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Chapter 1

General Introduction

Markov models have been applied with varying degrees of success to many
problems, including natural language processing, speech recognition, protein
recognition and melody composition. The most common problem with Markov
models is that they are highly localized, and do not capture large-scale struc-
ture. This thesis applies a Markov model to the problem of harmonizing a
melody in the style of J. S. Bach. Because the melody is separate from the
harmonization process, it provides a “thread” that exists outside the local
realm of the probabilities.

Thus, harmonizing an existing melody is a “completive” rather than a
“generative” task: the Markov model simply brings out one of many underlying
harmonic structures that are compatible with the melody. The results of
a simple-minded Markov model still suffer from the effects of its localized
nature. To further improve the large-scale structure of the harmonization, we
then use a new Markov model based on rhythmic and metric features of the

given melody: we initially create “signposts” for the harmony based on the



rhythmically strongest events, and fill in the rhythmically weaker events using
appropriate probabilities.

Other Markov models can be applied with some (though lesser) degree of
success to completing the four-part harmony, given a bass line and melody.
This work is, however, incomplete and secondary to the primary goal of harmo-
nization: the inner voices are implied to a considerable extent by the melody
and bass line. I have included examples and a brief discussion of this work in

an appendix for interested readers.



Chapter 2

Introduction for Computer
Scientists

This thesis presents an algorithm that creates a bass line to accompany chorale
melodies in the style of J. S. Bach. The algorithm is based on a Markov model.
While Markov models have been used in the past for other computational
problems including speech recognition, protein recognition, and even melody
composition, a Markov model has to my knowledge not been applied to the
process of harmonization.

Humans have been composing polyphonic music for hundreds of years. In
this context, I use “polyphonic” to refer to music in which more than one
melodic line is performed simultaneously. Most music heard today outside
whistling or singing alone is polyphonic in some sense. The most unique
feature of polyphonic music is harmony: how notes performed simultaneously
relate to one another.

A complete discussion of harmony is obviously beyond the scope of this the-

sis. The program presented here attempts to add harmony to a given melody



by imitating the compositions of Bach. Since Bach’s chorale harmonizations
are frequently considered to be a standard of four-part chorale composition
and of Western tonal harmony, his compositions are an appropriate choice for
the data set. In analogy to natural language, we might say that Bach is a “flu-
ent native speaker” of chorale harmonizations, and that his music comprises
an exemplary corpus of data in this “language.”

The use of a formal computational method in application to composition
of music presents several unique challenges. Obtaining the data is difficult, as
most music is not in a computer-readable form. Furthermore, the encoding
with which music is input into the computer frequently requires substantial
transformation before being in a format useful for a particular problem. I
wrote a program to parse the KERN music data format, in which I obtained
the chorales, and another to output the data in a notation compatible with
the LISP programs I wrote to harmonize the melody.

Another problem lies in the evaluation of the output. With many compu-
tational tasks, it is often possible both to generate and to evaluate the results
using the computer. Not so with music, where unless the rules that govern
movement from note to note in multiple voices (“voice-leading”) are broken,
there is no clear “right” or “wrong.” Yet some compositions still “sound bet-
ter” than others. While this may be due in part to reasons such as rhythmic
or melodic variation, resolution of melodic tension, or adherence to tradition,

past attempts to compose music using rule-based systems have failed because



of inadequately specifying the rules necessary to generate “pleasing” output.

The algorithm is based on statistics from note to note. Since we imitate
Bach’s note to note relationships we never violate a voice leading rule. So eval-
uating the results must be based on more subtle criteria. I evaluate the output
in the way a native speaker of a natural language might evaluate another per-
son or computer attempting to speak that language. Occasionally there is a
clear explanation for why something is wrong; other times it is necessary to
simply say, “there is nothing exactly ‘wrong’ with this; I just don’t say that
in my language.”

Finally, some new ideas developed here as unique to music may be useful
in other applications, for example, the top-down Markov model outlined in
Chapter 6. While this was particularly effective and easy to implement due
to the inherent periodicity and hierarchy of chorale phrases, such a method
may prove useful in the future in statistical modeling of other problems that

exhibit structure on multiple levels, e.g. natural language or protein folding.



Chapter 3

Introduction for Musicians

This thesis presents an algorithm that creates a model for the harmonization of
chorale melodies and uses it to generate bass lines for a given melody. When
writing computer programs to compose or analyze music, it is necessary to
formalize music in a very mathematical way so that computers can process
the information.

In this thesis we represent musical information as pitch classes, durations
and metric positions — all very mathematical and quantifiable pieces of infor-
mation. By examining this information present in the chorale harmonizations
of J. S. Bach, it is possible to generate high-quality bass lines using a statistical
technique known as a Markov model.

The underlying principle of a Markov model is a set of states and proba-
bilities on transitions between these states. A state might be an English word,
a point on a hypothetical journey, or a pair of voices in a chorale. Then, for
each state there is a specific probability for the transition to every other state
— zero if there is no transition. For example, in a model of a limited subset
of English, we might assign the words SEA, LION, and TOPSY the following

transition probabilities:



SEA  — BASS | 25% | LION — _ TAMER | 15%
- LION | 15% 5 MANE | 25%
=  BRBBZE | 50% = KING | 40%
— NOTHING | 10% = RUNNING | 20%
TOPSY — _ TURVY | 100% | |

This model is called a “first-order” model because a transition to a state
depends only on one previous word. A model where the transitions depended
on the two previous words is called a “second-order” model; three words a
“third-order;” and so forth. The methods outlined in the following chapters
for harmonizing melodies use first and second order models.

One crucial observation about Markov chains is that because the transitions
are based only on the immediately previous state or states, there is little
possibility for large scale structure or even continuity between states outside
the “window” of context. For example, the model above allows for the phrase
“SEA LION MANE” which isn’t likely to occur at all in English, since sea lions
don’t have manes. Markov chains do capture small-scale idioms quite nicely,
however: in English, TOPSY only appears in the context “TOPSY TURVY,”
reflected in that the only transition from TOPSY is to TURVY.

These small-scale idioms are most prominent in this style of music at
cadences.! Cadence points require special treatment, and there is a limited set
of harmonizations for each two- or three-note melodic fragment at the cadence.

