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Outline

•Pipelining and branches

•Traps

•Synchronization



The Problem with Branches
• We don’t know if a branch is taken until the end of the ID stage . . .

• . . . which means that the IF stage may have fetched the wrong instruction!

lbl:

add t0, t1, t2
beq t3, zero, lbl
sub a0, a1, a2
. . .
lw t4, 16(t5)

t=1 beq add

t=2 sub beq add

t=0 add

IF ID EX MEM WB

We don’t know whether we 

should branch until the end 

of t=2 . . .

. . . so we don’t know whether lw should 

have been fetched until end of t=2!



The Problem with Branches
• One solution: Processor automatically inserts a nop after each branch

• A nop (“no operation”) does not change the processor’s state

• So, executing a nop never affects correctness (although it does slow 
down the program due to a wasted processor cycle)

t=1 beq add

t=2 nop beq add

t=0 add

IF ID EX MEM WB

lbl:

add t0, t1, t2
beq t3, zero, lbl
sub a0, a1, a2
. . .
lw t4, 16(t5)

t=3 nop beq addsub or
lw

At beginning of t=3, IF examines output of ID 

from t=2 and fetches the appropriate instruction



The Problem with Branches
• Different solution: Have compiler insert a “branch delay” instruction 

after a branch

• This instruction must be one that a program should ALWAYS execute, 
regardless of whether branch is taken or not!

• If the program has no such instruction, compiler inserts a nop

lbl:

add t0, t1, t2
beq t3, zero, lbl
sub a0, a1, a2
. . .
lw t4, 16(t5)

If compiler emits this code, then 

the program should always 

execute the sub, regardless of 

whether the branch is taken



The Problem with Branches
• Different solution: Have compiler insert a “branch delay” instruction 

after a branch

• This instruction must be one that a program should ALWAYS execute, 
regardless of whether branch is taken or not!

• If the program has no such instruction, compiler inserts a nop

lbl:

add t0, t1, t2
beq t3, zero, lbl
nop
sub a0, a1, a2
. . .
lw t4, 16(t5)

If compiler emits this code, then 

the program should only execute 

the sub if the branch is NOT taken

• MIPS R3000 uses the branch delay approach



Traps



Invoking the OS

Operating system

User-level app

Hardware

app_instr0
app_instr1
app_instr2
...

kern_instr0
kern_instr1
kern_instr2
...

Hardware

The OS contains 

executable instructions, 

just like a user-level 

application!

What determines 

when the OS 

runs?



Traps: Invoking the OS
• OS code only runs in response to 

stimuli known as traps

• A trap forces the processor to stop 
running user-level code, and start 
running kernel-level code

• During a trap, the register state of 
the user-level application must be 
saved; later, when the kernel is 
finished, the register state of the 
user-level application must be 
restored

• Imagine that we have a single-core 
(i.e., single-pipeline) machine . . .

...
app_instrd
app_instre
app_instrf

kern_instr0
kern_instr1
...
kern_instrN

app_instrg
app_instrh
app_instri
...

Time

Instructions
executed by

core

Trap

Return to
user-mode



LET’S SET A 
TRAP



Synchronous Exceptions

Asynchronous Interrupts

Directly and immediately caused by something 
that a user-level program did, e.g.,

• Divide-by-zero

• Null pointer dereference

• System calls (int instruction on x86, 
syscall instruction on MIPS)

LET’S SET A 
TRAP

Caused by the reception of an “external” event, 
e.g.,

• Hardware timer expires

• Network packet arrives

• User generates mouse or keyboard input
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Multi-core Machines
• A multi-core machine has multiple pipelines which execute 

instructions simultaneously
• Each core has a separate, private set of registers

• However, cores share the same physical RAM with the other cores
• A core can send an 

interrupt to another 
core (synchronous 
w.r.t. sender, but 
asynchronous w.r.t. 
receiver)

• Each core can 
independently 
disable interrupts 
and later reenable 
them

PC PC



Concurrency 
and 

Synchronization



RAM

IF

ID

MEM

WB

EX

Registers

RAM

IF

ID

MEM

WB

EX

Registers

Concurrency: Doing Multiple Things At The Same Time
• On a single-core machine, (quasi-)concurrency arises because the OS 

forces different applications to share the single pipeline
• First one application runs for a while, then another, then another . . .

• Context switching and scheduling are tricky—we’ll return to these topics later!

Suppose that there 

are two processes 

(red and yellow) . . . 
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PCPC



• On a multi-core machine, there is true concurrency: different pipelines are 
simultaneously executing independent instruction streams

• Each pipeline might be executing a stream from a different application . . .

