
Highly Efficient Secrecy-Preserving Proofs
of Correctness of Computations and Applications

Michael O. Rabin∗

Harvard University SEAS
Cambridge, MA 02138

U.S.A.
rabin@seas.harvard.edu

Rocco A. Servedio†

Columbia University
New York, NY 10025

U.S.A.
rocco@cs.columbia.edu

Christopher Thorpe‡
Harvard University SEAS

Cambridge, MA 02138
U.S.A.

cat@seas.harvard.edu

Abstract

We present a highly efficient method for proving correct-
ness of computations while preserving secrecy of the input
values. This is done in an Evaluator-Prover model which
can also be realized by a secure processor. We describe an
application to secure auctions.

1 Background and Motivation

Zero Knowledge Proofs come in a number of flavors.
One is direct ZKPs for membership in a NP language, for
example proofs that a graph is 3-colorable. These proofs
are usually phrased in terms of the particular problem they
address, for example talking about graphs and their repre-
sentations. Another approach deals with circuits and the
bit-inputs resulting in certain outputs. This approach is of
course very comprehensive since other problem representa-
tions are directly translatable into problems about circuits.

There is an extensive literature dealing with ZKPs via
encryptions, especially homomorphic encryptions. Verifi-
cation of processes such as electronic elections or auctions
is done via encrypting the relevant numbers such as vote
counts or bids, and performing operations such as additions
or comparisons on these numbers in their encrypted form.
In [9] for example (see the literature quoted there), a proto-
col is proposed for conducting secure and secrecy preserv-
ing auctions. Bidders submit bids to an Auctioneer in an
encrypted and committed manner. The Auctioneer posts the
encrypted bids on a bulletin board. He then opens the bids
and computes, according to the posted auction rules, who
the winner(s) is (are) and their payments. The Auctioneer

∗Supported in part by NSF award CCR-0205423.
†Supported in part by NSF award CCF-0347282, by NSF award CCF-

0523664, and by a Sloan Foundation Fellowship.
‡Supported in part by NSF award CCR-0205423.

then posts a publicly verifiable Zero Knowledge proof for
the correctness of the results. This can be done in a manner
revealing the identities of the winners and their payments
or, if so desired, concealing that information. But in any
case, the bids of all other bidders except for those of the
winners remain secret. The only trust assumption made is
that the Auctioneer, who knows the bid values, will not re-
veal that information. The protocol of [9] employs Paillier’s
homomorphic encryption and proofs of order relations be-
tween bids, and correctness of other operations on bids are
presented by and verified on encrypted values.

It was shown in [9] that the protocols given there are
practical and that currently available computing power suf-
fices to implement auctions with thousands of bidders
within reasonably practical time. Still, that solution em-
ploys special encryption functions and the basic Paillier en-
cryption is a relatively heavy computation.

In the present paper we present a model of an Evaluator-
Prover (EP) who receives input values x1, . . . , xn which
are elements of a finite field Fp where p is, say, a 128-bit
prime. The Evaluator-Prover computes a function value
y = f(x1, . . . , xn) by a publicly announced and agreed
upon straight line computation (program) SLC. The EP
then publishes the value y and supplies a proof of the cor-
rectness of the computation. The proof of correctness can
be verified by anybody and this verification method ensures
that the probability that an incorrect published result will
not be detected is smaller than 2−k, where k is a security
parameter. Furthermore, the proof does not reveal anything
about the input values or any intermediate results of the
computation, except for what is implied by the published
outcome of the computation. The generality and efficiency
of this model allows numerous applications.

The main idea of the secrecy preserving verification is to
represent every number x ∈ Fp involved in the SLC by a
randomly constructed representing pair X = (u1, u2) such
that x = u1 + u2. For the verification of correctness the

EP prepares translations of the SLC where for example
x, y, x+y (an addition step) is translated into X = (u1, u2),
Y = (v1, v2), W = (w1, w2) = X + Y. The EP posts
commitments to all numbers in the translations. The Veri-
fier will randomly choose, say, the first coordinate, ask the
EP to reveal (de-commit) u1, v1 and w1, and check that
u1 + v1 = w1. A careful arrangement of the translation
process ensures that in the verification only truly indepen-
dently random numbers x, y, u, v, · · · ∈ Fp and their sums
or products u + v or u × v are revealed and checked.

The advantages of this method are manifold. Work-
ing with single or double precision integers and their usual
arithmetic operations rather than with bits at the circuit level
is considerably more efficient. Also, the translation of high-
level operations into circuits raises the question of the cor-
rectness of the translation itself. Finally, expressing the
computation to be verified directly in terms of the numbers
and operations involved is more understandable and con-
vincing to general users.

When it comes to verification via encrypted values, in
previous approaches such as [9] there is the need to employ
special encryptions such as Paillier’s encryption, requiring
special intractability assumptions. Also, the operations on
encrypted values involve computations with numbers with
thousands of bits and are quite slow. Experimental compar-
ison between conducting a secure verifiable auction using
the method proposed here, and doing the same using [9],
shows a hundredfold efficiency improvement.

The applications of ZKP methodology to the conduct of
secure secrecy preserving auctions in particular pose strin-
gent requirements of efficiency on the one hand and of un-
derstandability and acceptability by the financial and busi-
ness communities on the other hand. We feel that in this
context the present method has clear advantages over other
solutions involving homomorphic encryptions, multi-party
computations, or reduction to obfuscated circuit computa-
tions, important as these approaches are on the theoretical
level.

2 Model and Definitions

Our computations are performed with elements of a fi-
nite field Fp, where p is a moderately large (say 128 bits)
prime. Elements of Fp will be denoted by lower case Ro-
man letters x, y, z, u, v, w, etc. and will be referred to as
numbers. Computations with numbers are, of course, per-
formed mod p.

Let x1, . . . , xn be elements of Fp, sometimes referred to
as inputs. A straight line computation (SLC) on these inputs
is a sequence of numbers

x1, . . . , xn, xn+1, . . . , xL (1)

where for every n < m ≤ L, there are two indices i, j < m
such that xm = xi ◦ xj where ◦ is one of +, −, or ×.

The number xL is called the output or result of the
straight line computation. Clearly xL is the value of a poly-
nomial function f(x1, . . . , xn) of the input values.

We can also generalize our notion of a SLC to involve ad-
dition and multiplication by publicly known constants from
Fp, and to include the inverse operation xm = xi

−1, al-
lowed when xi 6= 0. Our results readily extend to this gen-
eral case as well, though we do not treat it here for the sake
of simplicity.

We assume n parties P1, . . . , Pn, respectively holding
the input values x1, . . . , xn. The parties wish to perform
the straight line computation (1) on the input values and ob-
tain the result xL = f(x1, . . . , xn). They want to accom-
plish this by a secrecy preserving method, revealing nothing
about the input values or the intermediate values in the com-
putation, beyond what is implied by the value of the result
xL.1 At the same times the parties, and perhaps others, want
to be certain that the revealed value xL is the correct result
of the straight line computation (1). Thus the protocol must
provide a secrecy preserving proof of correctness.

These requirements give rise to the following definitions.

Definition 1 An Evaluator-Prover (EP) for the SLC (1) is
an entity which, upon receiving input values x1, . . . , xn,
outputs the value xL = f(x1, . . . , xn) and engages in
a proof of correctness to certify correctness of the result
value.

Definition 2 An Evaluator-Prover is secrecy preserving if
the proof of correctness does not reveal anything about the
input values or the intermediate values in the SLC (1) ex-
cept for the information implied by the output value xL =
f(x1, . . . , xn). An EP is trusted if it outputs or reveals only
xL and the proof of correctness.

In the real world, an example of a trusted Evaluator-
Prover would be an auctioneer AU . The input values to
the computation are the values of bids submitted by parties
participating in the auction.2

There are protocols that ensure that the auctioneer cannot
reveal any bid before the closing of the auction or change or
suppress bids after the closing of the auction. The extent
of trust we place in AU is that he will not reveal any infor-
mation about the bids except for the outcome of the auction
and what is implied by announcement of the outcome. For
example, in a Vickrey auction where the item goes to the
highest bidder at the price bid by the second highest bid-
der, the announcement will reveal the identity of the winner.

1For example, if xL = x7 − x11 and the value of xL is revealed to be
0, then it follows that x7 = x11.

2For the application to auctions we also require comparisons such as
“xi ≤ xj .” We show in Section 9 how our secrecy preserving proofs of
correctness can be extended to deal with comparisons.

Whether the winner’s payment will be revealed depends on
the announced rules of the auction. Our protocols can also
enforce secrecy of that payment, if so desired.

