypted

baskets. Each institution can then compute its proportion of the notional value and

pay its share of the commission. However, this scheme benefits institutions who take

advantage of more of the liquidity provided by the outside parties.

9.4.3 Fairly Allocating Liquidation Costs

Thus, while total cost sharing is simple and convenient, we also consider a slightly

more involved “pay for what you use” model: each institution pays its share of the

commission based only on the benefit it derived from the securities provided by the liq-

uidity providers. In this method, institutions that use more of the remainder (instead

of the other institutions) to fill their trades pay a greater share of the commission.

At the extremes, an institution that trades securities which do not appear in the

remainder pays nothing, while an institution who is the only one trading a particular

security pays the entire share of the commission for that security.

We illustrate this method with an example which refers back to Table 9.2.1. For

simplicity, we will assume that each security trades at a price of $1, and the liquidity

Chapter 9: Cryptographic Combinatorial Securities Exchanges 239

provider charged a commission of $9000. The notional values of the four institutions’

baskets are $1800, $1100, $1500, and $500, respectively; the remainder basket’s value

is $900. The exchange operator then publishes the encrypted amounts of commission

paid based on the pro rata notional value traded of each security: $3000 for ABC, $0

for DEF, $2000 for GHI, $1000 for JKL, and $3000 for MNO. The operator proves

that their sum is the (public) total commission.

Next, the exchange operator proves the total trading interest for each security

by publishing encrypted sums of the absolute notional value of the orders in each

basket: 700 for ABC, 1600 for DEF, 400 for GHI, 900 for JKL, and 1300 for MNO.

Then, using the above methods, the exchange operator can publish an encrypted

breakdown of the commission to be paid per share.11 In this case, the commissions

work out to $429 per 100 shares of ABC, $0 per 100 shares of DEF, $500 per 100

shares of GHI, $112 per 100 shares of JKL, and $231 per 100 shares of MNO; this

yields a total overcharge of $14 due to rounding error.12 The market operator proves

that these encrypted prorated commissions are correct given the encrypted values

already computed.

The market operator finally uses these encrypted prorated commissions to give

each institution a verifiable share of its commission without revealing the magnitude

of the securities traded by other traders or the composition of the remainder basket.

For example, Institution 1 would pay

(5× 429) + (3× 0) + (0× 500) + (2× 112) + (8× 231) = 4217.

11Since the numbers do not divide evenly, the market operator can simply round up to the nearest
integer and prove that the result is within a small error, that is, the difference between the total
commission and the reported commission is small.

12If verifiable operations over encrypted rationals are employed, even this rounding error can be
eliminated at a constant factor of additional computation cost.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 240

The others would pay $1358, $3103, and $336, respectively, for their share of the costs

in liquidating the remainder.

We sketch a final, possibly fairer method inspired by the Vickrey auction, but we

reserve a full treatment and analysis for later work. In this model, an institution’s

share of the commission would be based on its impact on the market versus the

marginal economy without its basket. Thus, institutions who improved the market

by submitting a basket with opposite interest from the remaining baskets would

pay very little (or perhaps even be paid!). Institutions who made the market more

unbalanced by submitting a basket with interest in the same direction the remaining

baskets would pay a greater share of the commission, because its trades would only

be filled by means of the liquidity providers.

9.5 Keeping the Pool Safe

Although our methods are designed to provide transparency without revealing

exploitable information, there remain ways in which unscrupulous traders might try

to exploit the exchange we propose.

One misuse of our exchange might be for institutions to use its guaranteed liquidity

to unload especially high-risk or illiquid securities. If the exchange becomes filled

with undesirable assets, then banks will be less likely to want to participate. This

is an important reason we advocate a pricing mechanism that charges institutions

according to the amount of the remainder basket their trades represent—if the pricing

mechanism is correctly defined, then institutions who submit less desirable portfolios

will pay more for their liquidation costs.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 241

Yet it might be desirable to make sure that the baskets the institutions submit

to the exchange meet basic criteria for acceptability and portfolio risk. Using the

same portfolio risk analysis techniques described above, institutions can issue zero-

knowledge proofs about the baskets they submit so that all can be confident that

their trades are acceptable. This should also reduce the third-party liquidation costs,

because the third parties will be more secure that they aren’t going to receive a

basket that has nice overall characteristics but might be comprised of less desirable

individual securities.

As we mentioned in the introduction, other common exploits associated with

dark pools are less of a concern because our protocol features guaranteed execution.

Exploits such as probing for existing liquidity and baiting (where someone places an

order and then retracts it) are less of a problem, since once an order is placed, it

cannot be retracted, and learning that your order was filled reveals nothing about

existing opposite interest—every order is filled. Johnson [78] describes “toxic dark

pools” that are known for being exploited.

