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Abstract

We propose a general model underlying the problem of designing trading
strategies that leak no information to frontrunners and other exploiters. We
study major scenarios in the market and design a family of algorithms that can
be proven to leak no information in important scenarios. These algorithms can
serve as building blocks for more challenging real-world scenarios beyond our
current scope. In contrast to previous work, the strategies we propose protect
trader using the existing trading infrastructure.

1 Introduction

Large market participants (LMPs) must often execute trades while keeping
their intentions secret. Sometimes secrecy is required before trades are completed
to prevent other traders from anticipating (and exploiting) the price impact of
their trades. This is known as “front-running”. In other cases, LMPs with pro-
prietary trading strategies wish to keep their positions secret even after trading
because their strategies and positions contain valuable information. LMPs in-
clude hedge funds, mutual funds, and other specialized market players.

In some cases, large order information is leaked when indiscreet brokers
share it, or when rogue traders collude to exploit insider information. In re-
cent years, alternative trading systems and dark pools, such as BIDS, BATS,
Liquidnet, Pipeline and POSIT have been developed to reduce this inefficiency
and information leak in block trading. Even so, new strategies to “probe” such
systems attempt to divine pockets of liquidity and exploit that information.
Some firms go further and attempt to reproduce successful funds’ strategies by
monitoring their disclosures and trying to reconstruct their order flow. Even if
information is not leaked to the market, order information can be exposed in-
ternally within an ethically questionable broker, especially when the broker also
conducts proprietary trading.

However order information is leaked, or why it is sought, traders who exploit
others’ order information extract value from markets at the expense of the LMP.
Thus, hedge funds and other firms take great pains to hide their intentions, even
generating “noise” trades to hide their intended positions from other traders
[2]. We present trading schemes that disguise an LMP’s intentions and positions
from any other entity, including the brokers that the LMP interacts with.

Various studies [13, 12] have shown abnormal price behavior and significant
negative price impact from information leakage prior to a block trade execution.
Thorpe and Parkes [16, 17] discuss cryptographic and security research on ex-
changes and how information can be exploited in financial markets. But, existing
research generally proposes new infrastructures or protocols, for which adoption
is notoriously difficult. We take a simpler approach. Our specific contributions
are: (1) to propose a general model underlying the design of trading strategies
that leak no information, (2) to study major scenarios in the market and design
associated algorithms that require no changes to the existing trading infrastruc-
ture, and (3) to prove those algorithms leak no information in those scenarios.



These algorithms can serve as building blocks for more challenging real-world
scenarios beyond our present scope. Though our approach is algorithmic, we are
not concerned with volume-weighted algorithmic trading. See [4], [5] and [11] for
a review of the literature and for insights into the study of automated trading.

In Section 2, we discuss existing trading infrastructure, define three types of
adversaries, and present ways they can extract information from orders placed
by the LMP. In Section 3, we describe the model for information leakage and
address the needed properties for an efficient trading strategy. Section 4 intro-
duces different trading strategies that disguise the intention and holdings of the
LMP from exploiters. We also evaluate their defensive performance against each
of the three types of “exploiters”. Section 5 explores the cost estimates of our
strategies.

2 Preliminaries

Existing trading infrastructure and exploiters
We use the term brokers to include brokers, dealers, and broker-dealers.

Shares are units of any security, including equities, bonds, currencies, or deriva-
tives. One can long or short any of the shortable securities represented through
brokers. Each transaction is for a nonzero integer number of shares; although
LMPs typically trade in increments of at least 100 shares. When a trade is exe-
cuted, the symbol and quantity is publicly reported by the exchange. Typically,
only the broker involved in the trade knows the identity of the LMP and whether
the LMP was the buyer or seller. The LMP pays commissions and fees for ex-
ecuted trades, usually proportional to the trade volume. Exploiters exploit any
information they obtain and can be categorized into three classes, from weakest
to strongest:

1. Curious Observers are able to see trades printed as they are executed and/or
the prices and sizes of orders (requested trades) as they are quoted. These
observers can, for example, exploit an LMP who splits a large order into
sequential smaller blocks of orders. With sufficient intelligence and experi-
ence, curious observers may be able to guess the identity and intention of
the LMP.

2. Individual Curious Brokers are able to see trade orders by the LMP before
they are executed. A corrupt or careless broker can leak the LMP’s intentions
for exploitation by broker insiders or external agents. Using multiple brokers,
the LMP can limit the information a single curious broker can extract.