The rationale for this partial trust model is that illegally
and selectively leaking out bid values before the closing of
the auction, or announcing a false auction result, can lead to
collusions greatly benefiting some bidders and the auction-
eer. Our protocols completely prevent such malfeasance.
On the other hand, leaking out bid values after the end of
an auction helps bidders who received such information in
strategizing for future similar auctions. The value of this
information advantage is, however, relatively limited. Con-
sequently the auctioneer, who has his business reputation to
guard, has a substantial incentive not to leak out information
after the conclusion of auctions.

Another model is to implement the trusted Evaluator-
Prover by a secure co-processor. The secure processor is
a closed device for which all outputs are publicly observ-
able. The processor is trusted not to output any information
beyond that specified by the protocols. The published proof
of correctness assures the participants that the output result
is really the correct result of the SLC. The implementation
of this model, dealing with some of the subtleties it entails,
will be discussed in Section 10.

3 Overview of the method: Representations,
Translations and Aspects

Representations. In order to enable secrecy preserv-
ing proofs of correctness, the parties P1, . . . , Pn and the
Evaluator-Prover represent the inputs and the intermediate
values in the SLC by pairs of numbers from Fp. In the fol-
lowing we shall use capital letters X, Y, Z, U, V, etc. to de-
note elements of Fp × Fp, i.e. pairs of numbers from Fp.

Definition 3 We say that U = (u1, u2) represents u ∈ Fp

if u = u1 + u2. We shall denote u1 + u2 by val(U). A
participant in the protocol will create a random representa-
tion U of a number u by randomly choosing u1 from Fp and
setting U to (u1, u − u1). Clearly val(U) = u.

In particular, a random representation Z of zero is ob-
tained by randomly choosing z from Fp and setting Z to
(z,−z). We note that at the bit level, Kilian in [6] (inspired
by unpublished work of Bennett and Rudich) used a similar
representation scheme with “pair blobs” to represent binary
values (see also [1]).

The high-level idea of our protocols is that a verification
of an operation in the SLC will be implemented by ran-
domly selecting and revealing either the first or the second
coordinates of the pairs representing the numbers in ques-
tion. The idea is that revealing just one coordinate of a pair
reveals nothing about the value of the pair. We give details
and proofs in the following sections.

Translations. The secrecy preserving proof of correctness
of the published result of the SLC is achieved by a process
of “translation” of x1, . . . , xL into a sequence TR(SLC)
of at most O(L) pairs.The first n pairs in the translation,
denoted X1, . . . , Xn, represent the input values x1, . . . , xn.
The pairs Xn+1, . . . , XL−1 represent intermediate values
used in the SLC, and play an important role in verifying
the correctness of the SLC. The final pair in the translation
represents the output xL of the computation, i.e. the value
of this final pair is xL = f(x1, . . . , xn).

The computations xm = xi ◦ xj , where ◦ is one of
+,−,×, will be translated in a natural way into operations
on pairs U = (u1, u2), V = (v1, v2), W = (w1, w2) rep-
resenting xm, xi, xj . For example xm = xi + xj is trans-
lated into W = U + V, i.e. ordinary vector addition. Sub-
traction is entirely similar to addition, but the translation of
xm = xi ×xj is slightly more complicated and is described
in Section 5.

Aspects. Ultimately, to achieve a probability less than 2−k

of accepting a false result of the SLC, we shall require
K = O(k) randomly created translations of the SLC. (We
shall see below that K = γk is sufficient where the con-
stant γ

def
= 90.) As described in Section 7, in the verification

procedure the Verifier randomly samples some of these K
translations and verifies various “aspects” of the EP ’s com-
putation in the selected translations. As described in Sec-
tion 6, these different “aspects” capture different elements
that are required for the overall computation to be correct:
one aspect deals with consistent representation of the n in-
put values, one deals with correctness of the random repre-
sentations of zero mentioned above, one deals with correct-
ness of addition steps, and so on.

We now turn to the detailed description of the creation of
translations and of the proof of correctness.

4 Inputting and verifying the values
x1, . . . , xn

We require a commitment function COM(·) and digi-
tal signatures for the parties P1, . . . , Pn. (We give details
about the properties we assume for our commitments in
Section 8.)

Each party Pm creates K random representations
X

(1)
m = (a1, b1), . . . , X

(K)
m = (aK , bK) of his input

value xm. He privately sends xm, SIGNm(COM(xm)),
and all K quadruples aj , bj , SIGNm(COM(aj)),
SIGNm(COM(bj)) to the Evaluator-Prover EP.

The EP verifies that xm = val(X
(j)
m) = aj + bj for

1 ≤ j ≤ K, verifies all the 4K + 1 commitments, and
verifies all digital signatures. If any verification fails, then
according to the protocol, the EP rejects Pm’s input value.

After all inputs were accepted by the EP, he posts,
for every party Pm, all the 2K signed commitments
SIGNm(COM(aj)), SIGNm(COM(bj)), 1 ≤ j ≤ K,
to the representations of the value xm.

Every Verifier can check and verify all the digital sig-
natures and thereby verify that the respective commitments
were made by the parties P1, . . . , Pn. Henceforth we shall
assume that the signature verifications were successful and
that all commitments to pairs representing values are as-
sumed to have originated with the parties.

Next, we present a method of secrecy preserving proofs
for the claim by the EP that for every Pm all committed-to
pairs X

(i)
m represent the same value. As we shall see, the

method will establish a useful approximation to the validity
of the claim.

Consider two pairs U = (u1, u2) and V = (v1, v2),
where commitments COM(u1), COM(u2), COM(v1),
COM(v2) are posted. We have val(U) = val(V) if and
only if (u1 − v1)+ (u2 − v2) = 0. To prove equality of val-
ues of U and V, the EP posts d1 and d2, which are claimed
to be respectively the differences (u1 − v1) and (u2 − v2).
The Verifier randomly chooses an index c ∈ {1, 2} and re-
quests that EP reveal the values committed to by the posted
COM(uc) and COM(vc). If d1 + d2 6= 0 or uc − vc 6= dc,
then the Verifier rejects the claim that val(U) = val(V). It
is clear that if actually val(U) 6= val(V), then the probabil-
ity of the Verifier accepting the claim of equality of values
is at most 1/2.

Consider now two arrays of pairs T1 = U1, . . . , Un and
T2 = V1, . . . , Vn where all commitments to components of
all pairs are posted, and the claim is being made that

val(Um) = val(Vm) for 1 ≤ m ≤ n. (2)

The Verifier uses the above verification procedure simul-
taneously for all couples Um, Vm of pairs, employing the
same randomly chosen c for all couples. If the claim is not
true, then the probability of acceptance by the Verifier is at
most 1/2.

We shall say that arrays T1 and T2 are value-consistent
if (2) holds true.

Let T (i) = X
(i)
1 , . . . , X

(i)
n , 1 ≤ i ≤ K, be the K ar-

rays of pairs of elements from Fp, where X
(i)
m is the i-th

pair submitted to EP by Pm. Denote by COM(T (i)) all
the 2n commitments to the components of the pairs in the
array T (i). According to the procedure of submitting in-
put values, all those commitments were posted by the EP .
The EP claims that these are commitments to K pair-wise
value-consistent arrays. Denoting by T (i)[m] the m-th pair
in the array T (i), this means that for every m, all values
val(T (i)[m]) are equal.

Fix α
def
= 5.5. To validate the EP ’s claim, the Verifier

chooses a sequence of 2αk different superscripts3 (i1, j1),
. . . , (iαk, jαk) uniformly at random from {1, . . . , K}. For
each value 1 ≤ s ≤ αk, the Verifier obtains from the EP
a proof, as detailed above, that the arrays T (is) and T (js)

are value-consistent. If all proofs succeed then the Verifier
accepts.

Theorem 4 If the EP ’s claim that all pairs of arrays (given
by their posted commitments) are value-consistent is true,
then EP can obviously pass the verification.

Fix β
def
= 2/3. To see that this is an effective verifi-

cation strategy, let us suppose that for every superscript
i ∈ {1, . . . , K}, fewer than βK = βγk = 60k of the arrays
are value-consistent with the array T (i). We may view the
choices of the pairs of superscripts as being done sequen-
tially, i.e. in the (s + 1)-st round the pair (is+1, js+1) is
chosen from the remaining K − 2s superscripts.