9.6 Strengthening Secrecy

While the above solutions offer an appropriate degree of secrecy and are efficient to

implement, the system does learn private data that it could reveal to others after the

fact. It learns the trades that took place, which may be undesirable to certain insti-

tutions (notably hedge funds), and could learn something about the bank’s inventory

in the context of proving changes to the bank’s risk without revealing the incoming

portfolio characteristics directly. While the trades must eventually be reported to the

Chapter 9: Cryptographic Combinatorial Securities Exchanges 242

exchanges and become a matter of public record, and no such information could have

any bearing on a particular round of the exchange, this information still has value.

We thus consider how to mitigate the trust not to leak any information that we might

place in the exchange operator.

The most compelling complement to our cryptographic solutions includes secure

computing infrastructure such as Trusted Computing [142] hardware and network

monitoring. We advance this idea in our previous work on cryptographic securities

trading [150] and auctions proposals [115, 128]. In this scheme, specially designed

hardware and software are trusted not to leak information, and monitored for security.

We hasten to add that the secrecy-preserving correctness proofs we advance in this

work complement such “black boxes” extremely well, because we need not trust the

black box to produce correct results: we only use it to mitigate ex post disclosure.

Thus, the actions of the exchange remain provably correct under all circumstances—

even an undetected bug in the black box cannot result in incorrect behavior.

Even in these high-security settings, a determined adversary might be able to

engineer steganographic leaks by “hiding” information in the protocol itself, often in

predetermined bits of “random” help values. Doing so would be a significant effort,

because most trusted computing infrastructures will not run software that has not

been verified and signed by a third party, but we mention that small risk nonetheless.

Fair Zero-Knowledge, introduced by Lepinski et al. [92], describes a mechanism to

combat such attacks and surveys related work.

Finally, we observe that perfect security is never attainable in real life where hu-

mans are involved: any dishonest party “in the know” within any institution or bank

Chapter 9: Cryptographic Combinatorial Securities Exchanges 243

can always pick up the phone to deliver an out-of-band information leak. And, even

where there is no intentional disclosure, Brandt and Sandholm proved impossibility

results for achieving complete secrecy in some auction settings [34]. These ideas lead

to interesting security questions about modern markets where more and more trades

are performed without human input: automated trading agents running on secure

hardware could offer an unprecedented level of security against the human element.

9.7 Conclusions and Future Work

We have implemented a useful new mechanism for block trading of securities that

meets two market requirements: institutions can trade directly with each other when

liquidity is available, while still having guaranteed execution for their entire order to

limit portfolio and carrying risk. We employ a combinatorial exchange model, but

make it tractable through external price discovery and a third party who provides

necessary liquidity to achieve market equilibrium so that all orders are filled.

We protect the secrecy of sensitive data while giving the third party information

necessary to calculate a fair commission by combining two novel cryptographic pro-

tocols. They are efficient, straightforward to understand, and can be implemented

using already accepted cryptographic primitives.

More general formulations of these protocols may be of independent interest. Con-

sider an arbitrary function over a finite field with encrypted inputs and a prover who

proves facts about the output of this function. Clearly, there are many functions

for which a precise output reduces the space of possible inputs dramatically — an

unintended consequence of revealing a single output. Our mechanisms can offer prov-

Chapter 9: Cryptographic Combinatorial Securities Exchanges 244

ably correct yet approximate outputs using interval proofs, where exact results would

reveal too much information.

The protocol we describe to prove changes to a recipient’s risk also generalizes into

a new class of price discovery. We can construct a more general protocol that allows

a buyer to evaluate a purchase on the basis of a change in a buyer’s utility function,

rather than calculating the utility of the good directly. This means that in many

business settings, where direct revelation of the good in question might have negative

consequences, a buyer can engage in “zero-knowledge due diligence” where the buyer

can satisfy many concerns by learning about how her utility function changes based

on incorporating the good into her possessions, without learning enough about the

good to allow the information to be exploited. These settings might include the sale

of a significant commercial building, a business unit of a large corporation, or, other

methods of trading financial instruments.

We leave for future work by ourselves and others a number of mechanism design

questions. We believe it is possible to approach a true combinatorial exchange in

which both institutions and liquidity providers post their desired baskets, where in-

stitutions post a maximum price they are willing to pay for liquidating their baskets,

and whether and how their baskets are divisible; liquidity providers post “chunks” of

liquidity associated with transaction costs for each chunk. The exchange then finds

the optimal feasible allocation satisfying all possible atomic trades, and proves the

outcome correct. Moreover, the use of such “chunks” could significantly reduce the

size of any remainder basket, thereby reducing the size of any portfolio that needs to

be traded blindly.

Chapter 9: Cryptographic Combinatorial Securities Exchanges 245

In addition to generalizing the protocols as described here, future work may also

include a reference implementation of a prototype system or a more detailed technical

specification based on a particular cryptosystem.

Chapter 10

Conclusions

There are excellent economic arguments for a compromise between perfect theo-

retical security and a completely trusted third party (Chapter 1). Our computational

model, a partially trusted third party who is bound to always output correct results

and employs tools from systems, not cryptography, to prevent leaking information

after a computation’s inputs are fixed, is a useful paradigm in which to design new

cryptographic computational mechanisms, such as auctions or securities exchanges.