3. Colluding Curious Brokers are able to see trade orders by the LMP and
can share their information with each other. If all brokers used by the LMP
are curious and collude, any benefits resulting from splitting trades across
different brokers would be lost. However, all brokers used by the LMP must
collude in order to yield complete knowledge.

The following example demonstrates what each type of exploiter can see:



Example 1. Assume a trader buys 100k shares of ATK from broker b1 and sells
200k shares of ATK to broker b2. Then

– A curious observer sees an unsigned trade volume (ATK: 100k) from b1 and
(ATK: 200k) from b2.

– Broker b1 sees a signed trade by the LMP of (ATK: + 100k) from his own
transaction and an unsigned volume (ATK: 100k) from b2.

– Broker b2 sees a signed trade by the LMP of (ATK: − 200k) from his own
transaction and an unsigned volume (ATK: 100k) from b1.

– If brokers b1 and b2 collude, they can infer the net directed volume (ATK: −
100k) by the LMP.

In all our strategies the LMP places a set of orders for an asset d at one
or more brokers in order to yield a net purchase or sale of d. Using minimal
resources, we want to prevent reasonably capable exploiters from guessing the
net order. Strategies must also stay completely effective even when exploiters
are aware that the LMP is using them. We focus primarily on the following
scenarios:

– Multiple brokers with one trader (nB1T): There is only one trader repre-
sented in the market, the LMP. This trader can interact with many brokers.

– Single broker with multiple traders (1BmT): Only one broker handles trades,
for the LMP and possibly for other market participants.

– Multiple brokers with multiple traders (nBmT): Multiple traders and multiple
brokers can trade simultaneously, the most general scenario.

Two motivating trading strategies and why they leak information
To hide the net order we first consider a simple approach where the LMP

uses two brokers and places an order with each one so that neither broker indi-
vidually learns about the net order. This simple strategy still allows brokers to

Stock Shares through Broker b1 Shares through Broker b2 Net LMP volume traded

ATK +500k −500k 0
SXL −300k +400k +100k

BRCD −3000k +2000k −1000k

Table 1. An example of disguising true trading intentions using two brokers.

extract some knowledge. For example in Table 1, Broker b1 observes that a large
ATK trade has gone through Broker b2 when Broker b2 prints the block trade
after execution. Broker b1 is not sure whether the LMP is involved in the trade
with Broker b2, or the direction of the LMP’s trade through Broker b2. But, A
knows that his large client has traded one of three net positions: 500k, 500k +
500k = 1M, or 500k - 500k = 0. Similarly, Broker b1 knows his client’s net trade
for SXL is 100k, -700k, or -300k shares. Because the number of possible cases
is low, Broker b1 can analyze each scenario and deduce the best exploitation



strategy. For example, a block trade price that is closer to the bid than to the
offer is more likely to be seller-initiated [10].

Another simple strategy is to use a single broker but multiple registered
traders. An LMP might create several registered trading agents that are not
known to be associated with the LMP but trade on its behalf. Thus we could
produce the exact same structure as Table 1 except that now instead of a single
trader using Broker b1 and Broker b2, we have Trader d1 and Trader d2, both
responsible for the same book of the LMP, trading through a single broker. The
broker cannot tell from what he sees if he is dealing with one LMP shopping
two blocks or two LMPs. This defends against collusion, unlike the two-broker
system. But, if the broker links the two pseudonymous traders together, then he
will know everything about their intentions going forward. We can combine the
two solutions so that each pseudonymous trader is splitting orders across multiple
brokers. This gains both the advantages and the overhead of both approaches.

3 Defining “information leak”

A rigorous definition of “information leak” is needed to understand both
the potential threats from exploitation for the LMP and the desired properties
of the trading strategies we are seeking. We propose in this section three types
of information leak (or rather its absence) so as to formalize the notion: zero
information leak, ε-information leak, and full space strategy.

Our inspiration is Goldwasser et al.’s [9] notion zero knowledge. Roughly,
transmitting a piece of information is zero-knowledge if the universe of computa-
tions the recipient can perform does not change after receiving the information.

Definition 1. (Zero information leak) Let (Ω,F ,Pr) be a (discrete) probability
space that represents all possible positions an LMP might intend to trade and the
corresponding a priori distribution over these positions. Let M be the message
(which can be a random variable over a probability space other than Ω) that
represents the trading records of the LMP observed by exploiters. We say that
the LMP’s trading strategy leaks zero information with respect to the exploiters
if, for any random variable X defined over Ω, we have that the distributions of
X and X |M are the same.