For example, for a cadence on MI—FA, only the bass lines (SO LA) —RE and

1 See p. 13 for the definition of “cadence” used in this thesis.



DO—FA are allowed by our data set, although there are many more bass lines
in our data set that accompany MI—FA away from a cadence point. The fast
harmonic rhythm and consistent setting of cadences makes a Markov model
excellent for harmonizing them. We use this strength as a starting point for
all harmonizations, then overcome its weakness (a lack of large-scale structure

and continuity) through a top-down approach.



Chapter 4
The Task

The program takes a melody in a Western major key (Ionian mode) and returns
an unfigured bass line that harmonizes it, following the traditions of four-part
chorale writing exemplified by J. S. Bach. I chose this task because creating
the bass line is generally the first step musicians take in generating a complete
four-part harmonization of a melody, and because the bass line implies to a
large extent the rest of the harmonization.

I also considered solving the problem by generating a figured bass line or
generating Roman numerals to represent the functional harmony. Both of
these methods would have required preprocessing the data using rule-based
methods to determine what the harmony actually is. In the interest of saving
time and giving the program the most “pure” data — notes with no other
information — I elected to use only note information in the statistics used
to generate the results. A bass line with only note information shapes the
harmony strongly without being constrained by rules of figured bass or funda-

mental bass.



One particular problem in using a statistical approach for harmonization
is that Bach wrote a limited number of chorales. So our task is unlike natu-
ral language processing, where the amount of usable data is limited more by
computational resources than by the amount of data. Of the limited number
of chorale harmonizations written by Bach, fewer than half have even been
entered into the computer music format I used. Of the approximately 170
chorales available in the database, only 83 are in the Ionian mode. In these
chorales, there are 4,080 soprano events in total.

The first problem in using these data is that the chorales were written in
various keys,! but harmonic function is for our purposes irrespective of the
key of the chorale. Simply transposing all chorales into the same key does not
provide an adequate solution: due to the limitations of human voices, Bach
set different melodies in different keys to make vocal performance possible.
Transposing all of the chorales into 2 common key would result in impossible
vocal ranges for some of the voices.

To solve this problem, I chose to define each note not as an actual pitch
(as might be played on the piano) but as an exact scale degree in relation
to the key of the chorale. I used the standard chromatic solfége to represent
the pitches of the notes, where DO represents the tonic note. For example,
if the chorale were in the key of D major, DO would represent any pitch D

in any octave. This solves the problem of transposition and range for the

1 «key” refers to the most important pitch of the scale in the work.
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following reasons: First, because we have discarded octave information, a note

is never “out of range” for a particular part. Since the functional harmony
is determined by the relationship between the bass and the soprano without
regard to octave, discarding octave information does not significantly make
the results less meaningful. One caveat is that a musician must infer the
octave information from the results, but since the soprano and bass lines are
so far apart it is a matter only of ensuring that the bass line remains within a
reasonable range.

Before discussing the other problems and their solutions, it is necessary to
define several terms which will be used throughout this thesis. In connection
with these definitions, the reader should inspect Musical Examples 1-30 on
page 14. The examples are arranged in rough order of musical complexity, but
will not be referenced in that order, so that we may compare various “events”

at different locations on the page. Let us now proceed to the definitions:

pitch The one of twenty-one chromatic solfégé symbols for a note.
For instance:
® DO: diatonic first degree of the key
® RE: diatonic second degree
® RI: chromatically raised second degree

® RO: chromatically lowered second degree

11



duration The amount of time a note is held. For instance:

e |4]: quarter note (one quarter of a 4/4 measure)
e |2.1: dotted half note (three quarters of a 4/4 measure)
position The rhythmic location a note occupies within a measure, measured

in thirty-second notes from the beginning of the measure. The four beats

in a 4/4 measure occur on positions 0, 8, 16, and 24.

note A triple containing a duration, a pitch, and a position, or a “contin-
uation” note indicating that the previous note is still sounding. For

instance:

e (]4] SO 8): a quarter note on the fifth degree of the key occurring
on the second beat of the measure. This event is shown in Music

Example 12.

e (|.] X 16): a continuation note
event An ordered set of one or more notes in any one voice. For instance:

e ((|8] FA 0) (l16] SO 4) (1161 LA 6)) (exemplified by Music

Example 15)

e ((l4] LA 16)) (Music Example 13)

2 4 single dot extends the duration of a note by half its value.

12



chord An ordered set of two or four events, each of which occurs simultane-
ously in a unique voice. The position of an event in this set indicates its

voice. See Appendix C for examples of chords.

OVC (Outer Voice Chord) A chord consisting of two events. The first con-
sists of exactly one note, not a continuation, and contains the melody
(soprano). The second consists of one or more notes and contains the
bass line that accompanies the melody. Since occasionally there are more
notes in the melody than the bass line, the second event may contain a
continuation note to indicate that the soprano moved before the previous

bass note had finished.

4VC (Four Voice Chord) A chord consisting of four events. The first consists
of exactly one note, not a continuation, and contains the melody (so-
prano). The second, third and fourth events consist of one or more notes

and contain the alto, tenor and bass lines that accompany the melody.

cadence Generally, “cadence” refers to the close of a musical phrase. In this
thesis, we use a more specific definition with regard to chorale harmoniza-
tions. The conclusion of each line of text set in a chorale is accompanied
by some idiomatic harmonic progression approaching a chord that seems
more “stable” to the listener. Bach used very similar cadences in his
chorales to harmonize similar melodic fragments at the ends of various

phrases. A cadence ordinarily comprises the last two or three events of

a phrase.

13
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According to the definitions for the notes in the data set, there were 1,181
unique OVC’s, and 2,748 unique 4VC’s. The problem of data sparsity is
serious not because of the small number of chords but because there are so
many unique events. With too many unique chords, there are few or no chords
corresponding to those in any particular context.

To solve the problem of data sparsity, I considered and discarded traditional
“data smoothing” methods. All of these methods require inferring probabilities
for data points that do not exist in the original data set. To do this with
music would require a set of rules for proper voice-leading between two chords
in order to avoid corrupting the data set with mistakes such as parallel fifths
or octaves. This is complicated by the fact that parallel fifths or octaves are
likely to appear in two consecutive chords unless deliberately avoided, because
they are consonant intervals.