Because this dissertation is comprised of very different sections, we also include a

“conclusions and related work” section in many of the chapters that refers to the spe-

cific contributions of that chapter. In this section, we consider the broad conclusions

and our most general contributions to computer science and mechanism design.

We began with a general model of efficient, provably-correct, secrecy preserving

computation in Chapter 2 and showed in Chapter 3 and a published paper [128] tools

for implementing our general model. In Chapter 4 we outlined a new cryptographic

primitive, time-lapse cryptography, that we first required to solve the problem of

246

Chapter 10: Conclusions 247

nonrepudiation in auctions; we see many more uses for a service that provides such

cryptographic keys.

We have constructed specifications for and prototypes of single- and multi-item

sealed bid auctions under our model (Chapter 6) and shown them to be computation-

ally practical while offering an acceptable degree of security. This gives us confidence

that when we prototype our methods for combinatorial auctions (Chapter 7) and

cryptographic single (Chapter 8) and combinatorial securities exchanges (Chapter 9),

we will also find that our framework offers a valuable degree of security at a practical

cost of computation and infrastructure.

We advance in Chapter 7 an extremely efficient mechanism for clearing crypto-

graphic combinatorial auctions that is orders of magnitude faster than any we have

seen in the literature. Our cryptographic securities exchanges work in Chapter 8

was among the first to consider in detail the complexities of the continuous dou-

ble auctions in securities exchanges in a cryptographic setting. Our mechanism in

Chapter 9 for operating a combinatorial securities exchange with guaranteed clearing

through participating providers and price discovery through the primary markets is

the first proposal we know of a mechanism that offers efficient, atomic clearing of

basket orders—irrespective of the cryptography that may be employed to prove the

actions of the exchange correct.

Throughout the work, we have established a strong link between cryptography and

computational mechanism design, because cryptography offers unprecedented control

over information. A market designer can now control when parties in a mechanism

have information, who sees it, can limit disclosure to exactly what is needed for

Chapter 10: Conclusions 248

the mechanism to be efficient—sometimes by revealing provably correct approximate

views of private information. We propose the new term “cryptographic computational

mechanism design”1 as an appropriate name for the general class of research we

advance in this work. We are not the first to see these relationships, though the field

is very new; see Naor [109] for a survey of cryptography and mechanism design.

Many of our subprotocols are of independent interest outside the cryptographic

model or particular mechanisms we describe. We have shown in Chapter 2 how to

construct provably correct computations over the rationals using a set of primitive

operations on the integers, an extension that applies to any secure integer computation

model. We have also shown in Chapter 7 how to efficiently prove solutions to linear

and integer programs correct without requiring the verifier to duplicate the entire

computation.

Aside from the future work we consider in each chapter’s own conclusions, we see

significant opportunity for advancement of commercial and computational mecha-

nisms through the use of the modern cryptographic tools we employ in this work. We

have made but a small contribution with the commercial mechanisms we describe in

this work, but we hope that the model and tools we have used will foster other, similar

research to solve interesting open problems in computer science, finance, economics,

law, and areas we have yet to imagine.

1While Xaotie Deng and Felix Brandt have also used the briefer term “cryptographic mechanism
design”, we recall the reader to the epigraphs of this dissertation’s Preface.

Bibliography

[1] Dreyfus will pay $20.5 million to settle lawsuit. The New York Times, 22 June
2001.

[2] Settlement reached with five specialist firms for violating Federal securities laws
and NYSE regulations. U.S. SEC Press Release, 2004. http://www.sec.gov/

news/press/2004-42.htm.

[3] The mathematics genealogy project, May 2008. http://www.genealogy.ams.
org/id.php?id=8023.

[4] Masayuki Abe. Mix-networks on permutation networks. In Proc. ASIACRYPT
’99, volume 1716 of Lecture Notes in Computer Science, pages 258–273.
Springer, 1999.

[5] Masayuki Abe and Fumitaka Hoshino. Remarks on mix-network based on per-
mutation networks. In Public Key Cryptography, volume 1992 of Lecture Notes
in Computer Science, pages 317–324. Springer, 2001.

[6] Masayuki Abe and Koutarou Suzuki. M+1-st price auction using homomorphic
encryption. In Proc. Public Key Cryptography, 2002.

[7] Anat Admati and Paul Pfleiderer. Sunshine trading and financial market equi-
librium. Review of Finacial Studies, 3:443–82, 1991.

[8] Jenny Anderson. S.E.C. is looking at stock trading. The New York Times, 6
February 2007.

[9] Edmund L. Andrews. Fed shrugged as subprime crisis spread. The New York
Times, 18 December 2007.

[10] Jens Christopher Andvig. Corruption in the North Seal oil industry: Issues and
assessments. Crime, Law & Social Change, 23:289–313, 1995.