Remark 1. When we are only interested in one specific symbol, we shall view Ω
be all possible shares an LMP can long or short. It is thus sufficient to assume Ω
is a discrete space. The trading strategy we are looking for could be a randomized
one, which suggests M should be a random variable. Additionally, the coin tosses
of the randomized strategy are necessarily private. The random variableM might
be different from Ω. The function X should be viewed as the information related
to the LMP’s net position that a exploiter wants to extract. For example,X could
be a threshold function that indicates whether the shares traded exceed 10,000.

Since Ω is also a subset of the real numbers, the identity function I(ω) = ω
for all ω ∈ Ω is also a random variable. Furthermore, for any other random



variable f , we have σ(f(Ω)) ⊆ σ(Ω). Therefore it is indeed sufficient for a
trading strategy to leak no information that the distributions on Ω and Ω | M
are the same. On the other hand, this equality suggests that the random variables
M and Ω are independent of each other, which also means that M and M | Ω
have the same distribution.

If they are the same, any observer should able to simulate the random
variable M on her own without seeing Ω. This may be closer to the traditional
definition of zero knowledge: an interactive protocol is said to be zero knowledge
if verifiers are able to simulate the transcript on their own [7].

We shall also be able to compute the trading strategy efficiently. The fol-
lowing definition implicitly gives the trading strategy we are seeking.

Definition 2. (Efficient algorithms for zero information leak) Let (Ω,F ,Pr) be
a probability space that represents all possible intended positions of an LMP and
the corresponding a priori distribution over these positions. Let ω be a random
sample from Ω. A trading algorithm A is said to be perfect-zero-knowledge with
respect to exploiters if the following two conditions hold:

– A can generate an execution plan in polynomial time (wrt a reasonable rep-
resentation of Ω) that ends with the LMP holding exactly ω shares.

– The exploiters are able to generate the distribution on the random variable
M on their own without seeing the signal ω.

Remark 2. Regarding the “reasonable representation” of Ω: though it is not
specified precisely, in most cases the natural representation for Ω will be well
understood. For example, if there is no prior knowledge of Ω, then the size of
Ω’s representation is log2(|Ω|).

A natural relaxation of zero information leak is to allow ε information leak.
The definition is essentially the same as this except that exploiters can generate a
random variable with a statistical difference1 fromM of at most ε. One may think
of the difference between perfect zero knowledge and statistical zero knowledge
[7] to understand the motivation for this relaxation in security definition.

Definition 3. (Efficient algorithms for ε-information leak)Let (Ω,F ,Pr) be a
probability space that represents all possible positions intended to be traded by
an LMP and the corresponding a priori over these positions. Let ω be a ran-
dom sample from Ω, a trading algorithm A is said to be an ε-information leak
algorithm with respect to exploiters if the following two conditions hold

– A can generate an execution plan in polynomial time (with respect to a rea-
sonable representation of Ω) so that by the end of the execution the LMP
holds exactly ω shares.

1 the statistical difference between two discrete random variables X and Y is defined
as

∑
i |Pr[X = i]− Pr[Y = i]|



– The exploiters are able to generate a random variable M̃ on their own without
seeing the signal ω, where statistical difference2 between M̃ and M is at most
ε.

Finally, we propose another way to ensure sufficient noise that an adversary
is unable to eliminate any possible values from Ω. Specifically we require that
Pr[ω |M = p] > 0 for all q and all ω such that Pr[ω] > 0.

Definition 4. (Efficient algorithms for full space strategy) Let (Ω,F ,Pr) be a
probability space that represents all possible intended positions of an LMP and
the corresponding prior over these positions. Wolog, assume that Pr[ω] > 0 for
any ω. Let ω be a random sample from Ω. A trading algorithm A is said to give
a full space strategy with respect to exploiters if the following two conditions
hold:

– A can generate an execution plan in polynomial time (w.r.t. a reasonable
representation of Ω) that ends with the LMP holding exactly ω shares.

– For any message M observed by the exploiters, Pr[ω |M ] > 0 for any ω ∈ Ω.

Example 2. (A negative example of full space strategy) Let Ω = [−500k, 500k].
Suppose the trading target is to buy 200k shares of ATK and the trading strategy
T is to buy 250k from broker b1 and sell 50k to broker b2. The trading strategy T
does not have full solution space because an external observer can immediately
eliminate the possibilities from the ranges [−500k,−300k] and [300k, 500k].