Instead, I chose a new approach that looked at the data in a less exact
manner. Rather than consider events equal if they were note-for-note equiva-
lent, I implemented various rules for testing equality of events based on their
“essence.” For example, a bass line may or may not have passing tones be-
tween two chord tones on the beat, but the functional harmony of two strong
bass notes with a short, weak passing tone in between is equivalent to the
functional harmony of the same two strong bass notes with no passing tone.
By defining less rigid rules, e.g. rules that allow such events to be “equal”

even though they differ slightly, we reduce the data sparsity by increasing the
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number of possible events corresponding to those in a particular context.
In order to discuss the equivalency of data points (chords) we must first
discuss the equivalency of notes and events.

I defined four rules for defining the equivalency of notes:

Name Description Musical Exx. (p. 14)
PITCH-EQ Only the pitches are equal. 1=2,2=3;7=9
7#10
NOTE-EQ Both the pitches and the 4=8;5=10;6=10
durations are equal. 1#£2;,7#9
BEAT-EQ Pitches, durations, and “strongor [ 4=8;5=10
weak” metric position are equal. 6#£10; 7#9
POSITION-EQ | Pitches, durations, and exact posi- | 4 =8
tion within the measure are equal. | 5 # 10; 6 # 10; 7 # 9

After establishing criteria for note-equivalence, we can then develop crite-
ria for event-equivalence. Since events involve one or more notes, our rules
for event-equivalence can be used in conjunction with rules for the notes they
comprise. Significant and problematic in this context are non-chordal and
submetric notes, as two events with the same chord tone in the bass should be
judged equivalent even if all of the notes within the event are not equivalent.
I defined the following six rules for determining equivalency of events, where

TYPE refers to PITCH, NOTE, BEAT, or POSITION (from the preceding table).

16



Name Description
TYPE-ALL-EQ Each note in the first event is TYPE-EQ to
the corresponding note in the second event.
TYPE-START-EQ | The first n notes of both events are TYPE-EQ;
n is the number of notes in the shorter event.
TYPE-FIRST-EQ | The first note of the first event is TYPE-EQ
to the first note of the second event.
TYPE-SET-EQ Each note of the event with the fewest notes
is TYPE-EQ to some note in the other event.
TYPE-ANY-EQ At least one note of one event is TYPE-EQ
to a note in the other event.
TYPE-SIMUL-EQ | Every note in the shorter event is TYPE-EQ to a
note occurring simultaneously in the other.

Some examples of such rules:

Rule

Positive Musical Examples
From Example Page (p. 14)

Negative
Examples

PITCH-ALL-EQ 25 = 29; 13 = 17 15 £ 19; 19 # 23
POSITION-SIMUL-EQ | 24 = 28; 13 = 17 16  26; 15 # 19
PITCH-SIMUL-EQ 156 =19; 13 = 21 15 # 10; 16 # 24
PITCH-FIRST-EQ 11=1515=19; 16 = 24 12#19; 12 £ 23
NOTE-FIRST-EQ 12=23; 15 =19 12 £ 19

BEAT-FIRST-EQ 11=15; 15 = 19; 16 = 26 12 Z 19; 12 # 23

PITCH-SET-EQ

11 =15; 21 = 29; 15 = 26

16 # 24; 13 # 19

Since there are four tests for note equivalency and six for event equiva-

lency, there are twenty-four possible compositions of these tests. Intuitively,

we may omit many tests because they are equivalent to others. For example,

POSITION-SET-EQ is equivalent to POSITION-ALL-EQ because POSITION-EQ

requires the duration and position of the notes to be equal.

Now that we have rules for determining the equivalency of notes and

events, we can determine the equivalency of chords using these rules. I de-

17




fined several rules for the equivalency of OVC’s, of forms TYPE-EQ-SandB
and STRONG-TYPE-EQ-SandB. The former tests the soprano events with NOTE-
FIRST-EQ (recall that all soprano events have exactly one note) and the bass
events with PITCH-TYPE-EQ. The latter tests the soprano events with BEAT-
FIRST-EQ and the bass events with PITCH-TYPE-EQ. Since the soprano events
and bass events occur simultaneously within any chord, by testing the soprano
events with BEAT-FIRST-EQ we verify that both chords are of the same metric
strength. Using various chord equivalency functions yielded results of various

quality. These results will be described in the following chapters.
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Chapter 5

The Simple Approach

I constructed the sets of bi-OVC’s and tri-OVC’s from Bach’s chorale harmo-
nizations by taking all sets of two or three consecutive OVC’s. Given these
bi- and tri-OVC’s, I generated probabilities for the occurrence of a particular
OVC following one or two other OVC’s, as well as the probabilities for the
occurrence of a particular bass note harmonizing a given soprano following
one or two other OVC'’s.

The simple algorithm for harmonizing a phrase begins by examining the
last few events in the melody, then assigning a cadence to these events by
randomly choosing a cadence from all those Bach used to harmonize these
events. This cadence creates a complete harmonization for the last few events
in the melody. In Figures 1 and 2 (p. 21), significant melodic events are
labeled with Greek letters, proceeding backwards. The cadence events —
those harmonized in this stage — are at «, 3, and 7.

Following the choice of a cadence, the program works backwards. Each
successive melodic event is assigned a bass event using the method shown in

Figure 2 and described below:

19



. In Figure 2, we see that the melodic events v and 8 are now harmonized.
We then create a list of all bi- or tri-OVC’s in the data that end with
the OVC’s marked by v and 8. Figure 2, index 1 represents this with
the horizontal bracket above the bass notes of v and 8.

. Extract from this list all OVC’s whose first melodic event matches 4. In
Figure 2, index 1, this is represented by the slanted line pointing up and
left toward the last soprano note () unharmonized in Figure 1.

. The list generated in (2) now contains all OVC’s in Bach’s works with
soprano sequence § — v — ( and bass sequence as on Figure 2 beneath
events v and 8. Choose at random an element from this list. Since
duplicates are allowed in this list, we choose with probability equal to
the frequency with which Bach used a particular event to harmonize the

given soprano sequence.

. Assign the bass note from the event chosen in (3) to “harmonize” the
soprano note d. The arrow from Figure 2’s index 1 pointing to the bass

note A represents this assignment.

