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Introduction to File 
Systems



Why Do File Systems Exist?
• From the perspective of an OS, a storage device is a big, linear array of bytes

• Sector: Smallest amount of data that the device can read or write in a 
single operation

• Most applications want a higher-level storage abstraction that provides:

• String-based naming of application data (e.g., “photos/koala.jpg” instead 
of “the bytes between sectors 12,802 and 12,837”)

• Automatic management of free and allocated sectors as files are created 
and deleted

• Performance optimizations like:
• Caching of recently read/written data

• Prefetching of preexisting data that is likely to be read in the future

• Some notion of reliability in the presence of application crashes, OS 
crashes, and unexpected power failures



Core File System Abstractions:
Files and Directories

• A file is a named, linear region of bytes that can grow and shrink
• Associated with metadata like:

• a user-visible name (e.g., “koala.jpg”)

• a size in bytes

• access permissions (read/write/execute)

• statistics like last modification time

• a seek position if open

• File also has a low-level name (e.g., Linux inode number) that the file system uses to 
locate the file data on a storage device 

• File systems are typically agnostic about the contents of the file (i.e., applications 
decide how to interpret file bytes)

• A directory is a container for other files and directories
• Typically contains pairs of <user-visible-name, low-level-name>

• Nested directories create hierarchical trees (e.g., “/home/todd/photos/koala.jpg”)



Files as Single Extents (1960s File Systems)
• A file’s metadata consists of:

• A starting sector for the file data

• The number of bytes in the file 
(note that the last sector may not 
be completely full)

• Advantages:
• Simple!
• Metadata is small
• Efficiently supports sequential and 

random IO

• Disadvantages:
• For a new file, how much space 

should be preallocated?
• What happens if the file needs to 

grow beyond its allocation, or 
shrink?

• External fragmentation

Metadata

Contiguous

sectors



Files as Collections of Extents (IBM OS360, ext4)
• Advantages:

• If extents are large, sequential IO 
almost as fast as with a single extent

• Random IO almost as efficient as with 
single extent (offset calculations a little 
trickier)

• Metadata is small

• Disadvantages: Most of the single-
extent design challenges are multiplied!
• How large should a file’s initial extents 

be?
• What happens if a file needs to grow or 

shrink?
• External fragmentation not as bad, but 

depending on design, may have 
internal fragmentation inside each 
extent 

Contiguous

sectors. . .

. . .



Files as Linked Lists (FAT: MSDOS, SSD memory cards)

• Advantages

• Easy to shrink and grow files

• Low internal and external 
fragmentation

• Calculating sector offsets for 
sequential IO is easy

• Disadvantages

• Sequential IO requires a lot of seeks

• Random IO is difficult—where does 
the target sector live?

• Must store pointer information at the 
end of each data block=



Files as Flat Indices

•Advantages
• Easy to calculate offsets for both 

sequential and random IO

• Low internal and external 
fragmentation

•Disadvantages
• Maximum file size is fixed by the 

number of entries in an index

• Sequential IO requires a lot of seeks

=
=

=



Files as Hybrid Indices (FFS, ext2, ext3)
• Top-level index contains direct 

pointers, indirect pointers, doubly-
indirect pointers, etc.

• Advantages:
• Efficient for small files: don’t need to 

materialize indirect blocks
• There is still a maximum file size, but it’s 

really big
• Low internal and external fragmentation

• Disadvantages:
• Reading or writing a single data block 

may require multiple disk accesses to 
fetch indirection info

• Even if indirection info is cached, 
reading or writing adjacent blocks may 
require extra seeks if those blocks are 
not physically adjacent on disk



Free Space Management
• Fixed-sized blocks: File systems typically use a bitmap to indicate 

which blocks are in use
• Allocation metadata is very compact
• Finding a single free block is straightforward . . .
• . . . but finding a *contiguous* region of N free blocks is tedious without 

auxiliary data structures

• Extents: File system can implement “on-disk malloc”
• File system breaks the disk into discrete-sized extents (e.g., 4KB, 8KB, 

12KB,…,4MB), or arbitrarily-sized extents sorted by size
• File system maintains a list of unallocated extents
• To allocate an extent for a request of size N bytes, file system uses a 

policy (e.g., best-fit, worst-fit, first-fit, etc., each of which has trade-offs 
between internal fragmentation, external fragmentation, and speed of 
finding a match)



/* On-disk inode */
struct sfs_dinode {

uint32_t sfi_size;                 /* Size of this file (bytes) */
uint16_t sfi_type;                 /* One of SFS_TYPE_* above */
uint16_t sfi_linkcount;            /* # hard links to this file */
uint32_t sfi_direct[SFS_NDIRECT];  /* Direct blocks */
uint32_t sfi_indirect;             /* Indirect block */
uint32_t sfi_dindirect;            /* Double indirect block */
uint32_t sfi_tindirect;            /* Triple indirect block */
uint32_t sfi_waste[128-5-SFS_NDIRECT]; /* pad to 512 bytes */