Practicality typically limits Ω. For example, when a security has low liquid-
ity, an external observer can simply sum up all the shares that are traded within
a specific time window to derive the upper and lower bounds for Ω. Therefore,
we view |Ω| as a security parameter for an LMP. We can increase its value to
get a safer system, at the cost of paying higher transaction costs. The security
parameter needs not be secret.

Although there are more refined notions of knowledge, e.g., that quantify
the exact number of bits leaked by a system [8], it is unclear how the amount
of leaked information relates to the financial cost of the information. A single
leaked bit information can have great value (the sign of an order issued by an
insider), but other times even a large information leak may be harmless.

4 Trading strategies

In this section, we design and analyze trading strategies to counter various
adversaries in various markets, and in progressively more challenging scenarios.

Multiple brokers with one trader (nB1T)
In order to defend against the three types of exploiters mentioned, we first

2 the statistical difference between two discrete random variables X and Y is defined
as

∑
i |Pr[X = i]− Pr[Y = i]|



build our strategies using a single trader and n orders placed with n different
brokers. We call this the nB1T platform. We start with nB1T strategies for the
LMP against curious observers (the weakest). The following sign flipping game
is closely related to a trading strategy that leaks no information:

Definition 5. ( Sign Flipping Game) Given an interval [−q, q], find a set of
numbers T = {t1, t2, ..., tn} such that

∑
i ti = q and

1. For any integer x ∈ [−q, q] ∩ Z there exists a set of numbers a1, a2, ..., an ∈
{−1, 1}, ti ∈ Z such that

x = a1 · t1 + a2 · t2 + ...+ an · tn. (1)

2. The number n is a function of q. The value of n should be as small as possible.

Intuitively, for our strategy utilizing Multiple Brokers with One Trader
(nB1T), n in the sign flipping game is the number of brokers the LMP in-
teracts with, and Ω = [−q, q] is the range of net position the LMP wants to
hold. By buying or selling volume ti with broker i, he can construct every possi-
ble desired net trading volume, x, bounded between −q and q. Unsigned traded
volumes TL = {|aiti|} are printed among other traded volumes W0 that do not
involve the LMP. Observer identification of TL from TL ∪W0 depends on market
liquidity and other factors. An LMP is always able to set a larger q at the cost
of higher transaction costs. When the security parameter q is fixed, a natural
goal is to minimize the number of brokers used.

Now, suppose the LMP wishes to buy x ∈ [−q, q] shares (negative x notated
as selling) of a product. She would then be able to execute a sequence of orders
t1, t2, ..., tn to each of the brokers such that

x = t1 + t2 + ...+ tn.

From an observer’s point of view, he only sees the sequence |t1|, |t2|, ..., |tn|. If he
does not have information of the LMP’s intention a priori, the observer can only
attempt to extract knowledge by going through all combinations of the signs for
all ti. Therefore, the LMP’s strategy should make the following set as large as
possible:

S = {a1|t1|+ a2|t2|+ ...+ an|tn| : a1, ..., an ∈ {−1, 1}} .

A necessary requirement for a trading strategy being a zero information
leak one is [−q, q] ⊆ S. Our first goal is to construct T = {t1, t2, ..., tn} with
minimum possible n such that S fully covers [−q, q]. We can find the set T from
the following Lemma.

Lemma 1. There exists a set T with |T | = dlog2 qe + 2 that satisfies the first
requirement of the Sign Flipping Game.



Proof. Let n = dlog2 qe + 2, the following set satisfies the desired property:
T = {1/2, 1/2, 1, 2, 4, ..., 2n−3}.

Now we can prove the statement by induction on n. When q = 1 and n = 2,
we have −1 = −1/2− 1/2, 0 = −1/2 + 1/2, and 1 = 1/2 + 1/2.

By hypothesis, if n ≤ N , and |x| ≤ q, there exist a1, a2, ..., aN such that∑
1≤i≤N aiti = x. And, by definition of n, 2n−2 = bqc, so 2N−2 = bqNc

– For any values x ∈ [0, 2N−2 − 1], we thus have that x − 2N−3 ≤ qN . Thus
we can find a1, ..., aN such that

∑
1≤i≤N aiti = x− 2N−3; setting aN+1 = 1

will make x =
∑
i≤N+1 aiti.

– If x = 2N−2, then x− 2N−3 = 2N−3 ≤ qN . Thus again setting aN+1 = 1 will
make x =

∑
i≤N+1 aiti.