Repeat steps 1 through 4 above working backwards, one event at a time.

Since each new application of steps 1 through 4 results in a new bass note, the

process “shifts” one note earlier in the music, using the just-completed event

as the first finished event in step 1 above. For instance, Figure 2, index 2 shows

how the now harmonized events 4 and +, along with melodic event ¢, lead to

the bass harmonization of €. The repetition of this process is manifested in

Figure 2 in the successive indices 2, 3, ..., 11, which move leftwards (musically

backwards) through the events. The phrase is harmonized in this way, from

the cadence to the beginning of the phrase.

20



Figures 1-5

(Figures 3-5 will be discussed in Chapter 6.)
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For many examples, this method yields excellent results. These include
LEUCHTET-L.1.a-b (p. 44), LEUCHTET-1.3.b-c (p. 45), and BLEIB-l.4.g
(p. 36). For others, however, this approach does not work well, resulting
in output that sounds disjointed or repetitious.

BLEIB-1.3.a and b (p. 36) have two clear segments; the first five events
are acceptable but the leap! to the dominant? at the beginning of the second
full measure is too strong next to the arpeggiated tonic chord. LEUCHTET-
[.2.c (p. 44) sounds disjointed due to its three octave leaps, all of which are
approached or left by a leap.

Repetitious events include all seven examples for BLEIB-1.1 (p. 35), which
have DO on the first and third beats of the first full measure, and all but
one of which begin on DO. Example BLEIB-I.1.g is particularly poor: five of
eight events are DO. The repetition of the LA-TI-DO figure in BLEIB-1.4.f is
unsatisfactory, particularly since it so strongly emphasizes DO which occupies
five of the nine events in this phrase.

There are several reasons that this approach fails. One reason is that the
naive use of the Markov method takes only two elements into consideration:
pitch and duration. But the metric position of a note in a measure is also
meaningful in the composition of counterpoint. For example, certain intervals

and large leaps are more likely to occur in certain metric contexts than in

! Movement by “leap” happens when two notes are more than two half-steps apart.
Compare to movement by “step,” which happens when two notes are adjacent.

2 The dominant is the fifth degree of the scale, SO. Its use in the bass line strongly propels
the harmonic motion toward the tonic, or “home” key of the scale.
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others. This is why example BLEIB-1.4.d (p. 36) is unsatisfactory: the second
beat of the first full measure is in a major thirteenth (sixth) with the soprano
on the tonic, and is approached and left by leap. The sixth is a stable, strong
interval, and the tonic-mediant® pair is the most stable third in a scale. Leaps
also contribute to the emphasis of a note. Weak beats generally need weaker
consonances or dissonances to propel the harmonic motion to the next strong
beat. Because of the strong consonance of and leaps surrounding this chord,
it disrupts the rhythmic balance of the phrase. Examining the data that led
to this harmonization proves that it is in an incorrect metric position; the
result contained the chord (((i4] DO 16)) NIL NIL ((|4| MI 16))). The
16 (picked up by the soprano from the bass) indicates that the original context
of this interval was on the third beat of a measure, a strong beat.

Requiring the program to harmonize the data with attention to the metric
position of the notes resulted in more acceptable output, if still not completely
satisfactory. The examples in BLEIB-II (p. 37) have no such bothersome
chords, but many still exhibit the problem of repetition noted above. For
example, the examples BLEIB-II.1.d-f each have at least four events on DO
and move little throughout the phrase.

This problem is due to the nature of the Markov model: the bass line is
created without any large-scale plan. It often wanders about aimlessly, or stays

on (or near) the same note for the entire phrase, leading to an uninteresting

3 the third degree of the scale
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harmonization. Our Markov chain gives no context on a scale larger than the
two- or three-note “window” with which the harmonization is completed.
Another related issue is the limitation that this method works by “looking”
in only one direction (backwards). Even with a second-order approach there
is no sense of where the music is “coming from,” only where it is “going.”
To achieve two-way context, it might be possible to begin the phrase in the
same way as the cadence is built, and try to work toward the middle from
both ends of the phrase. Such a method would not adequately address the
compositional problem, however, as the first half would have only past context
and the second half would only have future context. The only location in the
phrase that would have both past and future context would be in the middle.
Due to these serious problems, it is impossible to achieve consistently sat-
isfactory results with this simple approach. The next chapter describes a more
complex model that was able to overcome the limitations of the simple Markov

model outlined above.
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Chapter 6

The Top-Down Approach

I arrived at a novel solution to the lack of large-scale structure in the compo-
sition of the bass line. Since Bach’s chorale harmonizations are, for the most
part, metrically regular, as are the melodies he harmonizes, determining the
most important metric information is straightforward. Using this information,
it is simple to look at the chorale at a “higher” level by considering chains of
consecutive events at the same or higher metric level (e.g. the first beats of
each measure) as Markov chains themselves. I shall call the first beat of each
measure its “strongest” beat, and the first and third the “strong” beats. Other
events occur on “weak” beats. I then constructed the “strongest-set” of bi-
and tri-OVC’s by creating chains of the OVC’s on the strongest beats of each
measure in Bach’s harmonizations — the same way that I constructed the
original bi- and tri-OVC’s. I also constructed the analogous “strong-set” of
bi- and tri-OVC’s from strong beat to strong beat.

I call the sequence of first beats of each measure the “top level” (Figure 3,
p. 26), the sequence of strong beats the “mid-level” (Figure 4), and the se-

quence of all events the “lowest level” (Figure 5).
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Figures 1-5
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To harmonize a melody, a cadence is first assigned to the end of the phrase
(Figure 1). To complete the harmony for the top level, it is first necessary
to make sure that the final strongest event has been harmonized in order to
have a starting point for the chain. Frequently, it will have been harmonized
as part of the cadence. If not, it is given a harmonization using the strong-to-
strong probabilities that correspond with the movement from the last soprano
event to the strong beat within the cadence. Since all melodies are in either
4/4 or 3/4 time, and cadences are always at least two events long, all final
strongest events will either be part of a cadence or lie within one strong beat
of a note within the cadence. This assures that there is a valid starting point
for harmonizing the strongest notes of the melody.

