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The Linux Boot Process

MBR: first sector on the storage device

Machine turned on; BIOS runs
 BIOS: Basic Input/Output System

» Stored in flash memory on
motherboard

e Determines which devices are
available, loads Master Boot
Record (MBR) of the bootable
storage device into RAM, jumps
to It

jump to it

Bootloader code: Find
active partition, read its
boot record into RAM,
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The Linux Boot Process

* The stage 2 bootloader loads the OS kernel into RAM and then
jumps to its first instruction
* The stage 2 bootloader code is larger than a single sector, so it can do
fancy things
* Ex: Present user with a GUI for selecting one of several kernels to load

* The kernel starts running and does low-level system initialization,
e.qg.,
e Setting up virtual memory hardware
* Installing interrupt handlers
* Loading device drivers
* Mounting the file system

 But how do user-level processes get started?
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Schedullng Which Process Should Run Now?

* Different processes have different behaviors

* |O-bound: A process mostly waits for 10s to
complete

« CPU-bound: A process issues few 10s, mostly does
computation

A process may change its behavior throughout its
execution—the scheduler must notice and adjust!
 Often a good idea to prioritize 10-bound processes

* |[f 1O comes from user (e.qg., keyboard, mouse), we
want interactive programs to feel responsive

« Network 10 may take tens or hundreds of
milliseconds (Comcast! Verizon!)

* 1O is typically slow, so start it early!
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|O Is Usually Slow: Start It Early!

T CPU cycle (1 register access): 0.3 ns

1 cache access:

Jser input:

2 cache access:

0.9 ns

200 ms—seconds




Mechanism versus Policy

* Policy: A high-level goal (e.g., “Prioritize |O-bound tasks”)

» Mechanism: The low-level primitives that are used to implement
a policy
e |deally, a single set of mechanisms are sufficiently generic to support
multiple policies
* Designing a minimal (but expressive) set of mechanisms is often tricky!

* Basic scheduling mechanisms
* Run queue: the set of threads that are ready to execute on the CPU
» Wait channel: a set of threads that are waiting for an event to occur
* Traps: opportunities for the OS to run and make a scheduling decision



First-Come, First-Serve (FCFS)

e Basic idea: Run a task until it's “finished”

* "Finished” is typically defined as vv||||ng|y
blocks” (e.g., due to an IO request)

 The blocked task is placed in the relevant -
wait queue

* When a task unblocks, it is placed at the
Blockin
end of a single FIFO ready queue operangn

» Advantages Engueue

* Enables parallel use of the CPU and 1O
devices

* Simple!

* Disadvantages o
» Seems unfair AF: A single CPU task can AR Q

monopolize the processor! ,
Wait queues

Scheduler (deque)
FIFO ready queue
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Response Times

*|deally, a scheduler would maximize both CPU
utilization and 10O device utilization

* 50, we should overlap computation from CPU-
bound jobs with 1O from 10-bound jobs
* Important consequence: When |O-bound jobs are
ready to use the CPU, we should prioritize those jobs

(i.e., minimize the response time needed to assign
them to a core)

» Otherwise, devices lay idle: a sadness



Ex: An 1O-bound disk grep, and a CPU-bound
crypto calculation on a single-core machine

B FCFS screws over
% |0-bound tasks
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Round-Robin

e Insight: After a task has run for a while, the
OS should forcibly preempt the task

e Time slice: the maximum amount of time that a
task can run before being taken off the CPU

« Timer interrupts provide a convenient
mechanism to enforce time slices

e If a task is forcibly preempted, it goes at the
end of the ready queue

* Voluntary blocking places the task in the
appropriate wait queue Blocking

 Advantages: operation
« CPU-bound tasks must share the processor
* No starvation!

» Subtlety: What's the timer period?

* Problem: What if some tasks are more ﬁ Q

important than other tasks? Wait queues

Scheduler (deque)
FIFO ready queue
- -

Timer
Enqueue




Priority-based Round-Robin Scfiedler

(priorit —deque) Priority queues

* Insight: Maintain several ready queues, one
for each priority level
e Each queueis FIFO

* Scheduler finds highest-priority non-empty
queue and runs the first task in that queue

» Advantage: Allows higher-priority tasks to
receive more CPU time

* Problem: Low-priority tasks may starve!