Concurrency: Doing Multiple Things At The Same Time

RAM

IF

ID

MEM

WB

EX

Registers
IF

ID

MEM

WB

EX

Registers

PCPC



Concurrency: Doing Multiple Things At The Same Time
• On a multi-core machine, there is true concurrency: different pipelines are 

simultaneously executing independent instruction streams

• . . . or some pipelines may be executing instructions from the same application, 
but with a different execution context (i.e., values of PC and other registers)

RAM

IF

ID

MEM

WB

EX

Registers
IF

ID

MEM

WB

EX

Registers

PCPC

//Application code
int square(int x){

return x*x;
}
int isZero(int x){

return x==0;
}

Register 

state for 

execution 

of square()

Register 

state for 

execution 

of isZero()



Critical Sections
• Critical section: A piece of code that accesses a resource which is 

shared between concurrent threads of execution

• A critical section must be executed atomically, i.e., at any given 
moment, at most one thread can be manipulating the shared 
resource

• If critical sections are not executed atomically, subtle bugs will 
occur

• Synchronization: Ensuring that critical sections are actually atomic!

• Synchronization is important even on a uniprocessor: a thread 
might be taken off the processor in the middle of its critical 
section!

• On a multi-core processor, you must worry about 
synchronization between threads on the same core, and 
between threads on different cores



std::list<int> results;

//Runs in thread one.
void square(int x){

int s = x*x;
results.push_back(x);

}
//Runs in thread two.
void isZero(int x){

int iz = (x==0);
results.push_back(iz);

}

STL containers are 
not thread-safe!

STL is optimized for

concurrent case!
speed in the non-



Spinlocks: A Mechanism For Protecting 
Critical Sections

• Spinlock: a memory location that can be in one of two states

• Zero when spinlock is unlocked (i.e., not held by a thread)

• One when the spinlock is locked (i.e., held by a thread)

• Here’s a possible implementation:

• Assume that a read or write to an integer is atomic (this is 
true on all reasonable ISAs)

• Initialize the spinlock: int lock_var = 0; //Unlocked
• Acquire the spinlock:  while(lock_var != 0){;}

lock_var = 1;
• Release the spinlock: lock_var = 0;



//Runs in thread one.
void square(int x){

int s = x*x;
while(lock_var != 0){;}
lock_var = 1;
results.push_back(x);
lock_var = 0;

}
//Runs in thread two.
void isZero(int x){

int iz = (x==0);
while(lock_var != 0){;}
lock_var = 1;
results.push_back(iz);
lock_var = 0;

}
T
im

e

while(lock_var != 0){;}

lock_var = 1;

while(lock_var != 0){;}

while(lock_var != 0){;}

results.push_back(iz);

while(lock_var != 0){;}

lock_var = 0;

while(lock_var != 0){;}

lock_var = 1;

results.push_back(x);



//Runs in thread one.
void square(int x){

int s = x*x;
while(lock_var != 0){;}
lock_var = 1;
results.push_back(x);
lock_var = 0;

}
//Runs in thread two.
void isZero(int x){

int iz = (x==0);
while(lock_var != 0){;}
lock_var = 1;
results.push_back(iz);
lock_var = 0;

}
T
im

e

while(lock_var != 0){;}

while(lock_var != 0){;}

lock_var = 1;

lock_var = 1;

results.push_b

results.push_back(x);

ack(iz);

Yellow thinks 

lock is free

Red thinks 

lock is free

Red and yellow both believe 

that they have exclusive access 

to results

Yellow kicked off core mid-

way through STL operation

Red performs STL operation 

on (internally-inconsistent?) list

#FML (maybe)

Different types of interleavings

may or may not lead to tragedy!



RACE CONDITIONS
YOU WILL BE 

DESTROYED AT A 
TIME AND PLACE 

OF CTHULU’S 
CHOOSING



Hardware to the Rescue!
• Luckily, hardware designers realize 

the importance of synchronization

• Each ISA defines at least one 
instruction to enable synchronization
• Instruction semantics differ by ISA . . .

• . . . but they all allow the same 
synchronization mechanisms to be built!



Hardware Primitive: Test-and-set (TAS)

•Given a memory location, TAS atomically:
• retrieves the value of a memory location, and then
• sets the value at that memory location to 1

•TAS is useful for building spinlocks
• Initiatilize: int lock_var = 0;
• Lock:        while(TAS(lock_var) != 0){;}
•Unlock:    lock_var = 0;

• Interrupts should be disabled before the lock()->critical 
section-->unlock sequence, and then reenabled (why?)



Hardware Primitive: Load Link/Store Conditional 
(LL/SC)

• This synchronization primitive consists of two paired instructions
• ll rt, offset(rs): Loads a value from memory into rt
• sc rt, offset(rs): Stores value in rt back to the 

memory location ONLY if the location has not changed since 
the associated ll instruction executed; rt is set to 1 if the 
store succeeded, 0 otherwise

• When used as a pair, the instructions are used to build an atomic 
read-write that either succeeds or fails

• MIPS supports LL/SC; to see an example, look at OS 161’s 
kern/arch/mips/include/spinlock.h