– For negative values of x ≥ −2N−2, one of the above two arguments applies,
except for some changing of signs and assigning aN+1 = −1.

Interestingly, the number n in the above Lemma is nearly optimal:

Lemma 2. For any set T that satisfies the first requirement of the Sign Flipping
Game, we have |T | ≥ dlog2 qe+ 1.

Proof. The total number of possible assignments to a1, ..., an is at most 2n.
Therefore, we need 2n ≥ 2q + 1⇒ 2|T | ≥ 2q + 1 ≥ 2q ⇒ |T | ≥ dlog2 qe+ 1.

Next, notice that Lemma 1 already suggests a binary flavored algorithm
that runs in poly log(q) time.

Lemma 3. (Efficient coefficient computation) Let q, n, and T be values and
set defined in Lemma 1, for any integer x ∈ [−q, q], there exists an O(n) (i.e.,
O(log2(q)) algorithm finding ais such that

∑
i aiti = x.

Finally, since the T set is fixed, it is not difficult to see that the strategy
derived from the sign flipping game is optimal.

Theorem 1. (Zero information leak strategy) There exists an efficient algo-
rithm generating trading strategies that leak zero information to curious individ-
ual brokers on the nB1T platform.

Proof. Let Ω = [−q, q]. The strategy is defined in the intuitive way. Let x be the
actual shares an LMP intends to trade. Let T be the set defined in Lemma 1.
Then the LMP shall find ai for 1 ≤ i ≤ |T | such that

∑
i≤|T | aiti = x and she will

trade aiti volume with the ith broker. Observe that the set T is fixed and any
external observer will consistently observe bi trading ti = max(1, 2n−1) volumes.
This trading record can clearly be simulated.

Corollary 1. There exists an efficient algorithm for full space strategy against
curious individual broker on the nB1T platform.



The above strategies no longer work against curious individual brokers who
do not collude. For example, curious broker bn, upon seeing the value an of the
order, would know that the LMP is intending to buy from the range [−q, 0] if
an = −1 or [1, q] if an = 1.

If instead, we randomly split the designated value x into two parts x1 and
x2 such that x = x1+x2, and use two set of brokers b1, b2, ..., bn and b′1, b

′
2, ..., b

′
n,

where bi trades for x1 shares and b′i trades for x2, then intuitively information
gained by bn will not suffice to narrow down the search range [−q, q] because x2
can cancel out the order she sees. The following theorem formalizes this idea.

Theorem 2. (Full space strategy for a “curious broker” market) There exists
an efficient algorithm that generates trading strategies that are full space against
curious broker in the multiple-brokers-with-one-trader market.

Proof. Let Ω = [−q, q] and x be the net number of shares to be traded. Consider
the following strategy, namely S1: first let us randomly split x = x1 + x2, where
x1, x2 ∈ [−q, q]. Next we use brokers b1, b2, ..., bn to execute S1(x1) and brokers
bn+1, bn+2, ..., b2n to execute S1(x2). We claim that the strategy S1 is a full space
strategy.

Let bj be a curious broker who learns a sign s ∈ {−1, 1}. Let the integer
x ∈ [−q, q] be the designated net shares we wish to trade. We need to show that
we can use the rest of the brokers to construct any x in [−q, q]. Without loss of
generality, assume j ≤ n. Let x =

∑
1≤i≤n ai · ti. If aj = s, then let x1 = x and

x2 = 0; otherwise, let x1 =
∑

1≤i6=j≤n aiti + stj and x2 = (aj − s)ti. Then we
will have x = x1 + x2.

When using the strategy proposed above, however, we will have some degree of
information leakage due to the fact that x1 and x2 cannot be chosen randomly
from [−q, q], which is probably not desirable. For example, when x = q, the
value x1 can only lie between [0, q] otherwise the value x2 will fall out of [−q, q].
Turning it the other way, the probability the broker bn gets a positive sign clearly
depends on the input x. And by using simple Bayesian statistics, a curious broker
can infer the value x.

Next, we turn to the algorithm for ε-information leak, which could be viewed
as a generalization of strategy S1. The algorithm is described as follows: instead
of using only 2 set of brokers, we use 2/ε + 1 set of brokers. Now let 2/ε set of
brokers to do random canceling ordering (i.e., the 1st set buys x1, the 2nd set
buys −x1, the 3rd set buys x2, and so forth, where x1, . . . , xn are fully random
from [−q, q]). This yields the following ε-zero knowledge strategy:

Theorem 3. (ε-information leak strategy in a “curious broker” market) There
exists an efficient algorithm that generates trading strategies characterized by an
ε-information leak against “curious individual” brokers on the nB1T platform.