Now for 0 ≤ s < αk, in the (s + 1)-st round, regardless
of the outcomes of previous rounds and of the value cho-
sen for is+1, there are at most βγk = 60k superscripts that
are value-consistent with is+1 out of the remaining pool of
γk − 2s ≥ γk − 2αk = 79k possibilities for js+1. So the
(s + 1)-st pair chosen is value-consistent with probability
at most βγk

γk−2αk
= 60

79 , and thus is not value-consistent with
probability at least γk−2αk−βγk

γk−2αk
= γ−2α−βγ

γ−2α
= 19

79 . If the
(s+1)-st pair chosen is not value-consistent, then the verifi-
cation survives the (s+1)-st round with probability at most
1/2. So in each of the αk rounds, regardless of what has
happened before, the probability that the verification sur-
vives that round is at most 1 − γ−2α−βγ

2γ−4α
= (1 − 19

158).
Consequently, the overall probability that the Verifier ac-
cepts is at most (1 − γ−2α−βγ

2γ−4α
)αk = (1 − 19

158)5.5k. Since
0.4942 ≈ (1 − 19

158)5.5 < 1/2, we have proved:

Theorem 5 Suppose that for the sequence of arrays
T (1), . . . , T (K), where each array comprises n pairs of
numbers from Fp, there is no subset S with |S| ≥ βK such
that every two arrays in S are value-consistent. Then the
probability that the Verifier will accept the proof of value-
consistency of all couples of arrays in the sequence is at
most 1/2k.

5 The Translation Process

Once the input values were submitted in pair represen-
tations and accepted by the EP as above, the EP prepares
K translations of the SLC (1) as follows. To avoid cumber-
some superscript/subscript notation, below we consider one
array T = X1, . . . , Xn of representations of the n submit-
ted input values.

3That is, αk pairs of superscripts (i, j) used to identify the arrays
T (i), T (j) to be compared.

In the computation (1), an input or intermediate result xi

will in general be involved in several subsequent operations
xi◦xj = xm. To enable our secrecy preserving proof of cor-
rectness, we prepare in the translation, once Xi (a represen-
tation of xi) was inputted or computed, as many new ran-
dom representations of val(Xi) as there are involvements of
xi in subsequent computations in the SLC (1).

Definition 6 Let X be a pair. A new random representation
X ′ of x = val(X) is obtained by randomly choosing z from
Fp and setting X ′ to X + (z,−z), i.e. X ′ = X + Z, where
Z is a random representation of 0.

The EP starts by extending the array X1, . . . , Xn by
Z1, . . . , Zs each of which is an independent random repre-
sentation of 0, where s = O(L) is the total number of new
representations that will be created in the translation pro-
cess. Next, if say x1 occurs in s1 subsequent computations
in (1) (where we count a computation x1 ◦x1 as having two
occurrences of x1), then the EP extends the translation ar-
ray by Y1, . . . , Ys1

. Here Yj = X1 + Zj , 1 ≤ j ≤ s1.
The other inputs X2, . . . , Xn give rise to additional new
representations Ys1+1, . . . , Yt in a similar way. Each new
representation employs the next unused Zj .

Consider now the first operation xn+1 = xi ◦ xj of (1),
where on the right hand side we have input values. We first
consider the case that the operation ◦ is the + operation.
To translate this operation, EP chooses from the sequence
Y1, . . . , Yt the first new representations of xi and xj . Call
these, to avoid double indices, Y ′ = (u1, v1) and Y ′′ =
(u2, v2). The translation of xn+1 = xi + xj is

Xn+1 = Y ′ + Y ′′ = (u1 + u2, v1 + v2). (3)

Next EP creates a first new representation NXn+1 of
val(Xn+1), which of course equals xi + xj , by employing
Zt+1, the next unused representation of 0 :

NXn+1 = Xn+1 + Zt+1 (4)

Now, if xn+1 is used sn+1 times in the SLC (1), the EP
creates sn+1 new random representations of xn+1 by:

Yt+1 = NXn+1+Zt+2, . . . , Yt+sn+1
= NXn+1+Zt+1+sn+1

(5)
Note that in creating the new representations (5) we use

the first new representation NXn+1, rather than the repre-
sentation Xn+1 of xn+1. The reason for that will become
clear in the proof for the secrecy preserving nature of the
proof of correctness.

In the other case, where xn+1 = xi × xj , the translation
is more complicated. Let again Y ′ = (u1, v1) and Y ′′ =
(u2, v2) be the new representations of xi and xj , as above.
We obtain the representation Xn+1 of xn+1 = xi × xj via

four intermediate steps:

X
′

n+1 = (u1v1, 0) + Zt+1 (6a)
X

′′

n+1 = (u1v2, 0) + Zt+2 (6b)
X

′′′

n+1 = (u2v1, 0) + Zt+3 (6c)
X

′′′′

n+1 = (u2v2, 0) + Zt+4 (6d)
Xn+1 = X

′

n+1 + X
′′

n+1 + X
′′′

n+1 + X
′′′′

n+1. (6e)

It is clear from the distributive law that val(Xn+1) =
val(U ′) × val(U ′′) = xi × xj = xn+1.

The first new random representation NXn+1 and the
subsequent new random representations of xn+1 are ob-
tained as in (4) and (5), using new successive random rep-
resentations Zq of 0 from the given list.

The translation process of the SLC (1) now proceeds
inductively, operation by operation, similarly to the trans-
lation of xn+1 = xi ◦ xj , using new representations of
operands and of zero at every stage.

Thus the outcome of the translation process for the case
xn+1 = xi + xj will be:

TR = X1, . . . , Xn, Z1,, Zs, Y1, . . . , Yt, Xn+1,

NXn+1, Yt+1, . . . , Yt+sn+1
, . . . , XL. (7a)

In (7a), all symbols retain their meaning from the above
discussion. That is, X1, . . . , Xn are representations of the
input values; Z1, . . . , Zs are random representations of 0;
Y1, . . . , Yt are new random representations of the input val-
ues; Xn+1 is a representation of xn+1, obtained as in (3);
NXn+1, is a next random representation of xn+1, obtained
as in (4); Yt+1, . . . , Yt+sn+1

are further random representa-
tions of xn+1, obtained as in (5), and XL is a representation
of the output xL.

In the case xn+1 = xi × xj , the translation will look
like:

TR = X1, . . . , Xn, Z1, . . . , Zs, Y1, . . . , Yt,

X
′

n+1, . . . , X
′′′′

n+1, Xn+1, NXn+1,

Yt+1, . . . , Yt+sn+1
, . . . , XL (7b)

where X
′

n+1, . . . , X
′′′′

n+1, Xn+1 are obtained as in (6a)–(6e).
Note that our notation is such that in a translation TR,

the pairs X1, . . . , Xn, Xn+1, . . . , XL correspond to the val-
ues x1, . . . , xn, xn+1, . . . , xL in the SLC (1). We next show
that the pairs Xj actually represent the corresponding val-
ues xj .

Theorem 7 If val(Xi) = xi for 1 ≤ i ≤ n, then val(Xj) =
xj for 1 ≤ j ≤ L.

Proof: Consider xn+1 = xi ◦ xj . The construction of
Xn+1 in the translation by (3) in the case of ◦ = +,

and by (6a)–(6e) in the case of ◦ = ×, together with the
fact that val(Zt) = 0 for all 1 ≤ t ≤ s, implies that
val(Xn+1) = xn+1. The proof now proceeds by induction
on j.

6 Verifying Aspects of Translations

We recall that each of the parties P1, . . . , Pn has cre-
ated and submitted to EP K representations of their input
values. The EP verifies the digital signatures, the commit-
ments, and the fact that each party Pm has submitted K
representations of the same value xm.

Next EP creates K translations TR(j), 1 ≤ j ≤ K, of
the SLC (1):

TR(j) = X
(j)
1 , . . . , X(j)

n , Z
(j)
1 , . . . , Z(j)

s ,

Y
(j)
1 , . . . , Y

(j)
t , . . . , X

(j)
n+1, NX

(j)
n+1,

Y
(j)
t+1, . . . , Y

(j)
t+sn+1

, . . . , X
(j)
L . (8)

The array X
(j)
1 , . . . , X

(j)
n , consisting of the j-th input pairs

submitted to EP by P1, . . . , Pn, is extended by EP to
TR(j) in the manner detailed in Section 5.

The EP now posts all the signed commitments to (coor-
dinates of) the input pairs, and commitments to (coordinates
of) all the other pairs in all translations. The EP claims that
the posted commitments are to K correct translations of the
SLC on the same input values. If that is indeed the case
he will be able to respond correctly to all challenges by the
Verifier. Thus the proof method is complete. All true state-
ments are provable.

The Verifier will verify the correctness of nine of what
we shall loosely call “aspects” of the posted translations.

Aspect 0. As demonstrated in Section 4 above, by randomly
choosing αk = 5.5k pairs of translations, the Verifier ver-
ifies with probability of error smaller than 2−k that for at
least βK = 2K/3 translations, for every party Pm, all sub-
mitted pairs represent the same value xm. (See Theorem 5.)
We shall consider that unique xm to be Pm’s input to the
SLC.