[11] L. Arozamena and F. Weinschelbaum. The effect of corruption on bidding
behavior in first-price auctions. Technical report, Universidad de San Andres,
2004.

249

Bibliography 250

[12] O. Ashenfelter. How auctions work for wine and art. Journal of Economic
Perspectives, 3:23–36, 1989.

[13] John Asker and Estelle Cantillon. Properties of scoring auctions. Technical
report, Leonard N. Stern School of Business, 2006.

[14] Association for the Advancement of Artificial Intelligence. Proc. 17th National
Conference on Artificial Intelligence (AAAI-00), July 2000.

[15] Lawrence Ausubel, Peter Cramton, and Paul Milgrom. The clock-proxy auction:
A practical combinatorial auction design. In Peter Cramton, Yoav Shoham,
and Richard Steinberg, editors, Combinatorial Auctions, chapter 5. MIT Press,
January 2006.

[16] Lawrence M. Ausubel and Paul Milgrom. Ascending auctions with package
bidding. Frontiers of Theoretical Economics, 1:1–42, 2002.

[17] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Token-controlled pub-
lic key encryption. In Proceedings of ISPEC 2005, volume 3439 of Lecture Notes
in Computer Science, pages 386–397. Springer Verlag, 2005.

[18] Vikas Bajaj. F.B.I. opens subprime inquiry. The New York Times, 30 January
2008.

[19] L. Baldwin, R. C. Marshall, and J.-F. Richard. Bidder collusion at forest service
timber sales. The Journal of Political Economy, 105:657–699, 1997.

[20] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Advances in Cryptology - CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2001.

[21] O. Baudron and J. Stern. Non-interactive private auctions. In Proc. Financial
Cryptography, 2001.

[22] Donald Beaver, Joan Feigenbaum, Rafail Ostrovsky, and Victor Shoup.
Instance-hiding proof systems. Technical Report TR 93-65, DIMACS, 1993.
DIMACS Center for Discrete Mathematics and Theoretical Computer Science.

[23] Mihir Bellare and Shafi Goldwasser. Verifiable partial key escrow. In ACM
Conference on Computer and Communications Security, pages 78–91, 1997.

[24] Bruno Biais, Larry Glosten, and Chester Spatt. Market microstructure: a
survey of microfoundations, empirical results and policy implications. Journal
of Financial Markets, 8(2):217–264, May 2005.

Bibliography 251

[25] Ian F. Blake and Aldar C.-F. Chan. Scalable, server-passive, user-anonymous
timed release cryptography. In Proc. ICDCS ’05, pages 504–513, 2005.

[26] Peter Bogetoft, Ivan Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob Pagter,
and Tomas Toft. A practical implementation of secure auctions based on multi-
party integer computation. In Proc. 10th International Conference on Financial
Cryptography and Data Security (FC 2006), 2006.

[27] D. Boneh and M. K. Franklin. Efficient generation of shared RSA keys. In
Advances in Cryptology - CRYPTO, volume 1294 of Lecture Notes in Computer
Science, pages 425–439. Springer Verlag, 1997.

[28] Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications
to voting. In CCS ’02: Proceedings of the 9th ACM conference on Computer
and communications security, pages 68–77, New York, NY, USA, 2002. ACM.

[29] T. Börgers and E. van Damme. Auction theory for auction design. In M. C. W.
Janssen, editor, Auctioning Public Assets: Analysis and Alternatives, chapter 1.
Cambridge University Press, 2004.

[30] Fabrice Boudot. Efficient proofs that a committed number lies in an interval.
In Lecture Notes in Computer Science, volume 1807, pages 431–444. Springer,
2000.

[31] Phillip G. Bradford, Sunju Park, and Michael H. Rothkopf. Protocol completion
incentive problems in cryptographic Vickrey auctions. Technical Report RRR
3-2004, Rutgers Center for Operations Research (RUTCOR), 2004.

[32] Felix Brandt. How to obtain full privacy in auctions. Technical report, Carnegie
Mellon University, 2005.

[33] Felix Brandt. How to obtain full privacy in auctions. International Journal of
Information Security, pages 201–216, 2006.

[34] Felix Brandt and Tuomas Sandholm. (Im)possibility of unconditionally privacy-
preserving auctions. In Proc. 3rd Int. Conf. on Autonomous Agents and Multi-
Agent Systems, pages 810–817, 2004.

[35] Chad Bray. Two ex-Van der Moolen specialists are convicted of securities fraud.
The Wall Street Journal, 15 July 2006.

[36] E. Brickell, D. Chaum, I. Damg̊ard, and J. Van de Graaf. Gradual and verifiable
release of a secret. In Proceedings of CRYPTO’87, volume LNCS 293, pages
156–166, 1988.

Bibliography 252

[37] Lianna Brinded. Nyse euronext steps into dark pool. Dow Jones Financial
News Online, 24 Oct 2007.

[38] R. Burgeut and Y.-K. Che. Competitive procurement with corruption. The
RAND Journal of Economics, pages 50–68, 2004.

