
CS 161: Lecture 1

1/26/17

Overview of the
MIPS Architecture:

Part II

Outline

•Pipelining and branches

•Traps

•Synchronization

The Problem with Branches
• We don’t know if a branch is taken until the end of the ID stage . . .

• . . . which means that the IF stage may have fetched the wrong instruction!

lbl:

add t0, t1, t2
beq t3, zero, lbl
sub a0, a1, a2
. . .
lw t4, 16(t5)

t=1 beq add

t=2 sub beq add

t=0 add

IF ID EX MEM WB

We don’t know whether we

should branch until the end

of t=2 . . .

. . . so we don’t know whether lw should

have been fetched until end of t=2!

The Problem with Branches
• One solution: Processor automatically inserts a nop after each branch

• A nop (“no operation”) does not change the processor’s state

• So, executing a nop never affects correctness (although it does slow
down the program due to a wasted processor cycle)

t=1 beq add

t=2 nop beq add

t=0 add

IF ID EX MEM WB

lbl:

add t0, t1, t2
beq t3, zero, lbl
sub a0, a1, a2
. . .
lw t4, 16(t5)

t=3 nop beq addsub or
lw

At beginning of t=3, IF examines output of ID

from t=2 and fetches the appropriate instruction

The Problem with Branches
• Different solution: Have compiler insert a “branch delay” instruction

after a branch

• This instruction must be one that a program should ALWAYS execute,
regardless of whether branch is taken or not!

• If the program has no such instruction, compiler inserts a nop

lbl:

add t0, t1, t2
beq t3, zero, lbl
sub a0, a1, a2
. . .
lw t4, 16(t5)

If compiler emits this code, then

the program should always

execute the sub, regardless of

whether the branch is taken

The Problem with Branches
• Different solution: Have compiler insert a “branch delay” instruction

after a branch

• This instruction must be one that a program should ALWAYS execute,
regardless of whether branch is taken or not!

• If the program has no such instruction, compiler inserts a nop

lbl:

add t0, t1, t2
beq t3, zero, lbl
nop
sub a0, a1, a2
. . .
lw t4, 16(t5)

If compiler emits this code, then

the program should only execute

the sub if the branch is NOT taken

• MIPS R3000 uses the branch delay approach

Traps

Invoking the OS

Operating system

User-level app

Hardware

app_instr0
app_instr1
app_instr2
...

kern_instr0
kern_instr1
kern_instr2
...

Hardware

The OS contains

executable instructions,

just like a user-level

application!

What determines

when the OS

runs?

Traps: Invoking the OS
• OS code only runs in response to

stimuli known as traps

• A trap forces the processor to stop
running user-level code, and start
running kernel-level code

• During a trap, the register state of
the user-level application must be
saved; later, when the kernel is
finished, the register state of the
user-level application must be
restored

• Imagine that we have a single-core
(i.e., single-pipeline) machine . . .

...
app_instrd
app_instre
app_instrf

kern_instr0
kern_instr1
...
kern_instrN

app_instrg
app_instrh
app_instri
...

Time

Instructions
executed by

core

Trap

Return to
user-mode

LET’S SET A
TRAP

Synchronous Exceptions

Asynchronous Interrupts

Directly and immediately caused by something
that a user-level program did, e.g.,

• Divide-by-zero

• Null pointer dereference

• System calls (int instruction on x86,
syscall instruction on MIPS)

LET’S SET A
TRAP

Caused by the reception of an “external” event,
e.g.,

• Hardware timer expires

• Network packet arrives

• User generates mouse or keyboard input

RAM

IF

ID

MEM

WB

EX

Registers
IF

ID

MEM

WB

EX

Registers

Multi-core Machines
• A multi-core machine has multiple pipelines which execute

instructions simultaneously
• Each core has a separate, private set of registers

• However, cores share the same physical RAM with the other cores
• A core can send an

interrupt to another
core (synchronous
w.r.t. sender, but
asynchronous w.r.t.
receiver)

• Each core can
independently
disable interrupts
and later reenable
them

PC PC

Concurrency
and

Synchronization

RAM

IF

ID

MEM

WB

EX

Registers

RAM

IF

ID

MEM

WB

EX

Registers

Concurrency: Doing Multiple Things At The Same Time
• On a single-core machine, (quasi-)concurrency arises because the OS

forces different applications to share the single pipeline
• First one application runs for a while, then another, then another . . .

• Context switching and scheduling are tricky—we’ll return to these topics later!

Suppose that there

are two processes

(red and yellow) . . .

C
o

n
te

xt
 s

w
it
ch

!

PCPC

• On a multi-core machine, there is true concurrency: different pipelines are
simultaneously executing independent instruction streams

• Each pipeline might be executing a stream from a different application . . .