Every translation involved in the above verification is
discarded and is not used in the following verifications of
other aspects of the proof. We now describe how aspects
1, . . . , 8 are verified for a given fixed translation, which we
denote TR.

Aspect 1. For a posted translation TR, (7a) or (7b), we
shall say that TR is correct with respect to representations
of 0, if for all 1 ≤ j ≤ s we have val(Zj) = 0.

To verify that TR is correct in Aspect 1, the Verifier re-
quests of EP to reveal (de-commit) all coordinates of all
pairs Zj and checks that for each pair the coordinates sum
up to 0.

Aspect 2. We say that TR is correct in Aspect 2 if every
computation of a new representation NXj from a represen-
tation Xj , in the manner of (4), is correct.

To verify correctness in Aspect 2, Verifier randomly
chooses c ∈ {1, 2} and presents c to EP. If c = 1 then
EP reveals (de-commits) the first coordinate in all com-
putations of NXj = Xj + Ze(j) within TR. The Verifier
checks that the first coordinates of Xj and Ze(j) sum up to
the first coordinate of NXj . He rejects the whole proof if
even one of these checks fails. The case c = 2 is handled
similarly.

Note that if a translation TR does not satisfy the condi-
tion Xj + Ze(j) = NXj for all indices j, then it will be
accepted by the Verifier with probability at most 1/2.

Aspect 3. We say that TR is correct in Aspect 3 if all
computations of the new representations Y1, . . . , Yt of the
input-representations X1, . . . , Xn and all the further new
representations of Xj obtained from NXj in the manner of
(5) are correct.

All of these computations are of the form Y = Xj + Z
for the input value representations and Y = NXj + Z for
representations of intermediate results of the SLC, where in
each case Z is a specific representation of 0 from the list in
TR. So the Verifier has to verify the correctness of all these
addition operations. This is again done as in the verification
of Aspect 2, with probability of error at most 1/2.

Aspect 4. We say that TR is correct in Aspect 4 if all the
translations of addition operations xm = xi + xj of the
SLC, in the manner of (3), as well as all additions of the
form Xm = X

′

m + · · · + X
′′′′

m arising in translations of
multiplications (see (6e) where m = n + 1), are correct.

Thus the Verifier has to check all equalities of the form
Xm = Y ′ +Y ′′ and of the form Xm = X

′

m + · · ·+X
′′′′

m in
the translation. This is again done by checking correctness
of additions, with probability of error at most 1/2.

Aspects 5–8 deal with correctness of the translations of
product computations xm = xi × xj . Let Xm be the repre-
sentation of xm and Y ′ = (u1, v1) and Y ′′ = (u2, v2), be
respectively the representations of xi and xj in TR, used in
the translation of the product computation.

Aspect 5. We say that TR is correct in Aspect 5 if for all
translations of product operations in the manner of (6a)–
(6d), the equations

X
′

m = (u1v1, 0) + Z, (9)

where Z is a specific representation of 0 from the list in TR
(a different Z for every m), are true.

Again the Verifier randomly chooses c ∈ {1, 2} and
presents c to EP. If c = 1 then EP reveals for all trans-
lations of products the first coordinates w of X

′

m, z of Z,
and u1, v1 of Y ′, Y ′′. The verifier accepts only if w =

u1 × v1 + z is true for all translations of product compu-
tations in SLC. If c = 2 then EP reveals for all translations
of products the second coordinates w′ of X

′

m, z′ of Z. The
verifier accepts only if w′ = z′ is true for all translations of
product computations in SLC. Clearly, if TR is not correct
in Aspect 5, then the Verifier will accept with probability at
most 1/2.

Aspects 6, 7 and 8 of a translation TR of the SLC deal
with the correctness of the translations of X

′′

m, X
′′′

m and
X

′′′′

m respectively, according to (6b), (6c) and (6d). They
are defined, and are checked by the Verifier, in a way simi-
lar to the treatment of Aspect 5. In each case the probability
of erroneous acceptance is at most 1/2.

7 Proof of Correctness and Error Probability

Putting together the verification procedures described
above, we now describe the overall proof of correctness of
the posted result xL of the SLC, and prove an upper bound
of 1/2k for the probability of error.

In the first step of verification, the EP posts K trans-
lations of the SLC (1) in the form of commitments to all
coordinates of the pairs in the translations.

Aspect 0 of the correctness of the translations TR(j),

1 ≤ j ≤ K, is that the arrays X
(j)
1 , . . . , X

(j)
n , 1 ≤ j ≤ K,

of representations of the input values to the SLC are pair-
wise value-consistent. The Verifier checks this by randomly
choosing αk = 5.5k pairs of translations and performing
the tests described in Section 4. As described in Theorem 5,
if there are fewer than βK = 2K/3 = 60k translations
with pair-wise value-consistent input value arrays, then the
Verifier will accept the whole proof with probability less
than 1/2k.

Denote by S1 the translations not involved in testing
Aspect 0, and denote by K1

def
= K − 2αk the number

of translations in S1. Recalling that K = γk, we have
K1 = (γ − 2α)k = 79k.

Consider the case in which at least βK of the original
K translations have pair-wise value-consistent input value
arrays. Since K = γk, at least βK−2αk = (βγ−2α)k =
49k of the K1 = (γ − 2α)k = 60k translations in S1 have
pair-wise value-consistent arrays of inputs. The common
values x1, . . . , xn represented by the pairs in those consis-
tent arrays are, by definition, the input values of the SLC.

Fix δ
def
= 29. The verifications of the correctness of As-

pects 1–8 of the translations in S1 proceed as follows. The
Verifier chooses a set of δk translations uniformly from
S1. For each translation TR(j) of these δk, he randomly
chooses an integer r ∈ {1, . . . , 8} and a challenge c ∈
{1, 2} and performs a check for the correctness of TR(j)

in Aspect r. If any of the δk checks fail, then the Verifier
rejects.

As described in Section 6, if TR(j) is incorrect in Aspect
r, it will pass the test with probability at most 1/2. Conse-
quently, if TR(j) is incorrect in any one of the Aspects 1–8,
it will fail its check with probability at least 1/16. We will
use this observation to prove the following:

Theorem 8 Fix ε
def
= 31. Suppose that of the K1 = K −

2αk = (γ − 2α)k = 79k translations in S1, fewer than εk
translations are correct in all Aspects 1–8. Then the prob-
ability that all δk = 29k of the Verifier’s checks succeed is
smaller than 1/2k.

Proof: We view the δk choices from S1 as being done se-
quentially, i.e. in the (s + 1)-st round the translation is cho-
sen from the remaining K1−s translations. By assumption,
for 0 ≤ s < δk, in the (s + 1)-st round, regardless of the
outcomes of previous rounds, there are at most εk = 31k
translations that are correct in all aspects 1–8 among the re-
maining (γ−2α)k−s ≥ (γ−2α−δ)k = 50k translations.
So the (s + 1)-st translation chosen is correct in all aspects
with probability at most ε

γ−2α−δ
= 31

50 , and is incorrect in
some aspect with probability at least γ−2α−δ−ε

γ−2α−δ
= 19

50 . By
the observation above, this means that regardless of what
has happened before, for each value 0 ≤ s < δk, the verifi-
cation survives the (s+1)-st round with probability at most
(1 − γ−2α−δ−ε

16(γ−2α−δ)) = (1 − 19
800). Consequently the overall

probability that all δk = 29k of the Verifier’s checks suc-
ceed is at most (1 − γ−2α−δ−ε

16(γ−2α−δ))
δk = (1 − 19

800)29k. Since
0.4980 ≈ (1 − 19

800)29 < 1/2, the theorem is proved.

After performing the verifications of pairwise consis-
tency of translations of input values and the verifications
of the correctness of Aspects 1–8 of the translations, there
remain K2

def
= K1 − δk = (γ − 2α− δ)k = 50k untouched

translations. The verifier now asks the EP to open all the
commitments to the components of the pairs X

(j)
L in these

K2 translations. If now val(X
(j)
L) = xL for all these X

(j)
L ,

then the Verifier accepts xL as the result of the SLC.
Now we can upper bound the probability that the Verifier

will accept a wrong value for the output xm of the SLC (1):

Theorem 9 [Main Theorem.] Assume that the Verifier ac-
cepted all components of the proof of correctness, i.e. the
proof of pair-wise value-consistency of the arrays of inputs
values of the K translations, the proofs of correctness of the
translations in respect to Aspects 1–8, and the agreement of
all revealed values of the pairs X

(j)
L . Then the common re-

vealed xL = val(X
(j)
L) is the output value of the SLC with

probability of error smaller than 3/2k.