Proof. Let Ω = [−q, q]. Let us consider the following strategy, namely S2: let bi,j
be the brokers we need to use, where 1 ≤ i ≤ 2/ε+1 and 1 ≤ j ≤ dlog2 qe+2. Uni-
formly generate random numbers x1, x2, ..., x1/ε from [−q, q]. Let {i1, i2, ..., i2/ε



be a random subset of {1, ..., 2/ε+ 1} (i.e., randomly removing one number out
of the latter set). Then for 1 ≤ j ≤ 1/ε, we let bij ,1, ..., bij ,n execute S1 to
buy xj shares; and let bij+1/ε,1, ..., bij+1/ε,n executes S1 to sell xj shares. For the
rest n brokers, they execute S1 to buy x shares. Anyone can generate the ab-
solute volumes for the broker bi,j because this value is deterministically set to
max(1, 2j−1). Therefore, the statistical difference comes from the sign a broker
gets assigned. On the other hand, the probability that bi,j falls into the group
that buys x shares is ε. And if bi,j is not in the group buying x, the probability
of his/her sign being positive is exactly 1/2. Hence, for any broker, the sign
s ∈ {−1, 1} he/she gets satisfies |Pr[s = 1]− 1/2| ≤ ε. As a result, a broker can
simulate the sign by letting Pr[s = 1] = 1/2. For this simulation, the statistical
difference is at most ε.

Finally, note that when 1/ε is a constant or a polynomial in n, the above
strategy has a Ω(poly(n)) expansion the number of brokers.
Countering collusion

The above nB1T strategic platform does not yield strong defense against
curious colluding brokers: they can share knowledge with each other, including
the identity of the LMP and the sets ai and ti. If colluders know the total number
of brokers used and can find all of them, the value x can be trivially extracted.

Even if n is not known or not all n brokers collude, certain possible values
for x can be eliminated: Suppose, for example, the LMP uses two sets of brokers
R = {b1, b2, ..., bn} and R′ = {b′1, b′2, ..., b′n}, and that R∩R′ = ∅. Let B = R∪R′.
Suppose brokers Bc ⊂ B collude and share the information Tc ⊂ T and Ac ⊂ A
with each other, and let J be the set of indices corresponding to colluding brokers.
With enough colluders they can learn significant information. For example, if∑
j∈J ajtj >

∑
i 6∈J |aiti|, colluding brokers would know that 1 ≤ x ≤ q.

To maximize the collusion resistance for a given n, it is clearly optimal to
split q uniformly across all n brokers. In other words, every broker is used to
trade q/n shares, either buying or selling. (Let some brokers be allowed to receive
no order when n is odd to hide a zero position.) This of course leaks n (easily
countered by randomization). Also, note that, even if n is known, the colluding
brokers Bc can never learn more than their proportion of the LMP’s position.
Single broker with multiple traders (1BmT)

To defend against broker collusion, we now examine utilizing m registered
trading agents (hereafter referred to as traders) by the LMP to create the desired
net position. The mathematics behind this 1BmT platform is very similar to the
nB1T strategy: Simply substitute m traders placing orders at one broker in place
of one trader at n brokers (where m = n). The same theorems hold for 1BmT
as for nB1T. In practice, the additional redundant positions held by the traders
add ongoing carrying and transaction costs. Also, changing brokers, especially
in a developed market, is generally easier than changing registered traders.

We next consider strategies against the curious individual broker, assuming
he is unable to identify the traders associated with the LMP. Suppose the LMP
places a set of orders {aktk} at the broker via m different traders. Let W0 =
{w1, w2, ..., wz} be the normal market interest seen by the broker; i.e., the set of



orders the broker receives from clients not affiliated with the LMP. The broker
thus sees total market interest Wt = {aktk} ∪ W0. In a very liquid market,
∃wi ∈ W0 3 |wi| = |aktk| for k = 1, ...,m. In this case, the broker cannot
identify any aktk from Wt, and the 1BmT platform does not leak information
to him. This is not so when liquidity is low and the broker knows the LMP is
employing 1BmT, however. For example, if there is no corresponding surge in
activity in the overall market or at other brokers, he can infer that all market
interests may originate from the LMP. Furthermore, if @wi ∈W0 3 |wi| = |aktk|
for some k, aktk can be identified as originating from the LMP. Thus, elements
in the set S can be eliminated, similar to the nB1T platform under collusion.
These potential information leaks on the 1BmT platform in an illiquid market
motivate our next strategy platform.

