
Scheduling: Case Studies

CS 161: Lecture 5

2/14/17

Scheduling Basics

• Goal of scheduling: Pick the “best” task to run on a CPU

• Often a good idea to prioritize IO-bound tasks

• If IO comes from user (e.g., keyboard, mouse), we

want interactive programs to feel responsive

• IO is typically slow, so start it early!

• No starvation: All tasks should eventually get to run!

• Scheduling speed: The scheduler is PURE OVERHEAD

• Your A2 scheduler must be better than round-robin!

• Case studies:

• Linux 2.4: O(n) scheduler

• Linux 2.6.early: O(1) scheduler

• Linux 2.6.23+: O(log n) CFS scheduler

Linux O(n) Scheduler

t1

t2

t3

t4

…

Global

runnable

queue Single

spinlock

Scheduler logic

Each Task Has Three Priorities
• Two static priorities (do not change over lifetime of task)

• “Real-time” priority

• Between 1 and 99 for “real-time” tasks, 0 for normal tasks

• RT task runs to completion unless it issues

a blocking IO, voluntarily yields, or is

preempted by higher priority RT task

• Niceness priority
• Normally 0; set by “nice” command to [-20, 19]

• One dynamic priority

• Scheduler divides time into epochs

• At start of epoch, each task is assigned

a positive counter value (“time slice”)

• Unit is “scheduler ticks” or “jiffies”

• #define HZ 1000 //Rate that the timer interrupt fires

• Task’s time slice: remaining CPU time that task can use during

the current epoch (measured in 1/HZ long quanta)

• Timer interrupt decrements counter for currently executing task

void do_timer(){
jiffies++;
update_process_times();

}

void update_process_times(){
struct task_struct *p = current;
p->counter--;
//Other bookkeeping involving
//time statistics for this task
//and the cpu the task is
//running on.

}

Linux O(n) Scheduler

struct task_struct{
unsigned long rt_priority;//For “real-time” tasks
int static_prio; //The task’s nice value
int counter; //The task’s remaining

//time slice, i.e., the
//task’s dynamic priority

...
}

void schedule(){
struct task_struct *next, *p;
struct list_head *tmp;
int this_cpu = ..., c;

spin_lock_irq(&runqueue_lock); //Disable interrupts,
//grab global lock.

next = idle_task(this_cpu);
c = -1000; //Best goodness seen so far.
list_for_each(tmp, &runqueue_head){

p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {

int weight = goodness(p);
if(weight > c){

c = weight;
next = p;

}
}

}
spin_unlock_irq(&runqueue_lock);
switch_to(next, ...);

}

struct task_struct{
volatile long state;//-1 unrunnable,

// 0 runnable,
// >0 stopped

int exit_code;
struct mm_struct *mm;
unsigned long cpus_allowed;

//bitmask representing which
//cpus the task can run on

...
};

Calculating Goodness
int goodness(struct task_struct *p){

if(p->policy == SCHED_NORMAL){
//Normal (i.e., non-“real-time”) task
if(p->counter == 0){

//Task has used all of its
//time for this epoch!
return 0;

}
return p->counter + 20 – p->nice;

}else{
//“Real-time” task
return 1000 + p->rt_priority;

//Will always be
//greater than
//priority of a
//normal task

}
}

Linux “nice” command or

nice() sys call: Increase or

decrease static priority by

[-20, +19]

The dynamic priority

(i.e., time slice)

void schedule(){
struct task_struct *next, *p;
struct list_head *tmp;
int this_cpu = ..., c;

spin_lock_irq(&runqueue_lock);
next = idle_task(this_cpu);
c = -1000; //Best goodness seen so far.
list_for_each(tmp, &runqueue_head){

p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {

int weight = goodness(p);
if(weight > c){

c = weight;
next = p;

}
}

}
spin_unlock_irq(&runqueue_lock);
switch_to(next);

}

Pick highest priority

“real time” task; if no

such task, pick the

normal task with the

largest sum of static

priority and remaining

time slice

void schedule(){
struct task_struct *next, *p;
struct list_head *tmp;
int this_cpu = ..., c;

spin_lock_irq(&runqueue_lock);
next = idle_task(this_cpu);
c = -1000; //Best goodness seen so far.
list_for_each(tmp, &runqueue_head){

p = list_entry(tmp, struct task_struct, run_list);
if (can_schedule(p, this_cpu)) {

int weight = goodness(p);
if(weight > c){

c = weight;
next = p;

}
}

}
spin_unlock_irq(&runqueue_lock);
switch_to(next);

}

if(!c){//c==0, no good tasks!
struct task_struct *p;
spin_unlock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
for_each_task(p){
p->counter = (p->counter >> 1) +

NICE_TO_TICKS(p->nice);
}//Counters for next epoch now set
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
goto repeat_schedule;

}

repeat_schedule:

Boost priority of
interactive tasks which
sleep often!