Each remaining strongest note of the melody is harmonized in exactly the
same method used to harmonize the entire phrase in “The Simple Approach”
outlined in Chapter 5. A method using the last two strong (not strongest)
beats is often necessary to harmonize the penultimate strongest event since
there is only one strongest event following. Figure 3, index 1 shows how
the events marked o and <, harmonized as part of the cadence, generate the
harmony for the melodic event . The structure at index 2 shows the generation
of harmony for the melodic event at ¢ from the OVC’s at & and e.

This process results in a “skeleton” for the harmonization: there is a clear
harmonic movement from measure to measure copied directly from Bach’s own
measure-to-measure harmonic movement. Since most phrases are no longer
than three or four measures, there is not enough room for the Markov chain

to get “lost” — to reinterpret the current position as one of another unrelated

27



context — in the way that was possible when the phrases were sixteen events
long.

After this skeleton is created, the algorithm steps one step closer and looks
at all the strong beats. This results in a sequence of events where every other
note is already harmonized. The program can then fill in the harmony between
the already harmonized notes. Figure 4, index 4 shows how harmonized events
€ and ¢, on either side of the melodic event 7, generate its bass event.

There are two significant advantages to this method. First, the context is
now two-way: each note is filled in based on the immediately previous and im-
mediately following notes. Second, the context is now completely local: there
is no “chain” possible because each unharmonized note appears surrounded
by already harmonized notes. This completely prevents the problem of geting
“lost” in the chain.

To fill in the note, if a tri-OVC exists for which the first and third events
correspond to the events before and after the target note, it is assigned the
harmonization based on the second event of that tri-OVC. If no such event is
found, then the program attempts to find two tri-OVC’s that fit the data of

forms 1 and 2 following:

1. A tri-OVC whose first and second events correspond to the two events
preceding the target and whose third event’s soprano corresponds to the

target’s.

2. A tri-OVC whose second and third events correspond to the two events
following the target and whose first event’s soprano corresponds to the

target’s.
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If no two such OVC’s are found, then an analogous attempt is made using
bi-OVC’s. If the note is the first note in the phrase (and has context on only
one side) then the method to harmonize it uses the same one-way context that
was used in the simple approach.

This creates a skeleton of strong beats. After that, it is possible to har-
monize the rest of the chorale in the same way, filling in each note based on
the tri-OVC’s and/or bi-OVC’s from the complete data set (Figure 5). The
context is again local and bidirectional.

The results from this approach are significantly better than those of the
simple method. However, there are still problems. Specifically, there are events
that do not make sense in their context. The reason for this is the same as the
reason for one problem with the simple approach: certain melodic and har-
monic events tend to happen in certain metric positions. Since the top-down
approach, while based on metric positions, did not take into consideration
whether the previous and next events were stronger or weaker than the target
event, it allowed events to creep in that would not otherwise have been per-
mitted. An example of this is the fifth between the soprano and bass on the
second beat of the first full measure in LEUCHTET-IIL.3.c and e (p. 48). It
is approached by leap, emphasizing this interval on a weak beat. The original
data in LEUCHTET-IIIL.3.c correctly had a weak bass note on beat 2 but also
had a weak bass note on beat 1, causing the mistake.

The solution to this problem is to use metric position when comparing bi-
and tri-OVC'’s to the context of the target note. If their metric pattern (e.g.
STRONG — WEAK or WEAK — STRONG — WEAK) corresponds to the
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context of the target note, then they are acceptable (assuming the pitches
and durations also correspond). By doing this, the program does not place
an event in the bass line that is uncharacteristic for its metric position, e.g. a
dissonance or large leap.

As the constraints on allowed harmonizations become more severe, the pro-
gram becomes more prone to failure. Since I defined several rules for event
equality, I tested several of these rules for bass equivalence on the example
melodies. Some rules worked on all chorales, but did not yield results with
as high a quality as other rules that did not work on all chorales. For exam-
ple, PITCH-SET-EQ worked for many chorales but not all, including BLEIB
phrase 2. I wanted to use it because it superior results for the other phrases
in BLEIB.

My solution to this was to redefine the function that generated each new
chord given context to accept multiple test functions. If it was unable to find
any chords in the given context using the primary equivalency function, it
would then test using the remaining equivalency functions until one was found
that yielded a result or the functions were exhausted. This allowed me to
order them to achieve the best results.

Choosing where to use the various functions was also an interesting prob-
lem. For example, it would have been possible to attempt to harmonize the
entire chorale using a certain equivalency function before moving on to another.
However, allowing each chord to be generated with the best equivalency func-
tion gave the program greater flexibility; it was able to find a greater number

of harmonizations by applying different rules to complete a particular context.
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If one rule didn’t work in one part of the phrase, it could still work well in
another part.

The final problem stems from the solution to the data sparsity problem.
Since I used a “fuzzy” equality for bass and soprano notes and harmonized in
this top-down approach, occasonally a bass event made sense in the higher-
level context in which it appeared in the data set but did not work with
its surrounding low-level context. When the intervening note was filled in
between this bass event and the next strong event, the bass line no longer
made melodic sense because the event in the original input went somewhere
else. This problem is illustrated by LEUCHTET-IV.1.e (p. 50), in the first
two beats of the first full measure. The top-level structure created the (TI
DO) event on the first beat, presumably because in its original context the line
was rising. However, after adding this note with no idea of its original context,
it is reinterpreted as a DO event in the bottom level, and placed immediately
before a (SI MI) event. This rising step followed by two downward leaps of a
diminished fourth and a major third is awkward and uncharacteristic of Bach.

The solution to this is problem to “smooth” the bass line using a Markov
method, where each two consecutive events are compared against consecutive
events in the Bach corpus and the bass line reset to the exact notes that appear
in the local context of the Bach data. Then, any two consecutive bass events
in the output appear somewhere in Bach’s works as movement of the bass line.
This same example appears smoothed in LEUCHTET-V.1.e (p. 53), where the

second downward leap has been removed, and the line is acceptable.
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Appendix A

Completing Four-Part
Harmonizations

While adding bass lines to a melody is a worthy task, I wanted to find out if
a statistical method could be applied successfully to complete four-part har-
monization. This program is a work in progress, and it does make mistakes.
However, it often achieves results comparable or superior to the work of be-
ginning music theory students, despite its shortcomings.

