
CS 161: Lecture 14
4/4/17

Journaling

In The Last Episode . . .
• FFS uses fsck to ensure that the file system is usable after a crash

• fsck makes a series of passes through the file system to ensure that
metadata is consistent

• fsck may result in lost data, but metadata will always be consistent
• fsck works, but has several unattractive features

• fsck requires detailed knowledge of file system, making fsck difficult to
write and maintain

• fsck is extremely slow, because it requires multiple traversals through
the entire file system

• Ideally, recovery time would be proportional to the number of
recent writes that may or may not have made it to disk

File System Transactions
• A transaction is a sequence of operations that should be treated as a

logical whole
• In the database world, transactions are described using A.C.I.D.

• Atomic: Either all of the operations in the transaction succeed, or none of them do
• Consistent: Each transaction moves the system from one consistent state to

another consistent state
• Isolation: Each transaction behaves as if it’s the only one that is executing in the

system
• Durability: Once the system commits a transaction, that transaction must persist in

the system, even if the system crashes or loses power
• Transactions provide an elegant abstraction for file systems to reason

about consistency
• Treat each file system operation (e.g., the creation of a new file) as a transaction
• During failure recovery, ensure that:

• Committed transactions are reflected in on-disk data structures
• Uncommitted transactions (i.e., transactions that were unfinished at the time of

the crash) are not visible in the post-crash disk state

Journaling In Action: ext3

Inodes

Data

Data bitmap
Inode bitmap

Block
group N

. .
 .

• ext3 is a widely-used journaling file
system on Linux

• Preserves the same on-disk data structures
as ext2, but adds journaling support

• The superblock contains file-system-
wide info like the block size, the total
number of blocks, etc.

• The block descriptor describes where
the block groups start

• A block group is like an FFS cylinder
group: a set of contiguous sectors on
disk which are assumed to be fast to
access in quick succession

Block
descriptor

Backup superblock
Journal

Superblock

Block
group 0

Block
group 1

ext3: Redo Write-ahead Logging

Block
group N

. .
 .

Block
descriptor

Journal

Superblock

Block
group 0

Block
group 1

Pre-crash
For each high-level file
operation (e.g., write(),
unlink()) that modifies the
file system . . .
• Write the blocks that

would be updated into
the journal

• Once all blocks are in the
journal, transaction is
committed; now ext3 can
issue the “in-place” writes
to the actual data blocks
and metadata blocks

The journal is a circular buffer;
asynchronously deallocate
journal entries whose in-place
updates are done

Post-crash
Iterate through the
journal, reading the
data blocks in each
committed transaction,
then writing them to the
corresponding in-place
region on disk

Block
group N

. .
 .

Block
descriptor

Journal

Superblock

Block
group 0

Block
group 1

• If the system crashes
during recovery, just
restart the journal
replay (this is safe
because replaying
entries is idempotent)

• Can deallocate journal
entries once they’ve
been replayed

ext3: Logging of Physical Blocks
• ext3 journals physical blocks

• Even if only part of a physical block is updated, ext3
records the entire enclosing block in the journal

• Ex: To journal an update to an inode (e.g., to update a
data block pointer and file size), ext3 writes the inode’s
entire enclosing block to the journal (ext3 can use a
block size of 1024, 2048, 4096, or 8192 bytes, but inodes
are only 256 bytes large)

• Ex: Even if only part of a data block is updated, ext3 logs
the entire block

• Ex: Appending to a file requires three in-place writes
(1) inode must be updated with a new file size and a new

data block pointer
(2) the data block bitmap must be updated to reflect a

new block allocation
(3) the data block itself must be written

TxStart

TxEnd

Block with
updated inode

Block with
updated data

bitmap

New data
block

Journal grows
this way

• How should ext3 issue the writes to the
journal?