Multiple brokers with multiple traders (nBmT)
We can extend the above strategies by using n brokers (with index j) and

m traders (with index i), with the security parameter q remaining the same. In
general form, the LMP uses the set of traders {d1, d2, ...dm}, each of the trader
di places orders with a subset of brokers {bi1, bi2, ..., bin}. In total, a maximum
of n ·m orders are placed with a maximum of n ·m unique brokers. In practice,
some of the bij ’s are the same broker. One possibility is to split the net order
x that the LMP wishes to place into m different orders, {a1t1, a2t2, ...amtm},
for m traders as in the sign flipping game in Definition 5. Each trader di can
then place its individual single order aiti, with broker bi1. In this case, the total
number of orders placed is m = dlog2(q)e.

Curious observers cannot see the identities of the traders. Thus, nBmT
would look the same as nB1T to curious observers. So, as under nB1T, the
external observers cannot extract the trade order made by each trader, thus
cannot extract any knowledge about the LMP. Another variant (nBmT2) of
this strategy is to divide x into m sets of orders {a1t1, a2t2, ...amtm} for m
traders according to the sign flipping game. Strategy nBmT2 would appear likem
LMPs encrypting their trade volumes using hte sign flipping game with security
parameter q. Thus, the external observers cannot extract the trade order made
by each trader as derived in the base case of nB1T and therefore cannot extract
any knowledge about the LMP.

We now study the performance of nBmT against curious individual brokers.
Each trader di places its order aiti at a different broker. Let Wi be the set of
orders each broker bi1 receives from his clients not affiliated with the LMP, or
normal market activity. Broker bi1, sees total interest Wti = aiti ∪Wi, and he
cannot identify aiti from Wi since he he does not know that di is affiliated with
the LMP. This case is different from 1BmT because the market activities Wv at
other brokers bv1, v 6= i, are also increasing due to the activity of the LMP in
nBmT. Thus, even in a low liquidity environment, broker bi1 cannot determine
whether the increase in |Wti| is due to the activity of the LMP (the presence of
aiti), or due to increased general market volume (an increase in |Wi|). Similarly,
for nBmT2, each broker bik sees the total activity Wtik = {aiktik} ∪Wik but



cannot identify any aiktik from Wtik even in an illiquid market. Thus, the nBmT
strategies can guard against curious individual brokers.

Under total collusion, nBmT2 collapses to nBmT. For nBmT, collusion
does not benefit brokers if traders {di} are not revealed to be affiliated with the
LMP. Colluding brokers do not know which orders are affiliated with the LMP
and therefore would act at worst as a single broker in the 1BmT scenario. Thus,
the nBmT strategy can guard against total broker collusion.

5 Cost estimates

We now estimate the costs of our strategy. The costs of our trading strategy
depend on the security parameter q, which depends on the maximum net position
we wish to take on any given trade in our strategy. We will assume that the
maximum number of shares we want to buy or sell is 3 million shares on any
trade. Assuming we trade at increments of 100 shares, we would need n = 15
brokers and q = 215 × 100 = 3, 276, 800. Thus, our fixed commission cost is
$32, 768 assuming $0.01/share of commission.

Estimating bid-ask spread is more difficult, but we believe that there should
be minimal impact on bid-ask spread. If the LMP is trading with itself, then it
can happily create a competitive bid or offer and trade at it. It doesn’t ”lose” the
spread we trade with itself. For instance, assume the top bid (LMP’s) is $11.09
and the bottom offer is $11.25. The LMP can fill its own bid at $11.09: the net
to it is no different than making an offer at $11.24 and then buying that. What
is more difficult is estimating the impact of these activities on other prices.

The cost of being front-run depends on the efficiency of the market and
the relative size of the order. For example, in Kumar’s study [13] on data dating
1983 (when the market was arguably less efficient than in 2007), an average 15bps
market impact was seen 15 minutes prior to a downtick block, but Keim and
Madhavan’s study found much more. Moreover, there is no way to calculate the
cost of an LMP having its positions or strategy stolen in terms of basis points;
given that firms create noise trades to avoid this, we can be sure it is of great
value.