[39] R. Burguet and M. Perry. Bribery and favoritism by auctioneers in sealed-bid
auctions. Technical report, Institute of Economic Analysis, UAB, Barcelona,
2003.

[40] M. Burmester, E. Magkos, and V. Chrissikopoulos. Uncoercible e-bidding
games. Electronic Commerce Research, 4:113–125, 2004.

[41] C. Cachin. Efficient private bidding and auctions with an oblivious third party.
In Proc. 6th ACM Conf. on Computer and Comm. Security, pages 120–127,
1999.

[42] Ran Canetti and Marc Fischlin. Universally composable commitments. Lecture
Notes in Computer Science, 2139:19, 2001.

[43] M. Celantani and J. J. Ganuza. Corruption and competition in procurement.
European Economic Review, 46:1273–1303, 2002.

[44] A. Chan, Y. Frankel, and Y. Tsiounis. Easy come - easy go divisible cash. In
Proceedings of EUROCRYPT’98, volume LNCS 1403, pages 561–575, 1998.

[45] Xiaofeng Chen, Kwangjo Kim, and Byoungcheon Lee. Receipt-free electronic
auction schemes using homomorphic encryption. In ICISC, 2003.

[46] Jung Hee Cheon, Nicholas Hopper, Yongdae Kim, and Ivan Osipkov. Timed-
release and key-insulated public key encryption. Cryptology ePrint Archive,
Report 2004/231, 2004.

[47] O. Compte, A. Lambert-Mogiliansky, and T. Verdier. Corruption and com-
petition in procurement auctions. The RAND Journal of Economics, 36:1–15,
2005.

[48] Ronald Cramer, Ivan Damg̊ard, Stefan Dziembowski, Martin Hirt, and Tal
Rabin. Efficient multiparty computations secure against an adaptive adversary.
Lecture Notes in Computer Science, 1592:311 ff., 1999.

[49] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In Lecture Notes in Computer
Science, volume 1462, page 13 ff., 1998.

Bibliography 253

[50] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Rajagopalan.
Conditional oblivious transfer and timed-release encryption. In Lecture Notes
in Computer Science, volume 1592, page 74 ff., 1999.

[51] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Proceedings of Public
Key Cryptography ’01, 2001.

[52] Robert W. Day and S. Raghavan. Fair payments for efficient allocations in
public sector combinatorial auctions. Management Science, 2006.

[53] Giovanni Di Crescenzo. Privacy for the stock market. Lecture Notes in Com-
puter Science, 2339:269 ff., 2002.

[54] N. Dimitri, G. Piga, and G. Spagnolo, editors. Handbook of Procurement –
Theory and Practice for Managers. Cambridge University Press, 2006.

[55] Yevgeniy Dodis and Dae Hyun Yum. Time capsule signature. In Proc. Financial
Cryptography (FC ’05), 2005.

[56] Kurt Eichenwald. Two sued by S.E.C. in bidding scandal at Salomon Bros. The
New York Times, 3 December 1992.

[57] Kurt Eichenwald. Andersen guilty in effort to block inquiry on Enron. The New
York Times, 16 June 2002.

[58] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Information Theory, IT-31(4):469–472, 1985.

[59] W. J. Elmaghraby. Pricing and auctions in emarketplaces. In Handbook of
Quantitative Supply Chain Analysis: Modeling in the E-Business Era. Kluwer
Academic Publishers, Norwell, MA, 2004.

[60] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss,
and Rebecca N. Wright. Secure multiparty computation of approximations.
Lecture Notes in Computer Science, 2076:927 ff., 2001.

[61] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
IEEE Symposium on Foundations of Computer Science, pages 427–437, 1987.

[62] Michael J. Fishman and Kathleen M. Hagerty. The mandatory disclosure of
trades and market liquidity. The Review of Financial Studies, 8(3):637 ff.,
1995.

[63] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed
RSA-key generation. In Proceedings of the seventeenth annual ACM symposium
on Principles of Distributed Computing, page 320, 1998.

Bibliography 254

[64] Yair Frankel, Yiannis Tsiounis, and Moti Yung. “Indirect Discourse Proofs”:
Achieving efficient fair off-line E-cash. In Kwangjo Kim, editor, Advances in
Cryptology: Proceedings of ASIACRYPT 1996, Kyongju, Korea, number 1163
in Lecture Notes in Computer Science, Berlin, 1996. Springer Verlag.

[65] M. K. Franklin and M. K. Reiter. The design and implementation of a secure
auction server. IEEE Transactions on Software Engineering, 22(5):302–312,
1996.

[66] Gordon Gemmill. Transparency and liquidity: A study of block trades on the
London Stock Exchange under different publication rules. Journal of Finance,
51:1765–1790, 1994.

[67] Rosario Gennaro. Theory and Practice of Verifiable Secret Sharing. PhD thesis,
Massachusetts Institute of Technology, 1996.