• One possible strategy is to:
 (1) Issue the journal writes serially, waiting
 for write i to complete before issuing
 write i+1
 (2) After the last journal write finishes,
 issue the checkpoint (i.e., issue the
 in-place writes) at some future moment
• If a crash happens in the midst of (1),

we’re fine
• During crash recovery, we’ll see a

valid TxStart, but no valid TxEnd for
the associated tid

• If the data block made it to the
journal, we’ll have to discard it, but
the file system will be consistent

ext3: Logging of Physical Blocks
TxStart:tid=1

TxEnd:tid=1

Block with
updated inode

Block with
updated data

bitmap

New data
block

Journal grows
this way

. . . and these writes
never make it to the
journal

Crash happens . . .

• The prior strategy works, but
it’s slow, since the writes are
serially issued

• A faster strategy is to:
 (1) issue all of the journal writes at
 once
 (2) when they all complete, issue
 the checkpoint at some future
 moment
• Problem: the disk can reorder

writes, which may cause havoc
if a crash happens during (1)

• Remember that only sector-sized
writes are atomic!

• For example, suppose that all
writes except the middle one
complete . . .

ext3: Logging of Physical Blocks
TxStart:tid=1

TxEnd:tid=1

Block with
updated inode

Block with
updated data

bitmap

New data
block

Journal grows
this way

RECO
VERY

ext3 would find a
matching TxStart
and TxEnd, so the
transaction will
seem valid . . .
 . . . so ext3 would
update the data
bitmap with whatever
insanity was in the
journal!

• The actual ext3 strategy is to:
 (1) Issue TxStart and everything up to (but not including) TxEnd
 (2) Once those writes have all completed, issue TxEnd
 (3) Once the TxEnd is persistent, the checkpoint can be issued at
 some future moment
• This protocol ensures that a valid-looking transaction is really

composed of valid journal entries
• Note that a TxEnd record is essentially just a tid, so it fits inside a single sector

and will be written atomically
• Remember that the journal is finite-sized!

• ext3 treats the journal like a circular buffer
• In the background, ext3 deallocates journal transactions that have

been checkpointed
• The journal has its own superblock which records the start and end of the

valid region
• After a checkpoint occurs, ext3 asynchronously updates the superblock to

indicate the new start of the log

ext3: Logging of Physical Blocks

ext3: Controlling
What Gets Journaled
• In the previous slides,

we’ve assumed that ext3
journals both data and
metadata

• This policy provides the
strongest consistency,
but requires double-
writes for all new data

• However, many people
are willing to accept
data loss/corruption
after a crash, as long as
metadata is consistent

• So, ext3 defines three
different journaling
modes: data, ordered (the
default), and writeback

ext3: Controlling
What Gets Journaled

Ti
m

e

Data mode

metadata
data

+ journal

commit journal

metadata
data

+ inPlace

Synchronous

Later…

• Up to this point, we’ve
looked at data mode

• Both data and metadata
are journaled

• Post-crash, metadata is
consistent, and files
never contain junk
(although writes may be
lost)

• Data mode incurs a
double-write penalty for
all data *and* metadata

ext3: Controlling
What Gets Journaled

Ti
m

e

Data mode

metadata
data

+ journal

commit journal

metadata
data

+ inPlace

Synchronous

Later…

Ordered mode
data inPlace

metadata journal

commit journal

metadata inPlace

Synchronous

Synchronous

Later…

• Ordered mode does not
journal data, but writes it
in-place before issuing
journal updates for
metadata

• Avoids double-write
penalty for data, while
ensuring that writes to
preexisting regions of a
file are always preserved
post-crash if those writes
make it to the disk

• Still possible for appends
to be lost post-crash

• Forcing the journal
update to wait for the
data write can hurt
performance

ext3: Controlling
What Gets Journaled

Ti
m

e

• In unordered mode, the
in-place data writes can
be issued at any time
w.r.t. journal updates and
checkpoints for metadata

• Allows the disk freedom
to reorder those writes
w.r.t. journal updates,
improving performance

• However, post-crash, files
may contain junk data if
the in-place data updates
never hit the disk

Unordered mode

data inPlace

metadata journal

commit journal

metadata inPlace

Synchronous

Later…

???

???

???

???

???

???
???

