FlowCode: Multi-Site Data Exchange for Wireless Ad-Hoc Networks using Network Coding

H.T. Kung, Chit-Kwan Lin, Tsung-Han Lin
Stephen J. Tarsa and Dario Vlah

Harvard University
School of Engineering and Applied Sciences
Motivation

- This work was motivated by some questions raised at MILCOM 2008:

 1. What are the gains of network coding?
 2. How do we achieve these gains in a real system?
 3. How big are the gains?

- We focus on these questions in a wireless ad-hoc network context, where there are some interesting opportunities
Agenda

• Categories of Network Coding Gain
• The FlowCode System
• Simulations
• Field Experiments
• Future Work
• Concluding Remarks
Example Wireless Mesh Scenario

- S transmits data to D
- k redundant paths in the middle
 - Each independent, with loss rate p
Opportunity: Path Redundancy

- k redundant paths provide k chances to successfully transmit a packet
 - Packet delivery failure = p^k
 - Contrast with a single path, as in routing
Opportunity: Path Diversity

- What if each of the k paths could deliver a different packet simultaneously?
 - Potentially reduces expected no. of transmissions by factor of k
Enter Network Coding

- **Path Diversity** can be conveniently achieved with network coding
 - Coding inside network means it’s possible for k links to deliver k innovative packets to D

- **Path Redundancy** can be achieved naturally within network coding rubric
A Categorization of Network Coding Gain

- **Capacity Gain** (COPE)
- **Fault Tolerance Gain**
 - Path diversity
 - Path redundancy
Multi-site Data Exchange Scenario

- Sources A and B wish to exchange data
- Three middle links
 - Each independent, with loss rate \(p \)
The FlowCode System

• A system-level approach to achieving network coding gains
 – High-loss wireless scenarios
 – Data exchange (not just distribution)

• Two main design criteria:
 – Fault Tolerance:
 • Aggressively exploit multiple alternative paths (even if transient)
 – Capacity:
 • Orchestrate where flows meet (coding opportunity)
 • Orchestrate when flows meet (coding schedule)
FlowCode Mechanisms

- Layered Topology
 - Allows us to distinguish *direction* of traffic, relative to root layer
 - *Coding opportunities* exist at nodes where upstream and downstream flows meet
FlowCode Mechanisms

• **Operand-Driven Transmission**
 – Allows us to achieve an optimal schedule without a global scheduler
 – *Coding is scheduled* when upstream and downstream flows meet

<table>
<thead>
<tr>
<th>Peripheral Node Rules</th>
<th>Root Nodes Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>• On upstream arrival</td>
<td>• Wait for upstream and downstream arrivals</td>
</tr>
<tr>
<td>• code and send immediately</td>
<td></td>
</tr>
<tr>
<td>• On downstream arrival</td>
<td>• After waiting short period (\tau), send regardless of coding opportunity</td>
</tr>
<tr>
<td>• wait for upstream operand arrival</td>
<td></td>
</tr>
</tbody>
</table>
How FlowCode Works

• “Maximize innovativeness of each transmission but don’t starve upstream nodes by waiting too long”

• Layers and operand-driven transmission automatically provide fault tolerance
 – Innovative packets flow on multiple paths (diversity) in parallel (redundancy)
 • Broadcast advantage enables multiple nodes to operate independently and simultaneously
Simulation: Two-site Data Exchange

- Sources A and B
- Vary k, the number of lossy middle links ($p = 0.8$)
- Compare:
 - FlowCode vs. Random Uncoded Protocol
- Measure:
 - Fault tolerance gain
 - Max no. of source transmissions
 - Overall gain
 - Total transmissions in largest collision domain
 (approx. of best achievable completion time under CSMA)
Simulation: Fault Tolerance Gain

Network coding achieves optimum with 5 middle links, whereas uncoded can’t, even with 20.
Simulation: Overall Gain

Total Transmissions in the Largest Collision Domain

Number of Middle Links

Uncoded
Network Coding

Enough paths exist for minimal transmission at k=4; add’l links increase channel contention
Simulation: Breakdown of Gains

Fault Tolerance Gain
- Fault tolerance gain is higher in high loss scenarios and generally plays a more prominent role in overall gain.

Overall Gain
- Capacity gain is low under high loss because of asymmetric flows.

Capacity Gain

Fault Tolerance Gain

Overall Gain

Capacity Gain
Field Experiments

- Deployed FlowCode on **outdoor testbed**
 - 12 Nodes
 - Mobile Internet Devices (MIDs)
 - Intel Atom 800MHz
 - 512Mb RAM
 - 4Gb flash disk
 - Marvell SD8686 SDIO 802.11b/g
 - Linux
- Wi-Fi
 - Ad-hoc mode
 - 1Mbps modulation
Topology Construction

- Topology must consistently produce:
 - Wide range of faulty conditions
 - Highly dynamic link loss/outage

- **Problem:** Tuning is too hard!

- **Solution:** Exploit radio ground effects
 - Place nodes on ground, 35ft apart
 - Can’t hear each other
 - Induce communication by having human subjects (grad students) walk near nodes
 - Controlled tours
 - Irregular surface of human body reflects signal randomly
Topology Construction
Calibration: PDR as a Function of Human Location

- 0% delivery rate baseline when no human is present

- Calibration tells us where we can stand to induce reflections between transmitter and receiver

- We can induce flaky links in a controlled way
Experimental Setup: 1-Path Scenario

• 4 data sources (4-way exchange)
• Blue arrows show human tours
• FlowCode vs. BitTorrent-like Uncoded Protocol
2-Path and 3-Path Scenarios
Field Experiment Performance

Coded shows a 4X gain over uncoded due to capacity and fault tolerance gains.
Future Work

• How to do layer assignment?
 – Link quality-based methods won’t capture short-lived links that we want to exploit
 – Use geographic information (GPS or via range-based localization), which is more stable

• How to do dynamic layer adaptation?
 – Need to accommodate mobile nodes
 – By keeping a history of heard upstream/downstream operands, a node can decide its optimal layer assignment by dynamically choosing the one that maximizes throughput
Recap

• Network coding gain is comprised of
 – Capacity gain
 – Fault tolerance gain

• FlowCode is a system that achieves these gains via layered topology and operand-driven transmission mechanisms

• Fault tolerance gain is larger than capacity gain, in high-loss situations
Questions?
Experiment Topology/Link Qualities