« Solution: aging (the longer a Emonty waits
without getting the CPU, the higher its priority

al

Enqueue

becomes)
« We'll discuss specific aging approaches next
lecture!
» Related problem: 10-bound tasks may suffer
if not given high priorities Blockin
* Problem: priority inversion operat 3

Wait queues



Priority Inversion

* Assume that a system has three tasks T1, T2, and T3

* Priority: T3 > T2 > T

* Imagine that T1 and T3 both use the same lock . . .

T3 Waiting on 10

Tries to acquire lock

T2 Waitingon O | Ready

Waiting on Iock‘ Waiting on lock

l

T3 Is the highest

oriority thread,
put it's blocked

T1 Waiting on |10

Ready

Ready

Time

oy T2 and T1!

Acqun"es lock



Priority Inheritance

A task which owns a lock inherits the highest priority
of any task that wishes to acquire the lock

T3 Waiting on 10 ol Waiting on lock 0
Tries to acquire lock Acquires lock
T2 Waiting on IO Ready Ready Ready
T watingon1o |
Time >

Acqun"es lock INherits T3 s priority Releases lock, drops priority



Shortest Time to Completion First (STCF)

» Goal: Minimize the amount of time that a runnable task has
to wait before it actually runs
* Define “completion time” as the length of a task’s next CPU burst

* Scheduler estimates each runnable task’s completion time (e.g.,
using the average length of the task’s recent CPU bursts)

* Scheduler keeps a single run queue sorted by estimated
completion time

 The front of the queue gets to run next

* STCF can be used with or without preemption

* Non-preemptive STCF: Once a task is running, it does not
relinquish the CPU until the CPU burst is finished

» Preemptive STCF: The currently-running task can be kicked oft
the CPU if a new task arrives with a shorter burst time




Shortest Time to Completion First (STCF)

Task Arrival time  Burst time
T0 0 7/
T1 2 4
T2 4 1
13 5 4
Non-preemptive T0 T2 T1 T3
0 /7 8 12 16



Shortest Time to Completion First (STCF)
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Burst time

STCF minimizes average
response time, but, unlike
RR, does not prevent
starvation! So, aging is
necessary.
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Context switches are pure overhead!

* Direct cost: CPU cycles devoted to bookkeeping
* Save and restore registers
* Invoke scheduler logic
* Switch address spaces from old process to new process

e Indirect costs

 L1/L2/L3 caches are polluted by kernel code and data;
new task must warm the caches with its code and data

* TLB entries become invalid



CPU Affinity

struct task struct{ //From the Linux kernel
volatile long state; //TASK RUNNING,
//TASK ZOMBIE,
//etc.
void *stack; //Kernel stack
int exit code;
struct mm_struct *mm;//Address space info
unsigned long cpus allowed;
//Bitmask representing which
//cpus the task can run on

s
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CPU Afflnlty
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CPU Affinity

4k

)
Socket0 _J | Lli-cache L1 d- J/;_l i-cache L1 d- 2,13/\\"§
L2 cache Cl's=_ L2cache | ”
\\'§§§\\Q =— — |
13 cache —= L= || Il
- \ l—/s:
7
|N\"l|.||ll\TE /ﬁ AN

I
Il RAM

Socket1 _J L1 i-cache L1 d-cache

L2 cache

L3 cache Il_ ______ﬁ




CPU Afflnlty
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CPU Afflnlty
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Your Machine iIs a Distributed System!

» Components are connected by a network
* Some components talk directly (e.q., core/reqisters)

 Others require multiple hops to communicate (e.q., core
and L3 cache; two cores on different sockets)

* More hops = more communication latency!

* |deally, the OS scheduler can:

 Avoid network latencies by co-locating related threads on
the same subset of cores (or at least on the same socket)

* Keep all of the cores utilized (to avoid convoy effects on a
small set of highly-utilized cores)