First, the program harmonizes the bass line and a complete four-part ca-
dence, creating a framework for the harmonization. It then goes backward
from the cadence in a manner similar to that described in Chapter 5.

Each new chord is completed based on the bass-soprano pair and the four-
part harmony in the following one or two already harmonized chords. The
program searches for bi- or tri-4VC’s in the data set whose last one or two
members are equivalent to the following one or two chords. If the bass and
soprano are equivalent to those in the first member of the bi- or tri-4VC, its

inner voices are inserted into the harmonization. Applications of the weaker

32



rules for event equivalency listed in Chapter 4 helped to give the program
greater flexibility. However, this also led the program to make voice-leading
errors, including the forbidden parallel octaves and fifths. I made no attempt
to smooth the results or check for errors; this was merely an experiment to
determine whether a Markov model similar to that used for bass lines could
also accomplish the task of completing harmony.

Examples of this method appear at the end of Appendix B.
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Appendix B

Musical Examples

This section contains the musical examples referred to in the text of the thesis.

Each example is named by a keyword from the text of the chorale tune
harmonized, the method of harmonization used, the phrase of the tune har-
monized, and a letter indicating the particular harmonization for that phrase.
For example, LEUCHTET-IV.3.b is the second harmonization the computer
generated for the third phrase of “Wie schon leuchtet der Morgenstern,” using
Method IV (The Top-Down Approach with metric information).

The first set of examples, BLEIB-I.1.a through LEUCHTET-V.5.g, con-
sists of bass lines the program generated for various phrases. Each phrase,
or melodic unit, appears at the top of a column. The bass lines the program
generated for it appear below. Phrases are separated by double barlines.

The final set of examples consists of complete four-part harmonizations
the program generated for the same phrases in the BLEIB and LEUCHTET
examples. Some attempt has been made to organize these phrases so that the
same bass lines for a given melody appear in the same column, but this is not

a universal rule.
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method I: The Simple Approach

Phrases 1 and 2

Left Column: Examples BLEIB-I.1.a to BLEIB-1.1.g
Right Column: Examples BLEIB-1.2.a to BLEIB-1.2.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method I: The Simple Approach

Phrases 3 and 4

Left Column: Examples BLEIB-I1.3.a to BLEIB-1.3.g
Right Column: Examples BLEIB-1.4.a to BLEIB-1.4.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method II: The Simple Approach using metric information

Phrases 1 and 2

Left Column: Examples BLEIB-II.1.a to BLEIB-II.1.g

Right Column: Examples BLEIB-II.2.a to BLEIB-11.2.d
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method III: The Top-Down Approach

Phrases 1 and 2

Left Column: Examples BLEIB-III.1.a to BLEIB-III.1.g
Right Column: Examples BLEIB-III.2.a to BLEIB-III.2.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method III: The Top-Down Approach

Phrases 3 and 4

Left Column: Examples BLEIB-III.3.a to BLEIB-IIIL.3.g
Right Column: Examples BLEIB-III1.4.a to BLEIB-II1.4.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method IV: The Top-Down Approach using metric information

Phrases 1 and 2

Left Column: Examples BLEIB-IV.1.a to BLEIB-IV.1.g
Right Column: Examples BLEIB-IV.2.a to BLEIB-1V.2.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method IV: The Top-Down Approach using metric information
Phrases 3 and 4

Left Column: Examples BLEIB-IV.3.a to BLEIB-1V.3.g

Right Column: Examples BLEIB-IV.4.a to BLEIB-IV 4.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method V: Smoothed Top-Down Approach using metric information

Phrases 1 and 2

Left Column: Examples BLEIB-V.1.a to BLEIB-V.1.g
Right Column: Examples BLEIB-V.2.a to BLEIB-V.2.g
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)

Method V: Smoothed Top-Down Approach using metric information
Phrases 3 and 4

Left Column: Examples BLEIB-V.3.a to BLEIB-V.3.g

Right Column: Examples BLEIB-V .4.a to BLEIB-V.4.g
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Melody: “Wie schén leuchtet der Morgenstern” (LEUCHTET)
Method I: The Simple Approach

Phrases 1 and 2

Left Column: Examples LEUCHTET-I.1.a to LEUCHTET-1.1.g
Right Column: Examples LEUCHTET-1.2.a to LEUCHTET-1.2.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method I: The Simple Approach

Phrases 3 and

4

Left Column: Examples LEUCHTET-1.3.a to LEUCHTET-1.3.g
Right Column: Examples LEUCHTET-1.4.a to LEUCHTET-1.4.g
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Melody: “Wie schén leuchtet der Morgenstern” (LEUCHTET)
Method I: The Simple Approach

Phrase 5

Examples LEUCHTET-L.5.a to LEUCHTET-1.5.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method III: The Top-Down Approach

Phrases 1 and 2

Left Column: Examples LEUCHTET-IIl.1.a to LEUCHTET-III.1.g
Right Column: Examples LEUCHTET-III.2.a to LEUCHTET-III.2.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method III: The Top-Down Approach .
Phrases 3 and 4 iy
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Left Column: Examples LEUCHTET-II1.3.a to LEUCHTET-IL3.g /il qgt,
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Melody: “Wie schén leuchtet der Morgenstern” (LEUCHTET)
Method III: The Top-Down Approach

Phrase 5

Examples LEUCHTET-IIL.5.a to LEUCHTET-IIIL.5.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method IV: The Top-Down Approach using metric information
Phrases 1 and 2

Left Column: Examples LEUCHTET-IV.1.a to LEUCHTET-IV.1.g
Right Column: Examples LEUCHTET-IV.2.a to LEUCHTET-IV.2.g
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Melody: “Wie schén leuchtet der Morgenstern” (LEUCHTET)
Method IV: The Top-Down Approach using metric information
Phrases 3 and 4

Left Column: Examples LEUCHTET-IV.3.a to LEUCHTET-1IV.3.g
Right Column: Examples LEUCHTET-IV .4.a to LEUCHTET-IV 4.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method IV: The Top-Down Approach using metric information
Phrase 5

Examples LEUCHTET-IV.5.a to LEUCHTET-IV.5.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method V: Smoothed Top-Down Approach using metric information

Phrases 1 and 2

Left Column: Examples LEUCHTET-V.1.a to LEUCHTET-V.1.g
Right Column: Examples LEUCHTET-V.2.a to LEUCHTET-V.2.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method V: Smoothed Top-Down Approach using metric information
Phrases 3 and 4

Left Column: Examples LEUCHTET-V.3.a to LEUCHTET-V.3.g
Right Column: Examples LEUCHTET-V .4.a to LEUCHTET-V 4.g
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)
Method V: Smoothed Top-Down Approach using metric information
Phrase 5

Examples LEUCHTET-V.5.a to LEUCHTET-V.5.g

1
| 1

QL

_

| ™
| =] bt [~ i
@ A'l} l:
i e |
m—— 1

|

\
|

I

?