[68] Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Lecture Notes
in Computer Science, 1592:295 ff., 1999.

[69] Damien Giry and Philippe Bulens. Cryptographic key length recommendation.
http://www.keylength.com, 2006.

[70] Shafi Goldwasser, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity, and a methodology of cryptographic protocol design. In Proc.
Symposium on Foundations of Computer Science (FOCS), pages 39–48, 1986.

[71] Daniel A. Graham and Robert C. Marshall. Collusive bidder behavior at single-
object second price and english auctions. Journal of Political Economy, 95:1217–
1239, 1987.

[72] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions with private
bids. In Proc. Third USENIX Workshop on Electronic Commerce, pages 61–74,
1998.

[73] Larry Harris. Trading and Exchanges. Oxford University Press, 2003.

[74] Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk, and
Moti Yung. Proactive public key and signature systems. In ACM Conference
on Computer and Communications Security, pages 100–110, 1997.

[75] A. T. Ingraham. A test for collusion between a bidder and an auctioneer in
sealed-bid auctions. Contributions to Economic Analysis and Policy, 4:1–32,
2005.

Bibliography 255

[76] M. C. W. Janssen, editor. Auctioning Public Assets: Analysis and Alternatives.
Cambridge University Press, 2004.

[77] Jeromee Johnson. Personal communication, 25 January 2008.

[78] Jeromee Johnson and Larry Tabb. Groping in the dark: Navigating crossing
networks and other dark pools of liquidity, 31 January 2007.

[79] Mads J. Jurik. Extensions to the Paillier Cryptosystem with Applications to
Cryptological Protocols. PhD thesis, University of Århus, 2003.

[80] Donald B. Keim and Ananth Madhavan. The upstairs market for large-block
transactions: Analysis and measurement of price effects. Review of Finacial
Studies, 9:1–36, 1996.

[81] Aggelos Kiayias and Moti Yung. Efficient cryptographic protocols realizing
e-markets with price discrimination. In Financial Cryptography and Data Se-
curity, pages 311–325, 2006.

[82] Hiroaki Kikuchi. (m+1)st price auction protocol. In Proc. Financial Cryptog-
raphy, 2001.

[83] Sevket Alper Koc and William S. Neilson. Bribing the auctioneer in first-price
sealed-bid auctions. Technical report, Kocaeli University, 2006.

[84] Anshul Kothari, David C. Parkes, and Subhash Suri. Approximately-
strategyproof and tractable multi-unit auctions. Decision Support Systems,
39:105–121, 2005.

[85] Vijay Krishna. Auction Theory. Academic Press, 2002.

[86] Manoj Kumar and Stuart I. Feldman. Internet auctions. In Proc. 3rd USENIX
Workshop on Electronic Commerce, 1998.

[87] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proc. 38th Annual Symposium
on Foundations of Computer Science (FOCS 1997), pages 364–373, 1997.

[88] J.-J. Laffont and J. Tirole. Auction design and favoritism. International Journal
of Industrial Organization, 9:9–42, 1991.

[89] S. Lahaie. An analysis of alternative slot auction designs for sponsored search.
In Proceedings of the 7th ACM Conference on Electronic Commerce, 2006.

[90] Y. Lengwiler and E. Wolfstetter. Bid rigging. An analysis of corruption in
auctions. Technical report, Humboldt-University at Berlin, 2005.

Bibliography 256

[91] Y. Lengwiler and E. Wolfstetter. Corruption in procurement auctions. In N.
Dimitri, G. Piga, and G. Spagnolo, editors, Handbook of Procurement – Theory
and Practice for Managers, chapter 16. Cambridge University Press, 2006.

[92] Matt Lepinski, Silvio Micali, and abhi shelat. Fair zero-knowledge. In Proc.
Theory of Cryptography Conference, pages 245–263, 2005.

[93] LiDIA-Group. LiDIA — a library for computational number theory. TU Darm-
stadt, 2001.

[94] H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey auctions without threshold
trust. In Proc. 6th International Conference on Financial Cryptography (FC
2002), pages 87–101, 2002.

[95] Ananth Madhavan. Market microstructure: A survey. 8, March 2000.

[96] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a secure two-party
computation system. In Proc. of USENIX Security Symposium, pages 287–302,
2004.

[97] Silvio Micali Manuel Blum, Paul Feldman. Non-interactive zero-knowledge and
its applications. In Proceedings of the ACM Symposium on Theory of Comput-
ing, pages 103–112. ACM Press, 1988.

[98] Shin’ichiro Matsuo and Hikaru Morita. Secure protocol to construct electronic
trading. IEICE Transactions on Fundamentals of Electronics, Communications,
and Computer Sciences, E84-A(1):281–288, 2001.

[99] Timothy C. May. Timed-release crypto. In The Cyphernomicon: Cypherpunks
FAQ and More, v. 0.666, chapter 14.5. September 1994.

[100] P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic
Literature, 25:699–738, 1987.