Proof: It was shown above that the successful verification
of Aspect 0 – the pair-wise value-consistency of the repre-
sentations of the input values – assures with probability of

error at most 1/2k that at least a β = 2/3 fraction of the
K = γk = 90k translations are pair-wise value-consistent
with respect to the arrays of the n input values. Thus at least
K1−(1−β)K = (γ−2α)k−(1−β)γk = (βγ−2α) = 49k
of the remaining K1 = (γ − 2α)k = 79k translations are
pair-wise input-value consistent. This defines a unique se-
quence of common values x1, . . . , xn represented by the
pairs in these consistent arrays (which form a majority of
the K1 remaining arrays); these values are, by definition,
the input values of the SLC.

By Theorem 8, if the translations in S1 passed the tests
on the randomly chosen δk = 29k translations, then with
probability of error smaller than 1/2k, more than εk = 31k
of the translations are correct in all Aspects 1–8. This im-
plies that among the at least (βγ − 2α)k = 49k pair-wise
input-value consistent translations in S1, at least (βγ −
2α)k + εk− (γ−2α)k = (ε−γ(1−β))k = k translations
are also correct in all aspects, this with probability of error
at most 1/2k. Let S3 denote any fixed set of k translations
that are correct in all aspects.

Now we observe that the probability that the δk = 29k
translations randomly chosen from S1 include all k transla-
tions in S3 is

(

K1−k
δk−k

)

(

K1

δk

) =
δk(δk − 1) · · · (δk − k + 1)

K1(K1 − 1) · · · (K1 − k + 1)

<

(

δk

K1

)k

=

(

δ

γ − 2α

)k

= (29/79)k.

Since 0.3671 ≈ 29/79 < 1/2, we have that with probabil-
ity of error smaller than 1/2k, after the δk = 29k transla-
tions are removed from S1, there remains at least one trans-
lation that is correct, has the correct representations for the
inputs values x1, . . . , xn, and was not used in any of the ver-
ifications. Since the revealed val(X

(j)
L) is the same for all

the translations TR(j) not used in any of the verifications,
that value is the correct output value xL of the SLC (1). The
total probability of error is less than 3/2k.

8 The Verification of Correctness is Secrecy
Preserving

We shall conduct our proof of the secrecy preserv-
ing property in the random oracle model for the com-
mitment function COM. Thus we assume that COM :
{0, 1}k+128 → {0, 1}k+128 is a random permutation.
Whenever the EP or the Verifier has an argument value
w ∈ {0, 1}k+128, he can call on COM and get the value
v = COM(w). To commit to a number x ∈ Fp, the com-
mitter randomly chooses a help value r ∈ {0, 1}k and ob-
tains v = COM(r||x). To de-commit v, the committer re-
veals r and x, and then the commitment to x is verified by

calling the function COM. (See [4] for a related but more
sophisticated approach to commitments.)

The EP prepares the K translations of the SLC (1) as
detailed in Sections 4 and 5, and posts commitments to all
the coordinates of all the pairs appearing in the translations,
keeping to himself the help values r1, r2, . . . employed in
the commitments.

The main idea of the proof is that in the verification pro-
cess all that is being revealed are randomly independent ele-
ments of Fp, and relations of the form u1+u2+· · ·+us = v
or u1×u2 = v, for randomly independent u1, u2, . . . in Fp.
The properties of the commitment scheme ensure that noth-
ing can be learned about a value u ∈ Fp from a commitment
to it.

To simplify the proof of the secrecy preserving nature
of the verification process, we assume that every party Pj

is proper and submits to the EP K randomly independent
representations X

(1)
j , . . . , X

(K)
j of his input value xj . Al-

lowing improper parties does not change the essence of the
proof and the result.

We shall consider the verifications of Aspects 0–8 of the
translations TR(j), 1 ≤ j ≤ K, posted by the EP via
commitments.

Aspect 0 relates to the pair-wise value-consistency of the
arrays of inputs. In the basic step the Verifier requests of the
EP to reveal for two representations X

(i)
m and X

(j)
m of in-

put xm submitted by party Pm, the values of, say, their first
coordinates u

(i)
m and u

(j)
m . The Verifier then verifies that

u
(i)
m −u

(j)
m equals d1, a value that was posted by EP. Since,

according to the protocol, party Pm used random represen-
tations of xm (see the beginning of Section 4), all these first
coordinates are independent random elements of Fp.

We recall that every translation TR(j) (see (8)) con-
tains representations Z

(j)
1 , . . . , Z

(j)
s of 0; new representa-

tions Y
(j)
1 , . . . , Y

(j)
t , . . . so that every xm in the SLC has

as many new representations as the number of times it is
involved in computations of the SLC; and representations
NX

(j)
m for every xm resulting from a computation in the

SLC. Aspects 1, 2 and 3 respectively deal with the correct-
ness of these Z, Y and NX representations.

The first lemma addresses the Z’s:

Lemma 10 In the set of translations {TR(1), . . . , TR(K)},
any collection of coordinates of representations of 0 which
does not contain both coordinates of the same representa-
tion, consists of independently randomly chosen numbers
from Fp.

Proof: This follows from the construction of the random
representations of 0.

The next lemma addresses the Y ’s and the NX’s:

Lemma 11 In the set of translations {TR(1), . . . , TR(K)},

any collection of coordinates of the representations Y
(j)
i

and NX
(j)
m which does not contain both coordinates of the

same representation, consists of independently randomly
chosen numbers from Fp.

Proof: Every such representation Y
(j)
i or NX

(j)
m is the

result of an operation of the form Y
(j)
i = X + Z or

NX
(j)
m = X + Z, where X is some previous pair in TR(j)

and Z is a random representation of 0 from TR(j), and
where Z is used only once. The result now follows from
the previous Lemma.

Checking Aspect 1 of a translation involves the revela-
tion by the EP of all coordinates of all representations of 0
in a number of translations. By construction of the transla-
tions, all representations (z,−z) of 0 were constructed by
the EP using independently random choices of z, and no
other value in those translations is revealed. Thus the re-
vealed values are randomly independent and randomly in-
dependent from any other values revealed in the total verifi-
cation.

We recall that in a translation TR, the symbols
X1, X2, . . . , Xm, . . . , XL denote representations of the val-
ues x1, x2, . . . , xm, . . . , xL of the SLC (1).

Lemma 12 Let U = {X
(j)
(n+1), . . . , X

(j)
L | 1 ≤ j ≤

K} be the set of all representations of non-input values
xn+1, . . . , xL in all translations TR(j), 1 ≤ j ≤ K, of the
SLC (1). Then any collection of coordinates of the repre-
sentations in U which does not contain both coordinates of
the same representation consists of independently randomly
chosen numbers from Fp.

Proof: By the construction of a pair X
(j)
m in the translation

TR(j), if xm = xi+xj in the SLC (1) then X
(j)
m = Y ′+Y ′′

where Y ′, Y ′′ are new random representations of xi and
xj (see (3)). Thus the claim follows from Lemma 11. If
xm = xi × xj then X

(j)
m is constructed from new random

representations Y ′, Y ′′ of xi and xj according to (6a)–(6e).
The use of random representations of 0 in (6a)–(6e) estab-
lishes the claim.

Remark. Under the assumption that all parties
P1, . . . , Pn are proper, Lemma 12 extends to the coordi-
nates of the representations X

(j)
1 , . . . , X

(j)
L of all the num-

bers x1, . . . , xL of the SLC (1).

Lemma 13 Verifying Aspect 2 of a translation TR involves
checking equations of the form u + z = v where all the
numbers u, z that are revealed (de-commited) are randomly
independent elements in Fp.

Proof: The equations to be simultaneously verified are of
the form Xj + Ze(j) = NXj where Ze(j) is a new random
representation of 0 for every equation. The verification is
done by checking equations of the form u + z = v where
in each case u, z, v are simultaneously the first or simulta-
neously the second coordinates of Xj , Ze(j) and NXj . The
random independence claim for the u, v now follows from
Lemma 12.

Lemma 14 Verifying Aspect 3 of a translation TR involves
checking equations of the form u+z = v where all the num-
bers u, z revealed (de-commited) are randomly independent
elements in Fp.

Proof: Verifying Aspect 3 involves verifying all equations
of the form Y = Xj + Z for the input value representa-
tions and Y = NXj + Z for representations of intermedi-
ate results of the SLC, where in each case Z is a different
representation of 0 from the list Z1, . . . , Zs of representa-
tions of 0 in TR. The result follows from Lemma 12, the
construction of Z1, . . . Zs, and the fact that verifying such
an addition of representations (pairs) involves revelation of
either all first coordinates or all second coordinates of the
pairs in question.