] Al
\

I




J

£
I!lllf
\
-~
717

L4

4
I
|
A
rJ
)

i

[

r A

L
]

£ [ o £ &

14
£ 11 T

ey
F I d
S w4

7

4
3

p

)]

y
ol g=4 {1 1

11 ¢#T1 1

Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)

Method A: The Simple Approach

Phrases 1 and 2
Examples BLEIB-A.l.a-c and BLEIB-A.2.a-f

aer PHRASE 4.

Phase 2.
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)

Method A: The Simple Approach

Phrases 3 and 4
Examples BLEIB-A.3.a-f and BLEIB-A.4.a-d
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)

Method B: The Top-Down Approach

Phrases 1 and 2
Examples BLEIB-B.1.a-d and BLEIB-B.2.a-f
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Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Method B: The Top-Down Approach

Phrases 3 and 4
Examples BLEIB-B.3.a-1 and BLEIB-B.4.a

Phrase 3.
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Method C: The Top-Down Approach with metric information

Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Phrases 1 and 2

Examples BLEIB-C.1.a-f and BLEIB-C.2.a-d
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Method C: The Top-Down Approach with metric information

Melody: “Ach bleib bei uns, Herr Jesu Christ” (BLEIB)
Phrase 3

Examples BLEIB-C.3.a-h
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Melody: “Wie schén leuchtet der Morgenstern” (LEUCHTET)

Method C: The Top-Down Approach with metric information

Phrases 2 and 3
Examples LEUCHTET-C.2.a-d and LEUCHTET-C.3.a-f
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Melody: “Wie schon leuchtet der Morgenstern” (LEUCHTET)

Method C: The Top-Down Approach with metric information

Phrases 5 and 6
Examples LEUCHTET-C.5.a-g and LEUCHTET-C.6.a-c

Phrase 5.
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Appendix C

Data Format Examples

“Jesu, meine Freude”

F;G}'ﬁrr'
I L=

The KERN data format

111COM: Bach, Johann Sebastian
1110TL: Jesu, meine Freude
**¥kern **xkern **kern **kern
*k[b-] =*k[b-] =*k[b-] =*k[b-]
xMa/4  *xM4/4  *xM4/4 *M4/4

=1~ =1~ =1- =1-
8D\L 8F/L 4d/ 4a/
8E\J 8G/J

aF\, aA/, 44/, 4/,
4ac#/ 8B-/L 4e/ 4g/

. 8A/J . .
4D\ 47/ 44/ 4f/
=2 =2 =2 =

4GG/ 4B-\ a4/ 2e;/
4AA/ 8A/L dc#/ .
. 8G/J . .
20D;/, 2F;/, 24;/, 24;/,
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The previous fragment in my LISP data format

(14l so 0)) (Cl4l
(141 so 8)) (4l
€CCl4al FA 16)) (14!
(141 ME 24)) ((l4]
(C(121 RE 0)) ((Cl4}
(4]
€¢C121 DO 16)) (CI2]
((CADENCE))
(141 s0 0)) ((Cl4}
(el LA 8)) ((14)
(((141 TE 16)) ((I8I
(CC141 SO 24)) (14!
(CQ121 Do 0)) (Clat
18l
(CC12! TI 16)) ((12)
( (CADENCE))

D0
Do
RE
Do
Do
FA
S0

DO
FA
FA
RE
S0
MI
SO

0)) (I8l ME 0) (8] FA 4)) ((I8] DO 0) (I8 RE 4)))
8)) (14l S0 8)) ((14] ME 8)))

16)) ((I8] LE 16) (i8] S0 20)) ((l4] TI 16)))

24)) ((14] s0 24)) (Cial DO 24)))

0) (14t TI 8)) ((l4! LE 0) (18] SO 8) (I8| FA 12))

0) (14} so0 8)))

16)) ((12]1 ME 16)) (121 DO 16)))

0)) (18] ME 0) (I8l RE 4)) ((I8] DO 0) (I8! RE 4)))
8)) ((l4] Do 8)) (141 ME 8)))

16) (181 ME 20)) ((l4l TE 16)) ((I8| RE 16) (I81 ME 20)))
24)) ((14]1 TI 24)) (141 FA 24)))

0) (141 LA 8)) ((I81 DD 0) (18| RE 4) (l14! ME 8))

0) (18} FI 4) (|4l FI 8)))

16)) ((l2] RE 16)) (Cl12] so 16)))
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Appendix D
Code Listing

chorale.h

This file contains data structures and headers for my C++ representation of
a four-part chorale.

// chorale.h

//

// Christopher Thorpe

// 24 December 1997

//

// Classes and headers for chorale music data structures.