[101] J. McMillan. Selling spectrum rights. Journal of Economic Perspectives, 8:145–
162, 1994.

[102] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 2001.

[103] F. M. Menezes and P. K. Monteiro. Corruption and auctions. Technical report,
Getulio Vargas Foundation, Rio de Janeiro, Brazil, 2001.

[104] Ralph C. Merkle. Secure communications over insecure channels. Communica-
tions of the ACM, 21(4):294–299, April 1978.

Bibliography 257

[105] Paul Milgrom. Putting Auction Theory to Work. Cambridge University Press,
2004.

[106] B. Moldovanu and M. Tietzel. Goethe’s second-price auction. Journal of Po-
litical Economy, 106:854–859, 1998.

[107] R. Myerson. Optimal auction design. Mathematics of Operations Research,
6:58–73, 1981.

[108] Toru Nakanishi, Daisuke Yamamoto, and Yuji Sugiyama. Sealed-bid auctions
with efficient bids, 2003.

[109] Moni Naor. Cryptography and mechanism design. In Proc. 8th Conference on
Theoretical Aspects of Rationality and Knowledge, pages 163–167, 2001.

[110] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions
and mechanism design. In Proc. First ACM Conf. on Elec. Commerce, pages
129–139, 1999.

[111] Minh-Huyen Nguyen, Shien Jin Ong, and Salil Vadhan. Statistical zero-
knowledge arguments for np from any one-way function. In Proceedings of
Foundations of Computer Science, pages 3–14, 2006.

[112] N. Nisan. Bidding languages for combinatorial auctions. In P. Cramton, Y.
Shoham, and R. Steinberg, editors, Combinatorial Auctions. Cambridge Uni-
versity Press, 2006.

[113] Pascal Paillier. Cryptographie à Clé Publique Basée sur la Résiduosité de Degré
Composite. PhD thesis, École Nationale Supérieure des Télécommunications,
1999.

[114] Pascal Paillier. Public-key cryptosystems based on composite residuosity
classes. In Proc. EUROCRYPT ’99, pages 223–239, 1999.

[115] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A. Thorpe. Practical secrecy-
preserving, verifiably correct and trustworthy auctions. In ICEC ’06: Proceed-
ings of the 8th international conference on Electronic commerce, pages 70–81,
New York, NY, USA, 2006. ACM Press.

[116] David C. Parkes, Ruggiero Cavallo, Nick Elprin, Adam Juda, Sebastien Lahaie,
Benjamin Lubin, Loizos Michael, Jeffrey Shneidman, and Hassan Sultan. ICE:
An iterative combinatorial exchange. In ACM Conf. on Electronic Commerce,
pages 249–258, 2005.

Bibliography 258

[117] David C. Parkes, Jayant R. Kalagnanam, and Marta Eso. Achieving budget-
balance with Vickrey-based payment schemes in combinatorial exchanges. Tech-
nical report, IBM Research Report RC 22218, 2001.

[118] David C. Parkes, Jayant R. Kalagnanam, and Marta Eso. Achieving budget-
balance with Vickrey-based payment schemes in exchanges. In Proc. Fourth
ACM Conf. on Electronic Commerce, pages 1161–1168, 2001.

[119] David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and Christopher A.
Thorpe. Practical secrecy-preserving, verifiably correct and trustworthy auc-
tions. Electronic Commerce Research and Applications, 2008. To appear.

[120] David C. Parkes and Lyle H. Ungar. Iterative combinatorial auctions: The-
ory and practice. In Proc. 17th National Conference on Artificial Intelligence
(AAAI-00) [14], pages 74–81.

[121] David C. Parkes and Lyle H. Ungar. Preventing strategic manipulation in
iterative auctions: Proxy agents and price-adjustment. In Proc. 17th National
Conference on Artificial Intelligence (AAAI-00) [14], pages 82–89.

[122] T. P. Pedersen. Non-interactive and information theoretic secure verifiable se-
cret sharing. In Advances in Cryptology - CRYPTO, Lecture Notes in Computer
Science, pages 129–140. Springer Verlag, 1991.

[123] M. Pesendorfer. A study of colllusion in first-price auctions. The Review of
Economic Studies, 67:381–411, 2000.

[124] David Porter, Stephen Rassenti, Anil Roopnarine, and Vernon Smith. Com-
binatorial auction design. Proceedings of the National Academy of Sciences,
100(19):11153–11157, 2003.

[125] Robert H. Porter and Douglas J. Zona. Detection of bid-rigging in procurement
auctions. Journal of Political Economy, pages 518–538, 1993.

[126] M. O. Rabin. Digitalized signatures. In Foundations of Secure Computing,
pages 155–166. Academic Press, New York, 1978.

[127] M. O. Rabin. Digitalized signatures and public-key functions as intractable
as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for
Computer Science, 1979.