Concurrency: Doing Multiple Things At The Same Time

RAM

IF

ID

MEM

WB

EX

Registers
IF

ID

MEM

WB

EX

Registers

PCPC

Concurrency: Doing Multiple Things At The Same Time
• On a multi-core machine, there is true concurrency: different pipelines are

simultaneously executing independent instruction streams

• . . . or some pipelines may be executing instructions from the same application,
but with a different execution context (i.e., values of PC and other registers)

RAM

IF

ID

MEM

WB

EX

Registers
IF

ID

MEM

WB

EX

Registers

PCPC

//Application code
int square(int x){

return x*x;
}
int isZero(int x){

return x==0;
}

Register

state for

execution

of square()

Register

state for

execution

of isZero()

Critical Sections
• Critical section: A piece of code that accesses a resource which is

shared between concurrent threads of execution

• A critical section must be executed atomically, i.e., at any given
moment, at most one thread can be manipulating the shared
resource

• If critical sections are not executed atomically, subtle bugs will
occur

• Synchronization: Ensuring that critical sections are actually atomic!

• Synchronization is important even on a uniprocessor: a thread
might be taken off the processor in the middle of its critical
section!

• On a multi-core processor, you must worry about
synchronization between threads on the same core, and
between threads on different cores

std::list<int> results;

//Runs in thread one.
void square(int x){

int s = x*x;
results.push_back(x);

}
//Runs in thread two.
void isZero(int x){

int iz = (x==0);
results.push_back(iz);

}

STL containers are
not thread-safe!

STL is optimized for

concurrent case!
speed in the non-

Spinlocks: A Mechanism For Protecting
Critical Sections

• Spinlock: a memory location that can be in one of two states

• Zero when spinlock is unlocked (i.e., not held by a thread)

• One when the spinlock is locked (i.e., held by a thread)

• Here’s a possible implementation:

• Assume that a read or write to an integer is atomic (this is
true on all reasonable ISAs)

• Initialize the spinlock: int lock_var = 0; //Unlocked
• Acquire the spinlock: while(lock_var != 0){;}

lock_var = 1;
• Release the spinlock: lock_var = 0;

//Runs in thread one.
void square(int x){

int s = x*x;
while(lock_var != 0){;}
lock_var = 1;
results.push_back(x);
lock_var = 0;

}
//Runs in thread two.
void isZero(int x){

int iz = (x==0);
while(lock_var != 0){;}
lock_var = 1;
results.push_back(iz);
lock_var = 0;

}
T
im

e

while(lock_var != 0){;}

lock_var = 1;

while(lock_var != 0){;}

while(lock_var != 0){;}

results.push_back(iz);

while(lock_var != 0){;}

lock_var = 0;

while(lock_var != 0){;}

lock_var = 1;

results.push_back(x);

//Runs in thread one.
void square(int x){

int s = x*x;
while(lock_var != 0){;}
lock_var = 1;
results.push_back(x);
lock_var = 0;

}
//Runs in thread two.
void isZero(int x){

int iz = (x==0);
while(lock_var != 0){;}
lock_var = 1;
results.push_back(iz);
lock_var = 0;

}
T
im

e

while(lock_var != 0){;}

while(lock_var != 0){;}

lock_var = 1;

lock_var = 1;

results.push_b

results.push_back(x);

ack(iz);

Yellow thinks

lock is free

Red thinks

lock is free

Red and yellow both believe

that they have exclusive access

to results

Yellow kicked off core mid-

way through STL operation

Red performs STL operation

on (internally-inconsistent?) list

#FML (maybe)

Different types of interleavings

may or may not lead to tragedy!

RACE CONDITIONS
YOU WILL BE

DESTROYED AT A
TIME AND PLACE

OF CTHULU’S
CHOOSING

Hardware to the Rescue!
• Luckily, hardware designers realize

the importance of synchronization

• Each ISA defines at least one
instruction to enable synchronization
• Instruction semantics differ by ISA . . .

• . . . but they all allow the same
synchronization mechanisms to be built!

Hardware Primitive: Test-and-set (TAS)

•Given a memory location, TAS atomically:
• retrieves the value of a memory location, and then
• sets the value at that memory location to 1

•TAS is useful for building spinlocks
• Initiatilize: int lock_var = 0;
• Lock: while(TAS(lock_var) != 0){;}
•Unlock: lock_var = 0;

• Interrupts should be disabled before the lock()->critical
section-->unlock sequence, and then reenabled (why?)

Hardware Primitive: Load Link/Store Conditional
(LL/SC)

• This synchronization primitive consists of two paired instructions
• ll rt, offset(rs): Loads a value from memory into rt
• sc rt, offset(rs): Stores value in rt back to the

memory location ONLY if the location has not changed since
the associated ll instruction executed; rt is set to 1 if the
store succeeded, 0 otherwise

• When used as a pair, the instructions are used to build an atomic
read-write that either succeeds or fails

• MIPS supports LL/SC; to see an example, look at OS 161’s
kern/arch/mips/include/spinlock.h