The LMP is able to reduce trading costs in our strategies if she is willing to
compromise the resolution in x. Suppose in the nB1T case that she can accept
x−r ≤ xc ≤ x+r, where xc is the coarse net volume she is willing to accept, her
trading costs would be decreased by a constant linear with blog2(2r)c. Suppose
r is the residual amount that the LMP does not care about, then essentially
she can treat her achievable set of orders as the set of non-negative numbers
multiplied by 2r= {0, 2r, 4r, 6r, ...d q2r e · 2r}. For every order x she wishes to
place, she can find a xc which is within ±r of x. Then, the number of brokers
needed is nc = dlog2( q2r )e.



6 Conclusions and Future Work

We have examined the problem of placing orders while hiding intention. We
presented models of information leakage, and based on these models, we derived
three classes of strategies against curious observers, individual curious brokers,
and colluding curious brokers.

Though not our current focus, we believe transaction costs of these strate-
gies can sometimes be reasonable, such as when the notional share price is high
and/or the bid-offer is tight. We hope this class of intention-disguised algorith-
mic trading can reduce the profitability of and incentive for exploiting trade
information, and alter market behavior as a whole. To that end, understanding
these costs, and reducing them, is important.
Open Questions and Future Research

We believe that either finding the lower bound of the brokers that need
to be used (in terms of f(n)) or finding a better strategy using fewer brokers
may be possible. Furthermore, the sign of a trade with any one broker may be
inferred by an observer using a trade direction algorithm such as that developed
by Ellis, Michaely and O’Hara [6] or Peterson and Sirri [15]. Our strategies are
unaffected, assuming that all trades are filled in one round. However, realistically,
such trades may take multiple rounds. On the other hand, in practice, there are
also often other market participants trading, thus creating cover noise against
identifying the trades initiated by the LMP. Even in an extremely illiquid market
with no other active trading participants, the orders being worked by brokers are
not synchronous in practice. Therefore, even if a broker with malicious intention
is able to deduce the signs of other brokers, he cannot front run confidently that
he has seen all the relevant trades initiated by the LMP.
Acknowledgement Zhenming Liu is supported in part by NSF CCF-0634923.

References

1. S. Brain, “A front-running smile?” Traders Magazine, May 2005, available online
at http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html

2. G. Chacko, personal communication, August 2009.

3. G. Di Crescenzo, “Privacy for the stock market” in Proc. Financial Cryptography
and Data Security, 2002.

4. I. Domowitz, H. Yegerman, “The cost of algorithmic trading: a first look at compar-
ative performance,” in Algorithmic Trading: Precision, Control, Execution, March
2005.

5. I. Domowitz, H. Yegerman, “Measuring and interpreting the performance of broker
algorithms” in ITG Inc. Research Report, August 2005.

6. K. Ellis, R. Michaely, M. O’Hara, “The accuracy of trade classification rule: evi-
dence from NASDAQ,” Journal of Financial and Quantitative Analysis. 2000.

7. O. Goldreich, “Zero-knowledge: a tutorial.” accessed through http://www.wisdom.

weizmann.ac.il/~oded/zk-tut02.html

8. O. Goldreich, E. Petrank, “Quantifying knowledge complexity,” in 32nd IEEE
Symposium on Foundations of Computer Science, 1996.



9. S. Goldwasser, S. Micali, C. Rackoff, “The knowledge complexity of interactive
proof systems,” in 17th Annual ACM Symposium of Theory of Computing, 1985.

10. L. Harris, “Trading and exchanges: market microstructure for practitioners,” Ox-
ford University Press, 2003.

11. M. Kearns, Y. Nevmyvaka, A. Papandreou and K. Sycara, “Electronic Trading
in Order-Driven Markets: Efficient Execution”, IEEE Conference on Electronic
Commerce (CEC), 2005.

12. D. B. Keim, A. Madhavan, “The upstairs market for large-block transactions:
analysis and measurement of price effects,” The Review of Financial Studies, 1996.

13. R. Kumar, A. Sarin, K. Shastri, “The behavior of option Price Around Large Block
Transactions in the Underlying Security,” in The Journal of Finance. 1992.

14. A. Madhavan, “VWAP Strategies,” Investment Guides, Transaction Performance.
Spring 2002.

15. M. Peterson, E. Sirri, “Evaluation of biases in execuation cost estimates using trade
and quote data,” Forthcoming in Journal of Financial Markets. 2002.

16. C. Thorpe, D. C. Parkes, “Cryptographic securities exchanges” in Financial Cryp-
tography and Data Security, 2007

17. C. Thorpe, D. C. Parkes, “Cryptographic combinatorial securities exchanges” in
Financial Cryptography and Data Security, 2009