[128] Michael O. Rabin, Rocco A. Servedio, and Christopher Thorpe. Highly efficient
secrecy-preserving proofs of correctness of computations and applications. In
Proc. IEEE Symposium on Logic in Computer Science, 2007.

Bibliography 259

[129] Michael O. Rabin and Christopher Thorpe. Time-lapse cryptography. Techni-
cal Report TR-22-06, Harvard University School of Engineering and Computer
Science, 2006.

[130] Barbara Rindi. Transparency, liquidity and price formation. In Proceedings of
the 57th European Meeting of the Econometric Society, 2002.

[131] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Technical Report MIT/LCS/TM-82,
MIT Laboratory for Computer Science, 1977.

[132] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report MIT/LCS/TR-684, MIT, 1996.

[133] Marc S. Robinson. Collusion and the choice of auction. Rand J. Econ., 16:141–
145, 1985.

[134] Susan Rose-Ackerman. The economics of corruption. Journal of Public Eco-
nomics, 4:187–203, 1975.

[135] Michael H. Rothkopf, Thomas J. Teisberg, and Edward P. Kahn. Why are
Vickrey auctions rare? Journal of Political Economy, 98:94–109, 1990.

[136] T. C. Salmon. Preventing collusion between firms in auctions. In M. C. W.
Janssen, editor, Auctioning Public Assets: Analysis and Alternatives, chapter 3.
Cambridge University Press, 2004.

[137] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner determination in
combinatorial auction generalizations. In Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2002.

[138] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. CABOB: A fast optimal
algorithm for winner determination in combinatorial auctions. Management
Science, 51(3):374–390, 2005.

[139] T. C. Schelling. The Strategy of Conflict. Harvard University Press, 1980.

[140] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, November 1979.

[141] Shepherd Smith & Edwards. Citigroup, Merrill Lynch and Lehman ex-
brokers face retrial in eavesdropping case. Stockbroker Fraud Blog, 27
May 2007. http://www.stockbrokerfraudblog.com/2007/05/exbrokers_

of_citigroup_merrill_1.html.

Bibliography 260

[142] Sean W. Smith. Trusted Computing Platforms: Design and Applications.
Springer, New York, 2005.

[143] T. Smith, T. Sandholm, and R. Simmons. Constructing and clearing combinato-
rial exchanges using preference elicitation. In AAAI-02 workshop on Preferences
in AI and CP: Symbolic Approaches, 2002.

[144] Hans R. Stoll. Market microstructure. In G. M. Constantinides, M. Harris, and
R. Stulz, editors, Handbook of the Economics of Finance. Elsevier Science B.V.,
2003.

[145] S. G. Stubblebine and P. F. Syverson. Fair on-line auctions without special
trusted parties. In Proc. of Financial Cryptography, 1999.

[146] Koutarou Suzuki and Makoto Yokoo. Secure combinatorial auctions by dy-
namic programming with polynomial secret sharing. In Proc. 6th Int. Financial
Crypto. Conf., 2002.

[147] Koutarou Suzuki and Makoto Yokoo. Secure generalized Vickrey auction using
homomorphic encryption. In Proc. Financial Cryptography, 2003.

[148] Michael Szydlo. Risk assurance for hedge funds using zero knowledge proofs.
In Proc. 9th International Conference on Financial Cryptography and Data Se-
curity (FC 2005), 2005.

[149] The World Bank. Guidelines Procurement Under IBRD Loans and IDA Credits.
The International Bank for Reconstruction and Development, The World Bank,
Washington, D.C., 2006.

[150] Christopher Thorpe and David C. Parkes. Cryptographic securities exchanges.
In Proc. Financial Cryptography and Data Security, 2007.

[151] Peter Trepte. Regulating Procurement. Oxford University Press, 2004.

[152] U.S. Central Intelligence Agency. The World Factbook: European Union.
https://www.cia.gov/library/publications/the-world-factbook/

print/ee.html, 2007.

[153] William Vickrey. Counterspeculation, auctions, and competitive sealed tenders.
Journal of Finance, 16:8–37, 1961.

[154] C. Wang, H. Leung, and Y. Wang. Secure double auction protocols with full
privacy protection. In Information Security and Cryptography - ICISC 2003:
6th International Conference, 2003.

[155] Laurence A. Wolsey. Integer Programming. John Wiley, 1998.

Bibliography 261

[156] M. Yokoo and K. Suzuki. Secure generalized vickrey auction without third-
party servers. In Proc. Financial Cryptography, volume 3110 of Lecture Notes
in Computer Science, pages 132–146. Springer, 2004.

[157] Makoto Yokoo and Koutarou Suzuki. Secure multi-agent dynamic program-
ming based on homomorphic encryption and its application to combinatorial
auctions. In Proc. First Int. Conf. on Autonomous Agents and Multiagent Sys-
tems, 2002.

[158] Makoto Yokoo and Koutarou Suzuki. Secure generalized vickrey auction with-
out third-party servers. In Eighth International Financial Cryptography Con-
ference (FC-2004), pages 132–146, 2004.