Lemma 15 Verifying Aspect 4 of a translation TR involves
checking equations of the form u1 +u2 = v and w1 + · · ·+
w4 = w where all the numbers u1, u2, w1, . . . , w4 revealed
(de-commited) are randomly independent elements in Fp.

Proof: This follows from the definition of Aspect 4 in a
manner similar to the proof of Lemma 14.

We move directly to the statement that the verification of
Aspect 6 is secrecy preserving. The proof for the secrecy
preserving nature of Aspects 5 and 7–8 is similar.

Lemma 16 Verifying Aspect 6 of a translation TR involves
checking equations of the form u1 × v2 + z = w1 where
the numbers u1, v2, z revealed (de-commited) are randomly
independent elements in Fp.

Proof: Verifying Aspect 6 involves checking in TR simul-
taneously all equations of the form (6b) arising in trans-
lations of multiplications xm = xi × xj of the SLC (1).
Such a translation employs unique random representations
Y ′ = (u1, v1) and Y ′′ = (u2, v2) of xi and xj and a repre-
sentation Z = (z,−z) of 0. To be verified simultaneously
are all additions X

′′

m = (u1 × v2, 0)+Z in TR. If the chal-
lenge is c and X

′′

m = (w1, w2) then all the u1, v2, z and w1

are revealed by the EP and all equations u1 × v2 + z = w1

are checked by the Verifier. By Lemma 11, all the revealed
u1, v2, z are randomly independent elements of Fp.

Theorem 17 The verification of correctness of the K trans-
lations TR(j), 1 ≤ j ≤ K, of the SLC (1) is secrecy pre-
serving.

Proof: The verification process involves randomly choos-
ing 2αk = 11k translations for verifying Aspect 0 (the
value-consistency of the input arrays) and randomly choos-
ing δk = 29k arrays for verifying Aspects 1–8.

Let C1, . . . , CK be a collection of coordinates of repre-
sentations of values from the translations TR(j), 1 ≤ j ≤
K, such that no Cj contains both coordinates of the same
representation (pair). By the construction of the K transla-
tions, the values in any Cj are randomly independent from
the values in all other Ci’s.

Any one of the (α + δ)k = 40k translations used in the
verification is involved in the verification of just one of the
Aspects 0–8, i.e. is used only once.

By the detailed analysis given above for the verification
of Aspect 0 and in Lemmas 10–16, all the coordinate values
from presentations of a translation TR(j) revealed during
the verification satisfy the condition on Cj . Furthermore,
they are mutually randomly independent values in Fp, ex-
cept for relations such as u + z = v, u1 × v2 + z = w1,
etc. dictated by the structure of the translation process. By
the above observation on C1, . . . , CK , the verification of
Aspects 0–8 only reveals some randomly independent ele-
ments of Fp and some sums and products of such elements
(which could be computed by the Verifier on his own).

Finally, in every TR(j) not used in the verification of
Aspects 0–8, the Verifier asks the EP to de-commit both
coordinates of X

(j)
L = (u

(j)
L , v

(j)
L). The Verifier checks that

all the revealed pairs have the same sum u
(j)
L + v

(j)
L = xL,

where xL is by definition the result of the SLC (1). The
revealed coordinates of all the X

(j)
L involved in this final

step are again randomly independent values in Fp, subject
to the condition that the two coordinates of each pair all sum
to the same value.

We are working in the random oracle model for the
COM function. Thus for all values x of coordinates of
pairs in all translations, the values v = COM(r‖x) are
randomly independent elements of {0, 1}k+128.

9 An Application to Auctions

In this section we sketch an application of our method
to secure auctions. After touching on security and privacy
concerns particular to cryptographic auctions, we augment
the basic approach for straight-line computations described
above to handle comparison steps x ≤ y and summarize a
cryptographic auction protocol using our methods.

9.1 Background and Motivation

Cryptographic auctions are an ideal example to illustrate
our work in a real-world context. Auction theory has devel-
oped complex pricing algorithms for “strategyproof” auc-
tions (that is, a bidder’s best strategy is to bid her true util-
ity), but information about one bid being revealed to another
bidder could change the outcome of the auction. Moreover,
in many applications, such as wireless spectrum auctions
conducted by the FCC, bidders do not want their bids to be
revealed to other bidders (because it constitutes proprietary
business information) yet the auctions must be transparent
to comply with Federal regulations.

Thus we require an auction protocol with the following
characteristics: 1) it must be practically efficient enough to
compute functions of the bids; 2) bids must be secret, in
that no bidder can learn anything about any other bid be-
fore the deadline to submit a bid; and 3) the results must be
able to be proven correct without revealing the original bids.
Our method supports all of these requirements: 1) we have
demonstrated our protocol’s efficiency in empirical tests; 2)
other cryptography, such as cryptographic commitments or
time-lapse cryptography [11], can enforce bid secrecy until
the auction is closed; and 3) the protocol presented in this
work issues a correctness proof that reveals nothing about
the bids (clearly, it reveals nothing that is not implied by the
results).

The extent of trust we place in an auctioneer is that he
will not reveal any information about the bids except for the
outcome of the auction and what is implied by announce-
ment of the outcome. For example, in a Vickrey auction
where the item goes to the highest bidder at the price bid
by the second highest bidder, the announcement will reveal
the identity of the winner. Whether the winner’s payment
will be revealed depends on the announced rules of the auc-
tion, but if so, then the second highest bidder’s bid is also
revealed. When the rules demand it, our protocols can en-
force the secrecy of auction payments, so that each bidder
receives a private proof of the correctness of any payment
without learning additional information.

The rationale for this partial trust model is that illegally
and selectively leaking out bid values before the closing of
the auction, or announcing a false auction result, can benefit
particular bidders, the auctioneer, and/or the seller. Our pro-
tocols completely prevent such malfeasance. On the other
hand, leaking out bid values after the end of an auction only
helps parties who receive such information in strategizing
for future similar auctions. The value of this information
advantage is, however, relatively limited. Consequently the
auctioneer, who has his business reputation to guard, has
a substantial incentive not to leak out information after the
conclusion of auctions; and as we will see there are other
approaches to building secure systems in which such post-

auction leaks can be prevented.

9.2 Summary of an Auction Protocol

In [9] (for a more detailed review, see the literature
quoted there), a protocol is proposed for conducting secure
and secrecy preserving auctions. Bidders choose their bids,
encrypt them using a homomorphic encryption scheme, and
send commitments to these encrypted bids to an auctioneer;
they do this by posting them on a public bulletin board. Af-
ter all bids are in, the auctioneer announces that the auc-
tion has closed, and the bidders submit their encrypted bids
to the bulletin board. These can be easily verified against
the previously published commitments. The auctioneer then
privately opens the encrypted bids and computes, according
to the posted auction rules, who the winner(s) is (are) and
their payments. He then posts a publicly verifiable Zero
Knowledge Proof for the correctness of the results, based
on the encrypted bids published on the bulletin board.

This proof can be done in a manner revealing the iden-
tities of the winners and their payments or, if so desired,
concealing that information. But in any case, the bids of all
other bidders except for those of the winners remain secret.
The only trust assumption made is that the auctioneer, who
knows the bid values, will not reveal that information after
the auciton. The protocol described in [9] employs Pail-
lier’s homomorphic encryption scheme [8] for bid secrecy
and proofs of correctness; his scheme allows these proofs to
be verified by using only the encrypted bids.

It was shown in [9] that the protocols given there are
practical and that currently available computing power suf-
fices to implement auctions with thousands of bidders
within reasonably practical time (on the order of one day
for a single computer). Still, that solution employs special
encryption functions and basic Paillier encryption is a rela-
tively heavy computation.

Our theoretical framework for secrecy-preserving, prov-
ably correct computation described above is extendible for
conducting a sealed-bid auction; to complete the necessary
set of primitives we now explain how zero-knowledge com-
parisons of two values can be handled in our protocol. (This
is a general extension of the SLC framework independent
of the specific application to auctions.) In Section 9.4 we
describe some simple optimizations of the basic approach
described in the previous sections that give an improvement
in efficiency. In Section 9.5 we give an example of how our
augmented approach can be used to prove correctness of a
Vickrey auction result.

9.3 Translation of Inequalities 0 ≤ x ≤ B
and x ≤ y.

Let 0 < b < p be values that satisfy 32b2 < p.

We proceed in three steps in this subsection. We first
suppose that the Evaluator-Prover has a value 0 ≤ x ≤ b,
and we explain how the EP can prove that −b ≤ x ≤ 2b.
Next, using this first step, we explain how if the EP has
0 ≤ x ≤ b2 he can give a secrecy preserving proof that
0 ≤ x ≤ 16b2. Finally we describe how this enables him
to prove that 0 ≤ x ≤ y ≤ 16b2 for two values x, y that
satisfy 0 ≤ x < y ≤ b2.