};

kern/include/kern/sfs.h

/* File types for sfi_type */
#define SFS_TYPE_INVAL    0       /* Should not appear on disk */
#define SFS_TYPE_FILE     1
#define SFS_TYPE_DIR      2



SFS: Managing Free Space
• In SFS, the block size is 512 bytes

• In SFS, sizeof(struct sfs_dinode) is 512 bytes, which is the block size!
• So, SFS allows blocks to live anywhere on disk—to allocate/deallocate an inode, 

SFS manipulates the block bitmap
• The struct sfs_direntry::sfd_ino field contains a block number (the root directory is 

always inode 1)
• SFS differs from most file systems, which place inodes in specific regions of the 

disk (e.g., inodes blocks should be close to the corresponding file data blocks)

/* In-memory info for a file system */
struct sfs_fs {

struct bitmap *sfs_freemap;     /* blocks in use are marked 1 */
bool sfs_freemapdirty;          /* true if freemap modified */
struct lock *sfs_freemaplock;   /* lock for freemap/superblock */
/* Other fields . . . */

};



Walking A Directory Path /p0/p1/p2/…
• The inode for the root directory has a 

fixed, known value

• So, to traverse a directory path, we first set:
• curr_inode to the root directory’s inode

• pathIndex to 0

• curr_path to path_components[pathIndex]

• Then, we iteratively:
• Read the data associated with curr_inode

• Find the directory entry (i.e., the <path, 
inode> pair) for which dir_entry.path = 
curr_path

• Set curr_inode to dir_entry.inode, and set 
curr_path to path_components[++i]



More Fun With Directories

• Using full path names can be tedious, so most file systems associate 
a “current working directory” with each process
• The current working directory is stored in the struct proc

• When a process requires the OS to resolve a path, the OS checks whether 
the first character in the path is “/”
• If so, start resolving at the root directory

• If not, start resolving at the current working directory

• Most file systems support the special directory entries ”.” and “..”
• “.” refers to the directory itself (e.g., “./foo.txt” refers to a file in the 

directory)

• “..” refers to the parent directory (e.g., “../foo.txt” refers to a file in the 
parent directory)



Multiple Directory Entries Can Point To The Same File!

• A “soft link” or “symbolic link” is a file that contains 
the name of another file

• When the OS encounters a symbolic link, it 
continues pathname resolution using the path 
name in the link           

$ echo “hello” > /target/file
$ ln –s /target/file /path/of/symlink
$ ls –l /target/file /path/of/symlink
-rw-rw-r-- 1 jane admins  6 Mar  22 22:01 /target/file
lrwxrwxrwx 1 jane admins  6 Mar  22 22:01 /path/of/symlink -> /target/file



Multiple Directory Entries Can Point To The Same File!

• A “hard link” directly references an 
inode number
• The file system maintains a reference 

count for each file
• When you hard link to a file, you 

increment the ref count
• When you delete a hard link, you 

remove the link from its directory, and 
decrement the ref count for the file

• A file’s data is only deleted when its ref 
count drops to zero

$ echo “hello” > /target/file
$ ln /target/file /path/of/hardlink
$ ls –l /target/file /path/of/hardlink
-rw-rw-r-- 2 jane admins  6 Mar  22 22:01 /target/file
-rw-rw-r-- 2 jane admins  6 Mar  22 22:01 /path/of/hardlink



The Virtual File System (VFS) Interface

• In The Olden Days, a particular OS could only use a single, 
baked-in file system

• A VFS defines an abstract, generic interface that a file system 
should present to the OS
• A particular file system implements the abstract VFS methods, and the 

OS only interacts with the file system through those VFS methods

• In principle, the core OS doesn’t need to know anything about the 
internal implementation of the file system!

• A VFS makes it easy for a single OS to run one (or more!) file 
systems of the user’s choice
• Ex: A Linux machine might simultaneously use ext3 for locally storing 

files, and NFS for storing files on remote servers



OS161’s VFS: kern/include/vfs.h
/* Abstract low-level file. */
struct vnode {

int vn_refcount;                /* Reference count */
struct spinlock vn_countlock;   /* Lock for vn_refcount */
struct fs *vn_fs;               /* Filesystem vnode belongs to */
void *vn_data;                  /* Filesystem-specific data */
const struct vnode_ops *vn_ops; /* Functions on this vnode */

};

struct vnode_ops {
int (*vop_read)(struct vnode *file, struct uio *uio);
int (*vop_write)(struct vnode *file, struct uio *uio);
int (*vop_stat)(struct vnode *object, struct stat *statbuf);
//...other vops...

};