???
???

ext3: Batching Journal Updates
• Suppose that, in quick succession, a process creates three new

files in the same directory (and thus the same block group)
• ext3 will need to update the same directory, inode bitmap, and data

block bitmap multiple times
• To do so, ext3 could generate three separate transactions for each

file create
• However, this would force ext3 to repeatedly journal and in-place

update the same set of physical blocks
• To minimize disk traffic, ext3 creates “global” transactions

• ext3 defines a waiting period for collecting updates
• During that period, ext3 uses an in-memory structure to record

which blocks are dirty (i.e., have been updated during the period)
• Once the period is over, ext3 issues a single transaction for all of the

dirty blocks

Summary of ext3
• ext3 is a journaling file system that does physical redo logging
• To make a file system update in ordered mode, ext3 does the following:

(1) Issue an in-place write for the data
(2) Once those writes complete, update the journal with TxBegin and journal entries for
the metadata
(3) Once those writes complete, issue a TxEnd
(4) Once that write completes, asynchronously checkpoint the metadata (i.e., write the
in-place metadata)
(5) Once that write completes, asynchronously update the journal superblock to
deallocate the associated transaction

• Data mode and unordered mode provide different
consistency and performance

Journaling: Undo Logging vs. Redo Logging
• In redo logging, we make operation X persistent by:

• Starting a transaction: update the journal with TxBegin and the new data that is
associated with X

• Once those writes complete, commit the transaction: update the journal with TxEnd
• Once the transaction is committed, asynchronously perform the in-place updates

• During post-crash recovery, only replay committed transactions

• In undo logging, we make operation X persistent by:
• Starting a transaction: update the journal with TxBegin and instructions for how to

undo X’s in-place updates (e.g., instructions might include the original on-disk values)
• Once those writes complete, asynchronously perform the in-place updates that are

associated with X
• Once those writes complete, commit the transaction: update the journal with TxEnd

• During post-crash recovery, undo uncommitted transactions by rolling
backwards through the log, applying undo instructions to in-place disk
locations

• Redo logging
• Advantage: A transaction can commit without the in-place updates being complete

(only the journal updates need to be complete)
• In-place updates might be to random places on the disk, whereas journal writes are sequential

• Disadvantage: A transaction’s dirty blocks must be buffered in-memory until the
transaction commits and all of the associated journal records have been flushed to disk

• Buffering leads to increased memory pressure
• Ideally, it would be safe to flush a dirty block after the associated journal record has been written to

disk (even if the transaction has not committed yet)

• Undo logging
• Advantage: A dirty buffer can be written in-place as soon as the corresponding journal

entries have been written to disk
• Useful if the file system is experiencing high memory pressure and needs to evict buffers

• Disadvantage: A transaction cannot commit until all dirty blocks have been flushed to
their in-place targets

• Delaying a transaction’s commit might delay other transactions who want to read or write the
associated data

• So, the file system has time pressure to issue those writes quickly, even if they would cause
unfortunate seeking behavior

Journaling: Undo Logging vs. Redo Logging

Journaling: Redo+Undo Logging
• The goal of redo+undo logging is to:

• Allow dirty buffers to be flushed at any time after their associated journal entries are
written (as in undo logging)

• Allow a transaction to commit without its in-place updates being finished (as in redo
logging)

• In redo+undo logging, we make a file system operation X persistent by:
• Starting a transaction: Write TxBegin
• For each component of the transaction, write a <redoInfo,undoInfo> record to the

journal
• Once the record has been written, issue an in-place update for the component at

any time!
• Once the journal operations finish, commit the transaction: Write TxEnd to journal

• Note that some, all, or none of the in-place updates might be finished at this point
• Post-crash recovery now requires two phases

• Roll forward through the log, redoing all committed transactions (potentially
duplicating work if the transactions’ in-place updates succeeded before the crash)

• Roll backwards through the log, undoing all uncommitted transactions that might have
issued in-place updates before the crash