Summary: Linux O(n) Scheduler

• “Real-time” tasks have high, unchanging static priority

• Regular tasks have low static priority, and low, dynamically

changing priority

• Dynamic priority (time slice) set at epoch start

• Time slice decremented as task uses CPU

• When scheduler must pick a task:

• Search global run queue for task with best goodness

• If all runnable tasks have goodness == 0, start a new

epoch: recalculate all time slices, then search runnable

queue again

• Once a task has a counter of 0, it cannot run again

until the new epoch arrives!

O(n)

O(n)

Another problem . . .

t1

t2

t3

t4

…

Global

runnable

queue Single

spinlock

Scheduler logic

CONTENTION

Why Was The O(n) Scheduler

Tolerated?

BEYONCE IS ANGRY

The O(n) Scheduler Wasn’t Too Bad

For Single-core Machines!

BEYONCE IS HAPPY

PREMATURE OPTIMIZATION

IS THE ROOT OF ALL EVIL.

Simple is better unless

proven otherwise.

Thy shall profile before

thy shall optimize.

Linux O(1) Scheduler
• Goal 1: Get sublinear scheduling overhead

• Goal 2: Remove contention on a single, global lock

struct task_struct{
unsigned long rt_priority; //For “real-time” tasks
int static_prio; //The task’s nice value
unsigned int time_slice; //CPU time left in epoch
int prio; //The task’s “goodness”
unsigned long sleep_avg; //Estimate of how long

//task spends blocked on
//IO versus executing on
//CPU; goes up when task
//sleeps, goes down when
//task runs on CPU

...
}

Linux O(1) Scheduler
• Goal 1: Get sublinear scheduling overhead

• Goal 2: Remove contention on a single, global lock

struct prio_array{
unsigned int nr_active;
struct list_head queue[MAX_PRIO];
unsigned long bitmap[BITMAP_SIZE];

};

struct runqueue{
spinlock_t lock;
struct task_struct *curr;
prio_array_t *active;
prio_array_t *expired;
...

}

Per-cpu

Think of

queue as

being

indexed by

“goodness”

nr_active: 3
bitmap: 01001
queue[5]:

Goodness0 1 2 3 4

t0 t2

nr_active: 0
bitmap: 00000
queue[5]:

Goodness0 1 2 3 4

t1

schedule()

• Find the first non-empty queue

• Run the first task in the list

void scheduler_tick(){ //Called by the timer interrupt handler.
runqueue_t *rq = this_rq();
task_t *p = current;

spin_lock(&rq->lock);
if(!--p->time_slice){

dequeue_task(p, rq->active);
p->prio = effective_prio(p);
p->time_slice = task_timeslice(p);
if(!TASK_INTERACTIVE(p) ||

EXPIRED_STARVING(rq)){
enqueue_task(p, rq->expired);

}else{ //Add to end of queue.
enqueue_task(p, rq->active);

}
}else{ //p->time_slice > 0

if(TASK_INTERACTIVE(p)){
//Probably won’t need the CPU
//for a while.
dequeue_task(p, rq->active);
enqueue_task(p, rq->active); //Adds to end.

}
}
spin_unlock(&rq->lock); //Later, timer handler calls schedule().

}

//Calculate “goodness”.
int effective_prio(task_t *p){
if(rt_task(p))

return p->prio;
bonus = CURRENT_BONUS(p);

//Bonus higher if
//p->sleep_avg is big

return p->static_prio –
bonus;
//static_prio is p’s
//nice value

}

//Time slices calculated
//incrementally, unlike
//O(n) scheduler! High
//priority tasks get
//longer time slices.

THIS IS NOT A PORSCHE

nr_active: 3
bitmap: 01001
queue[5]:

Goodness0 1 2 3 4

t0 t2

nr_active: 0
bitmap: 00000
queue[5]:

Goodness0 1 2 3 4

t1

Timer interrupt fires, scheduler runs t
0

nr_active: 2
bitmap: 01001
queue[5]:

Goodness0 1 2 3 4

t1 t2

nr_active: 1
bitmap: 00100
queue[5]:

Goodness0 1 2 3 4

t0

Timer interrupt fires, scheduler

moves t to expired list, runs t0 1

nr_active: 1
bitmap: 00001
queue[5]:

Goodness0 1 2 3 4

t1

t2

nr_active: 2
bitmap: 00100
queue[5]:

Goodness0 1 2 3 4

t0

Timer interrupt fires, scheduler

moves t to expired list, runs t1 2

nr_active: 0
bitmap: 00000
queue[5]:

Goodness0 1 2 3 4

t1

nr_active: 3
bitmap: 00110
queue[5]:

Goodness0 1 2 3 4

t0

Later, scheduler moves t to the expired list2

t2

nr_active: 0
bitmap: 00000
queue[5]:

Goodness0 1 2 3 4

t1

nr_active: 3
bitmap: 00110
queue[5]:

Goodness0 1 2 3 4

t0

Scheduler notices that nr_active is 0, and swaps

the “active” and “expired” pointers:

O(1) running time!

t2

Summary: Linux O(1) Scheduler
• Per-processor scheduling data structures (eliminate global lock!)