//

#ifndef _CHORALE_H_
#define _CHORALE_H_

#include "catlib.h"

const int QUANTUM = 32; // greatest subdivisions per whole note
const int SOL_FLAT = 0;
const int SOL_NATURAL = 1;
const int SOL_SHARP = 2;

class pitch_t;

extern const pitch_t FIXED_DO;
extern const pitch_t EMPTY;
extern const pitch_t REST;

// Gets the pitch class of a note.
// ¢ is middle C; cc one octave above; C one octave below and CC two below.
// octaves change at middle C, e.g. ABcd ... abccdd
class pitch_t {
private:
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const int MIDDLE_C = 51;

char letter;

int octave;

int sharp_or_flat;

int index;

int compute_index(); // helper in comstructor
public:

pitch_t();

pitch_t(char 1, int o, int sf);

int get_pc() { return index % 12; } // returns pitch class (0 <= pc < 12)
int get_index() { return index; } // returns integer pitch index
int get_octave() { return octave; } // returns integer octave

bool operator-(const pitch_t &p2);
bool operator+(const pitch_t &p2);
bool operator==(const pitch_t &p2);
bool operator!=(const pitch_t &p2);

// Allow a movable do

const char *get_solfa(pitch_t use_do = FIXED_DO, bool chromatic = true);
b
pitch.t get_pitch(const char *s);

inline bool octave_equal(pitch_t pl, pitch_t p2)
{

return pl.get_pc() == p2.get_pc();
}

typedef char duration_t;

class note_t {

private:

pitch_t pitch;

duration_t duration;

int information;

char kern_description[32];

char kern_duration[8];
public:

note_t();

note_t(pitch_t p, duration_t d, int i, comst char #kd);

pPitch_t get_pitch() { return pitch; }

duration_t get_duration() { return duration; }

const char* get_kern_description() { return kern_description; }
const char* get_kern_duration() { return kern_duration; }

int get_information() { return information; }

const int PAUSE = 0x1;
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const int BREATH = 0x2;
const int TIE_BEGIN = 0x4;
const int TIE_END = 0x8;
const int TIE_WITHIN = 0x10;

};

note_t get_note(const char #s);

// To represent Western 18th century key signatures, we use

// -1 for each flat, +1 for each sharp. (Should range between [-7,+7])
// Examples: 0: C,a +3: A/f# -2: Bb/g

typedef int key_signature_t;

int compute_key_signature(const char *s);

// Enumerated type for the various modes.

// Since this is 17/18th century, not 9th, we use the

// modern theoretical modes (the white keys on the piano starting from C.)

typedef enum {Ionian=0, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, Locrian}
mode_t;

const mode_t Major = Ionian;

const mode_t Minor = Aeolian;

const char * print_mode(mode_t m);

// This way, by taking the negative or positive index of circle_of_*_keys
// you get the tonic mote. E.g. -3, 3 flats -> e~ (E flat major)

// or 2, 2 sharps -> b (b minor.)

//

const pitch_t get_modal_tonic(key_signature_t key, mode_t mode);

const char * print_modal_tonic(key_signature.t key, mode_t mode);

inline const pitch_t get_major_tonic(key_signature_t key)
{ return get_modal_tonic(key, Major); }

inline const pitch_t get_minor_tonic(key_signature_t key)
{ return get_modal_tonic(key, Minor); }

int get_modal_pc(int degree, mode_t mode);

inline int get_major_pc(int degree) { return get_modal_pc(degree, Major); }
inline int get_minor_pc(int degree) { return get_modal_pc{(degree, Minoxr); }

class time_signature_t {

private:
int beat_duration;
int beats_per_measure;
char name_array[16] ;
public:

time_signature_t();
time_signature_t(int b_d, int b_p_m);
time_signature_t(time_signature_t &ts);
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const char #*print();

int
int
int
int

};

how_strong(int beat);

get_beat_duration() { return beat_duration; }
get_beats_per_measure() { return beats_per_measure; }
get_measure_duration()

{ return beat_duration * beats_per_measure; }

time_signature_t compute_time_signature(const char *s);

111111177111111111117
// Unique to chorales

const int MAX_BEATS = 6;

class chorale_t {

public:
enum
const int
const int
const int
const int

{ BASS = 0, TENOR = 1, ALTO = 2, SOPRAND = 3 };

MAX_VOICES = 4;

MAX_MEASURES = 48; // maximum number of measures

MAX_LENGTH = 6; // maximum number of beats per measure
MAX_QUANTA = (int) (QUANTUM * MAX_LENGTH/4.0 * MAX_MEASURES);

chorale_t(time_signature_t &ts, int pickup, int measures,

key_signature_t ks, mode_t m = Major, int voices = 4);

chorale_t(const char *filename);

note_t get_event(int v, int p) { return the_musiclv]l[pl; }
key_signature_t get_key_signature() { return key_signature; }
time_signature.t ' get_time_signature() { return time_signature; }
mode_t get_mode() { return mode; }
pitch_t get_tonic(){return get_modal_tonic(key_signature,mode);}
const int get_num_pickup_quanta() { return num_pickup_quanta; }
const int get_num_quanta() { return num_quanta; }
const int get_num_measures() { return num_measures; }
const int get_num_voices() { return num_voices; }
const int get_num_cadences() { return num_cadences; }
const int get_cadence(int i) { return cadences[i); }

private:

time_signature_t time_signature;
key_signature_t key_signature;

mode_t

mode;

// Divide MAX_LENGTH by 4 to get

note_t
int

the_music [MAX_VOICES] [MAX_QUANTA];
min_duration(int position); // the shortest event at position
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int num_cadences;

int cadences [MAX_QUANTA/QUANTUM] ;
int num_pickup_quanta;

int num_quanta;

int num_measures;

int num_voices;

};

#endif // _CHORALE_H_
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chorale.cc

This file contains function definitions for reading a file in the KERN format
and creating the chorale data structure defined in chorale.h.

// chorale.cc

//

// Christopher Thorpe
// 26 December 1997
//

// Functions for chorale music data structures.
//

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>

#include “"chorale.h"

const pitch_t FIXED_DO(’c’, 0, 0);
const pitch_t EMPTY(’x’, 0, 0);
const  pitch_t REST(’r’, 0, 0);

const char * mode_name_data[7] = {"Ionian", "Doriam", "Phrygian", "Lydian",
"Mixolydian", "Aeolian", "Locrian"};

const char =*
print_mode(mode_t m) {
return mode_name_data[m];

}

const char* circle_data[21] = {
tlf-ll ) |lc_“ R "8_" N "d—ll » l|a-" R "e_ll N llb-" , llfll ,
"c" ,

Ilg" 5 l!dll , "a" , llell . llbl' » "f#ll . "c#l' . llg#ll . lld#ll , lla#'l , lle“" , llb#ll };

// The offsets are into the circle_data array if the key has no sharps or
// flats. In any mode, adding a sharp or flat moves the same way across

// the circle of keys, so we keep track of the "starting point" for eac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>