Journaling: NTFS
• NTFS is the file system on Windows

• NTFS performs redo+undo logging (but only journals metadata, not data)
• Supports block sizes from 512 bytes up to 64KB, with a default of 4KB
• Has more bells and whistles than stock ext3 (e.g., NTFS natively supports

file compression and encryption)
• The root directory of an NTFS file system contains special files with

reserved names that are used to implement key functionality, e.g.,:
• $MFT: the Master File Table, which contains metadata for all of the files

and directories in the file system
• $LogFile: the journal
• $Bitmap: allocation information for blocks

NTFS: Files and Directories
• The MFT contains an entry for each

file and directory
• Each entry is 1024 bytes long, and

roughly corresponds to an inode
• Each entry lists the attributes for the

file/directory (e.g., name, link count,
access timestamps, data characteristics
like “compressed” or “encrypted”)

• Note that the file/directory data is just
another attribute!

• For small files/directories, all of the
data is stored inside the MFT record

• For larger files/directories, the MFT
record has pointer(s) to the relevant
on-disk extents

• Programs can define new, custom
attributes for their files!

• At file system initialization time, NTFS
reserves a contiguous 12.5% region
of the disk for the MFT

Standard info
header

Link count
Timestamps

…etc...
File name header

File name
Data header

Raw data

Unused

MFT entry for
a small file

Standard info
header

Link count
Timestamps

…etc...
File name header

File name
Data header
Start:17,Len:2

Unused

MFT entry for
a larger file

Start:9,Len:6

NTFS: Operation Logging
• Unlike ext3 (which uses physical logging), NTFS

uses operation logging
• An operation log describes modifications to file

system data structures
• Ex: “Set bit 4 in a bitmap” or “write the following

values into an MFT entry”
• Operation logging has smaller log entries than

physical logging (which much store entire physical
blocks), although replay logic is more complicated

• In A4, you must implement operation logging
• Unlike ext3 (which batches multiple file system

operations into a single transaction), NTFS
creates a separate transaction for each file
system operation

• Each NTFS transaction consists of sub-operations
• Each sub-operation has:

• a redo field
• an undo field
• a pointer to the previous sub-operation in the

transaction

Tx1(a)

Tx1(b)

Journal grows
this way

Transaction for
a file create Redo: Allocate

and initialize an
MFT entry for file
“foo.txt”
Undo: Deallocate
the MFT entry

Redo: In “foo.txt”’s
directory, append a
new directory entry
which points to
“foo.txt”’s MFT entry
Undo: Remove the
reference to “foo.txt”
in its enclosing
directory

Tx1(End)

NTFS: Example of Crash Recovery

Tx1(a)

Journal grows
this way

Tx2(a)
Tx2(b)
Tx1(b)
Tx2(c)

Tx2(end)
Tx1(c)

Crash

• First, NTFS rolls forward through the log, redoing
all of the sub-operations in order

• Tx1(a), Tx2(a), Tx2(b), Tx1(b), Tx2(c), and Tx1(c) are all
redone, in that order

• Then, NTFS rolls backwards through the log,
undoing the sub-operations from uncommitted
transactions

• Tx1(c), Tx1(b), and Tx1(a) are undone, in that order

Q: Why can’t we eliminate the undo pass, and just
have a forward pass in which we only redo sub-
operations from committed transactions?
A: The presence of a log record means that the
associated in-place writes may have hit the disk! If
those writes belong to uncommitted transactions,
they must be undone

	Journaling
	In The Last Episode . . .
	File System Transactions
	Journaling In Action: ext3
	ext3: Redo Write-ahead Logging
	ext3: Logging of Physical Blocks
	ext3: Logging of Physical Blocks
	ext3: Logging of Physical Blocks
	ext3: Logging of Physical Blocks
	ext3: Controlling What Gets Journaled
	ext3: Controlling What Gets Journaled
	ext3: Controlling What Gets Journaled
	ext3: Controlling What Gets Journaled
	ext3: Batching Journal Updates
	Summary of ext3
	Journaling: Undo Logging vs. Redo Logging
	Slide Number 17
	Journaling: Redo+Undo Logging
	Journaling: NTFS
	NTFS: Files and Directories
	NTFS: Operation Logging
	NTFS: Example of Crash Recovery