• Active array of queues (1 queue per priority level)

• Expired array of queues (1 queue per priority level)

• Task priority: (“real-time” priority) or (nice value + bonus)

• Scheduler picks first task from highest priority non-empty active

queue

• Finding that queue is O(1): find first 1 bit via hardware instruction

• Dequeuing the first item in the queue is O(1)

• Timer interrupt decrements time slice for current task

• If time slice is 0, move task to queue in expired array . . .

• . . . unless task is interactive: maybe keep it active!

• Eventually force even high priority interactive tasks into expired

array (avoids starvation)

• When active array queues are empty, flip array pointers: O(1)

Multi-level Feedback Queuing
• Goal: Use static priorities and history to find the right

scheduling strategy for a task

• Scheduler uses task history to guess whether task is

interactive (IO-bound, should get CPU when

runnable) or CPU-bound

• Static priorities let developers influence the default

scheduling decisions

• Linux O(1) scheduler is an example of MLFQ

• Rule 1: If Priority(A) > Priority(B), schedule A

• Rule 2: A task that sleeps a lot is likely to be interactive

(and should receive a high priority)

• Rule 3: A task that uses its full time slice is probably

demoted in priority (but see Rule 2)

• Rule 4: No starvation (every task eventually runs!)

Linux’s “Completely Fair Scheduler” (CFS)

• The O(1) scheduler is fast, but hackish

• Heuristics (e.g., TASK_INTERACTIVE(p) and

EXPIRED_STARVING(rq)) are complex, seem gross,

have corner cases that are unfair

• CFS invented to provide a more “elegant” solution

• As we’ll see, Linux politics and personality conflicts also

played a role!

• For now, make these simplifying assumptions:

• There is only one CPU

• All tasks have the same priority

• There are always T tasks ready to run at any moment

• Basic idea in CFS: each task gets 1/T of the CPU’s resources

• CFS tries to model an “ideal CPU” that runs each task

simultaneously, but at 1/T the CPU’s clock speed

• Real CPU: Can only run a single task at once!

• CFS tracks how long each task has actually run; during a

scheduling decision (e.g., timer interrupt), picks the task

with lowest runtime so far

Linux’s “Completely Fair Scheduler” (CFS)

• Self-balancing: Insertions

and deletions ensure that

longest tree path is at

most twice the length of

any other path

• Guaranteed logarithmic

time: Insertions, deletions,

and searches all run in

O(log N) time

Red-black binary tree
• Associate each task with its

elapsed runtime (nanosecond

granularity)

• For each core, keep all

runnable tasks in a red-black

tree (insertion key is elapsed

runtime)

• Next task to run is just the

left-most task in tree!

CFS scheduler

CFS scheduler
23

7 37

5 15 42

t0

t1t2

t3

t4

t5

Scheduler picks this task

to run, removes it from

tree

• Associate each task with its

elapsed runtime (nanosecond

granularity)

• For each core, keep all

runnable tasks in a red-black

tree (insertion key is elapsed

runtime)

• Next task to run is just the

left-most task in tree!

23

7 37

15 42

t0

t1

5

t2

t3

t4

t5

Runs for 20

time units
25

t2

Timer interrupt fires,

scheduler runs
• Now, t no longer has the

smallest elapsed runtime

• So, scheduler reinserts t

into the tree and runs t !

2

2

0

Classic CFS Example

• Suppose there are two tasks:

• Video rendering application (CPU-intensive, long-running,

non-interactive)

• Word processor (interactive, only uses CPU for bursts)

• Both tasks start with an elapsed runtime of 0

• Video rendering task quickly accumulates runtime . . .

• . . . but word processor’s runtime stays low (task is mainly

blocked on IO)

• So, whenever word processor receives keyboard/mouse input

and wakes up, it will be the left-most task, and immediately

get scheduled

Task Priorities in CFS
/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU-bound task
* that remained on nice 0.
*
* The "10% effect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
static const int prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,

};

• CFS incorporates static priorities by scaling task’s elapsed runtime

• The end result is that:

• [nice=0] Virtual execution time equals physical execution time

• [nice<0] Virtual execution time less than physical execution time

• [nice>0] Virtual execution time greater than physical execution

time

• curr->vruntime is used as a task’s key in the RB tree

delta_exec = now – curr->exec_start;
delta_exec_weighed = delta_exec *

(NICE_0_LOAD / t->load.weight);
curr->vruntime += delta_exec_weighted;

Task Priorities in CFS

Summary: Linux CFS Scheduler
• Scheduler associates each task with elapsed runtime (not timeslice!)

• Nanosecond-granularity tracking instead of jiffy granularity

• Growth rate is modulated by task priority

• Scheduler maintains a per-core red-black tree

• Tasks inserted using elapsed runtimes as keys

• Left-most task is the task to run next!

• Scheduling operations take O(log n) time

• Is CFS actually better than the O(1) scheduler? Hmmm . . .

• Nanosecond-granularity elapsed runtimes seems better than

jiffy-granularity timeslices . . .

• . . . but O(1) seems faster than O(log n)?

• vruntime values do seem fairer than timeslices/goodness/etc . . .

• . . . but CFS has janky heuristics, just like the O(1) scheduler

(Ex: “Usually run left-most task, unless we want to run the most

recently preempted task to preserve cache locality”)