So let us suppose that the EP has a value 0 ≤ x ≤ b,
and wants to prove that −b ≤ x ≤ 2b, i.e. that either 0 ≤
x ≤ 2b or p − b ≤ x < p. The following construction is an
adaptation of a method of Brickell et al. [2] to our context.

The EP selects a random value 0 ≤ w0 ≤ b and sets
w1 = w0 − b. He sets

r =

{

w0 + x if w0 + x ≤ b;

w1 + x if b < w0 + x.
(10)

It can be seen that this r is uniformly distributed in the inter-
val [0, b]. If a Verifier checks that the pair (w0, w1) satisfies
the condition w1 + b = w0 and that for some ζ ∈ {0, 1}, it
is the case that 0 ≤ wζ +x ≤ b, then the Verifier may infers
that −b ≤ x ≤ 2b is true.

To enable the verification in a secrecy preserving man-
ner, the EP includes in the translations TR a representa-
tion X for x; two representations W ′, W ′′, for the values
w0 and w1; and a representation R for the value r defined
by (10). We stress that the two representations W ′, W ′′ in
the translations occur consecutively (these can follow the
Z’s in the overall translation of the entire computation, see
(8)), but in an order that is randomly chosen by the veri-
fier. That is, when the translations are being constructed,
the EP randomly decides whether the first representation
W ′ will represent w0 or w1 (and then the second represen-
tation represents the other value).

From the above description, we have that the translation
of the statement −b ≤ x ≤ 2b requires commitments to
eight values in Fp (the two components of each of the four
pairs X , W ′, W ′′, and R). For the actual verification we
modify three of the previously described Aspects (Aspects
1, 2 and 3) as we now describe.

In Aspect 1, we shall now also say that a translation TR
is correct with respect to representations of the w’s if for
each couple of pairs W ′, W ′′ arising in a comparison step
as described above, we have val(W ′) = val(W ′′) − b or
val(W ′′) = val(W ′) − b. To verify that TR is correct in
Aspect 1, in addition to checking all zeros as described ear-
lier, the Verifier also requests of EP to reveal (de-commit)
all coordinates of all pairs W ′, W ′′ and checks that for the
values corresponding to each pair, it is indeed the case that
one of the two equalities holds.

In Aspect 3, we shall now also say that a translation TR
is correct with respect to representations of the r’s if for
each comparison step as described above, it is indeed the

case that for some W ? ∈ {W ′, W ′′} we have val(R) =
val(W ?) + val(X). To verify that TR is correct in As-
pect 2, in addition to checking all computations of Y1, . . .
as described earlier by choosing a random c ∈ {1, 2}, the
following moreover takes place. The EP selects the ele-
ment of {W ′, W ′′} that corresponds to the correct value of
ζ such that r = wζ + x; we refer to the element he selects
as W ?. If c = 1 then EP reveals (de-commits) the first co-
ordinate in all computations of R = W ? + X . The Verifier
checks that the first coordinates of W ? and X sum up to the
first coordinate of R. He rejects if even one of these checks
fails. The case c = 2 is handled similarly.

In Aspect 2, we shall now also say that a translation TR
is correct with respect to the range of the r’s if the new rep-
resentation R satisfies 0 ≤ val(R) ≤ b. To verify correct-
ness in Aspect 2, in addition to checking all computations
of NXj as described earlier, the EP de-commits both co-
ordinates in all computations of R, the new representation
of r. The Verifier sums the two coordinates to obtain val(R)
and checks that the two coordinates add up to a value that
lies in the interval [0, b]. (Note that by following the proto-
col, the EP ensures that this value val(R) is r, which is a
“fresh” random value from [0, b] independent of everything
else seen by the Verifier; thus secrecy is preserved.)

Now let us suppose that 0 ≤ x ≤ b2. The EP wants to
enable a secrecy preserving proof that 0 ≤ x ≤ 16b2. We
describe an approach by which he can do this; the approach
is similar to one given in [3].

By Lagrange’s theorem, there exist nonnegative integers
x1, x2, x3, x4 such that

x = x2
1+x2

2+x2
3+x2

4 with 0 ≤ x1, x2, x3, x4 ≤ b. (11)

There is an efficient randomized algorithm known that,
given x as input, finds a sum of four squares representation
(11) for x [10]. Using this algorithm, the EP computes
the Lagrange representation (11) and for each of the val-
ues x1, x2, x3, x4, prepares a translation enabling a proof
that −b ≤ xj ≤ 2b as described above. He creates repre-
sentations X for x and X1, . . . , X4 for x1, x2, x3, x4. He
prepares translations for the computations x2

j = xj ×xj for
1 ≤ j ≤ 4, and for the equality (11). If a Verifier checks the
above relations using the representations, then the Verifier
knows that 0 ≤ x ≤ 4 · 4b2 = 16b2.

Finally, let us suppose that 0 ≤ x ≤ y ≤ b2. The EP
wants to give a secrecy preserving proof that 0 ≤ x ≤ y ≤
16b2. He does this simply by giving a secrecy preserving
proof that 0 ≤ x ≤ 16b2 (which he can do since 0 ≤ x ≤
b2), a secrecy preserving proof that 0 ≤ y ≤ 16b2 (which
he can do since 0 ≤ y ≤ b2), and a secrecy preserving
proof that 0 ≤ y − x ≤ 16b2 (which he can do since 0 ≤
y − x ≤ b2). It is clear that these bounds establish that
0 ≤ x ≤ y ≤ 16b2.

In the next section we shall describe an optimization that
let us reduce the number of commitments required for a
naı̈ve instantiation of the above approach.

9.4 An optimization: more efficient sum
of four squares and other sequences of
additions.

Here we briefly note an optimization that can be per-
formed to reduce the number of commitments required to
perform the sums of four squares in (11) and certain other
sequences of operations.

The optimization is to perform a sequence of additions
“in one step”, similar to our implementation of a multipli-
cation step. Recall that a multiplication step xm = xi×xj is
implemented as follows: after constructing representations
X

′

m, X
′′

m, X
′′′

m and X
′′′′

m , the EP constructs the final Xm

as X
′

m + X
′′

m + X
′′′

m + X
′′′′

m in one step, rather than per-
forming three pairwise additions (which would necessitate
representations for the intermediate sums, new representa-
tions for their subsequent use in the overall sum, etc.). (See
the verification of Aspect 3 described in Section 6.)

A similar approach can be taken when constructing the
sum of four squares x2

1 +x2
2 +x2

3 +x2
4. Since the intermedi-

ate pairwise sums are not used we may simply perform all
three additions at once and save on the intermediate repre-
sentations that would otherwise be constructed. A similar
approach can be taken for any sequence of consecutive ad-
ditions that occurs anywhere in the SLC.

9.5 Proving Correctness of a Vickrey Auc-
tion Result.

In a Vickrey auction participants P1, . . . , Pn submit bids
x1, . . . , xn. The winner is the highest bidder and the price
he pays is the second highest price. In this setting the Auc-
tioneer acts as the EP. Without loss of generality, and ex-
cluding the case of equal winning bids, we assume that

p/32 > b2 > x1 > x2; x2 ≥ x3, . . . , x2 ≥ xn. (12)

Thus the EP has to prepare translations enabling a secrecy
preserving proof of the inequalities (12). The EP first pre-
pares translations for proving that 0 ≤ xi ≤ 16b2 for each
i = 1, . . . , n. He then proves that x2 < x1 (by proving that
0 < x1 − x2 ≤ 16b2), that x3 ≤ x2, that x4 ≤ x2, and so
on as described in Section 9.3. Thus there are a total of 2n
proofs that various values v satisfy 0 ≤ v ≤ 16b2.

9.6 Efficiency of the Protocol

We now analyze the number of commitments that this
protocol requires. A careful analysis of the translation of

the n-participant Vickrey auction computation reveals that
101n pairs are constructed within each translation. As
described earlier, the secrecy preserving proof involves 90k
different translations, and thus all in all the posted proof
consists of 90k · 101n · 2 commitments to values in Fp.
(The final factor of two is because there is one commitment
for each of the two elements of each pair.)

For security parameter k = 40 and number of bids
n = 100, this means around 72.7 million commitments.
For pragmatic reasons, to commit COM(x) we employed
the SHA-1 cryptographic hash function on x with a random
128-bit help value r: COM(x) = SHA1(x||r). The more
sophisticated theoretical approach of [4] could also be used
without a significant effect on efficiency. This yields 160
bits of output for each commitment, for a total proof size of
approximately 1.45GB with the above parameters. While
constructing the proof requires committing to all values, and
the entire proof is downloaded by the verifier, examination
of the verification process above shows that no more 5% of
the committed values need to be verified by decommitment
at the end of the protocol. (To check a commitment, the ver-
ifier requests indices of the elements to decommit; the EP
sends the random seeds and actual elements; then the veri-
fier rehashes their concatenation and checks for equality.)

We have conducted empirical experiments comparing
the performance of our protocol on sealed-bid auctions to
that of a previously published auction protocol based on ho-
momorphic encryption [9]. Our results bear out our claim
that our solution is significantly faster than solutions based
on homomorphic cryptography. There is, however, an im-
portant time/space tradeoff: the correctness proofs in our
solution are very large, because of the large number of
commitments necessary to guarantee correctness with high
probability. We have therefore included not only calcu-
lations of the cost of computing all of the cryptographic
hashes (by far the dominant computation) but also estimated
the transfer time for the verifier to download the very large
proof of correctness. Although we tested the running time
of the other operations necessary to construct and verify
a proof for a cryptographic auction, these take at most a
few seconds and we omitted them from our discussion here.
These operations include generating random data, decom-
posing the sum-of-four-squares representations, and multi-
plication and addition of values modulo p.

To yield fair comparisons, we executed our tests using
the same 2.8 GHz 32-bit Pentium 4 processor used on the
homomorphic cryptographic auction protocol in [9] with
which we compare our new approach; obviously use of
faster 64-bit processors would significantly improve the ef-
ficiency in all cases. We estimate that the timing presented
here would be improved by a factor of 2 or 3 if run on 2007
state-of-the-art hardware. We also assume a 2.5 megabyte
per second transfer rate for the proof download. Times

given in Table 1 reflect a security parameter k = 40 for
our proposed protocol and a 2048-bit public Paillier key in
the homomorphic cryptographic setting.

Table 1. Single-Item Auctions of 100 Bids

Operation Proposed Homomorphic

Preparing the proof 4.11 minutes 804 minutes
Downloading the proof 9.67 minutes < 1 minute
Verifying the proof < 1 minute 162 minutes

10 The Secure Co-Processor Model and Im-
plementation

Instead of the EP entity, which may be a person or
some organizational entity, in this section we propose a
Secure Processor Evaluator-Prover (SPEP) for the imple-
mentation of verifiable secrecy preserving straight line com-
putations. We emphasize that this is a preliminary pro-
posal; instead of giving detailed formal definitions we shall
informally specify the properties and assumptions for the
SPEP .

The secure processor is programmed to perform the
functions of the Evaluator-Prover, as previously described,
for accepting input values x1, . . . , xn, executing the SLC
(1) on these values, preparing a proof of the correctness of
the computation and outputting (posting) that proof.

We trust the secure processor to only post the proof and
not any other information. We do not trust the processor to
correctly execute the SLC. Hence the need for a verifiable
proof of correctness.

The secure processor may leak out information in a num-
ber of ways. For one thing, the format of the posted proof
may leak out information on input and intermediate values
of the computation through use of spaces, fonts used, for-
mat, etc. How to counter such steganographic leaks lies
outside the present authors’ expertise. (See e.g. [7] for some
background on covert channels.)

Second, and more pernicious, the EP requires a consid-
erable stream of random bits for implementing the transla-
tions TR(j), 1 ≤ j ≤ K. The secure processor can leak
out information on input and other values through appro-
priate choices of random values that will be revealed in the
verification process.

Our proposal for dealing with this covert channel is to
have an independent secure co-processor RANDOM with a
physical random number generator which acts as a universal
source of randomness. Upon request from the EP secure
processor, RANDOM sends to the SPEP a list of sequen-
tially numbered and digitally signed random values to be

used as help values for the COM operation and as values in
Fp to be used in the translations. The SPEP must use these
random strings in the order of their numbering according to
a publicly known protocol. Whenever a random value from
the translations is posted as part of the proof of correctness,
the SPEP also posts the signed message from RANDOM as
proof of origin. The protocol enables the Verifier to check
that the posted messages from RANDOM are used in the
posted proof in the mandatory order.

The processor is trusted not to output any information
beyond that specified by the protocols, and its communica-
tions interfaces can be monitored to verify this. The pub-
lished proof of correctness assures the participants that the
output result is really the correct result of the SLC; this
means that the validation of the program run by the se-
cure coprocessor need only address information leakage,
not program correctness: the program proves itself correct
during its normal operation.

The above is only a rough outline of the secure processor
and the RANDOM secure co-processor model. Details will
be presented in a subsequent publication.

11 Practical Implementation of the
Evaluator-Prover Method

For a practical implementation of the EP method,
say for use in secure auctions, we make some pragmatic
choices.

We choose k = 40, giving a total probability of error
smaller than 3 · 10−12. The COM function for a value
in Fp, where p has 128 bits, will be implemented by ran-
domly choosing a help value r ∈ {0, 1}40 and setting
COM(x) = SHA(r‖x) ∈ {0, 1}120. Note that COM is
randomly many-to-one. This practically precludes feasible
searches even if some partial information about x is avail-
able.

The verification of correctness process will not be inter-
active. The proof of correctness of the translations of the
SLC (1) will be posted. Namely, the EP will prepare the
translations TR(j), 1 ≤ j ≤ K, and post commitments
to all the numbers involved in the translations. Along the
lines of the computation of Fiat-Shamir signatures [5], a
hash function H will be applied to the concatenation string
of all those commitment values.

The EP extracts from the hash value
H(COM(TR(1))‖ . . . ‖COM(TR(K))) the random
challenges used in the verification of the correctness of
Aspects 0–8. He then de-commits all the values requested
in the challenges and posts the values. Anyone can then
verify the correctness of the computation by re-committing
the exposed values and by performing additions and
multiplications mod p on the exposed values and checking
equalities.

Another approach to the creation of the challenges
will be for the EP first to post the committed-to
translations. After the posting, each of the bidders
P1, . . . , Pn sends to the EP an encrypted random string
EN(S1), . . . , EN(Sn). These encryptions are posted by
the EP. After that posting the strings S1, . . . , Sn are re-
vealed and S = S1 XOR . . . XOR Sn will define the
random challenges used in the verification. From here on
the process proceeds as above. The method of Time Lapse
Cryptography [11] is used to force opening of all the en-
crypted strings Si. A detailed protocol deals with the possi-
bility that not all bidders Pi will submit encrypted strings.
Alternatively, P1, . . . , Pn must submit the encrypted strings
EN(S1), . . . , EN(Sn) together with their bids. The reve-
lation of the strings is then timed by the protocol to occur af-
ter the posting of the committed-to translations by the EP.

References

[1] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclo-
sure proofs of knowledge. Journal of Computer and System
Sciences, 37:156–189, 1988.

[2] E. Brickell, D. Chaum, I. Damgård, and J. V. de Graaf. Grad-
ual and verifiable release of a secret. In Proceedings of
CRYPTO’87, volume LNCS 293, pages 156–166, 1988.

[3] J. Camenisch and V. Shoup. Practical verifiable encryp-
tion and decryption of discrete logarithms. Full length ver-
sion of extended abstract in Proc. Crypto 2003, available at
http://eprint.iacr.org/2002/161.pdf, 2003.

[4] I. Damgård, T. Pedersen, and B. Pfitzmann. Statistical se-
crecy and multibit commitments. IEEE Transactions on In-
formation Theory, 44(3):1143–1151, 1998.

[5] A. Fiat and A. Shamir. How to prove youself: practical so-
lutions to identification and signature problems. In Proceed-
ings of CRYPTO’86, pages 186–194, 1987.

[6] J. Kilian. A note on efficient zero-knowledge proofs and ar-
guments. In Proceedings of STOC’92, pages 723–732, 1992.

[7] J. McHugh. Covert channel analysis. Chapter 8 of
Handbook for the Computer Security Certification of
Trusted Systems, NRL Technical Memorandum, available at
http://chacs.nrl.navy.mil/publications/handbook/COVCHAN.pdf,
1996.

[8] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In J. Stern, editor, Advances in
Cryptology — (EUROCRYPT 1999), volume 1592 of Lec-
ture Notes in Computer Science, pages 107–122. Springer-
Verlag, 1999.

[9] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A. Thorpe.
Practical secrecy-preserving, verifiably correct and trustwor-
thy auctions. In Proceedings of the 8th International Confer-
ence on Electronic Commerce (ICEC), pages 70–81, 2006.

[10] M. O. Rabin and J. O. Shallit. Randomized algorithms in
number theory. Communications in Pure and Applied Math-
ematics, 39:239–256, 1986.

[11] M. O. Rabin and C. Thorpe. Time-lapse cryptography. Tech-
nical Report TR-22-06, Harvard University School of Engi-
neering and Computer Science, 2006.

