
CS 161: Lecture 4

2/9/17

Scheduling

Where does the

first process

come from?

The Linux Boot Process

Machine turned on; BIOS runs

• BIOS: Basic Input/Output System

• Stored in flash memory on
motherboard

• Determines which devices are
available, loads Master Boot
Record (MBR) of the bootable
storage device into RAM, jumps
to it

MBR: first sector on the storage device

Bootloader code: Find

active partition, read its

boot record into RAM,

jump to it

Partition 1 metadata
Partition 2 metadata
Partition 3 metadata
Partition 4 metadata

446
bytes

64
bytes

Remaining Sectors GBs

Magic number: 0x55AA 2
bytes

The Linux Boot Process

• The stage 2 bootloader loads the OS kernel into RAM and then
jumps to its first instruction
• The stage 2 bootloader code is larger than a single sector, so it can do

fancy things

• Ex: Present user with a GUI for selecting one of several kernels to load

• The kernel starts running and does low-level system initialization,
e.g.,
• Setting up virtual memory hardware

• Installing interrupt handlers

• Loading device drivers

• Mounting the file system

• But how do user-level processes get started?

init
• The first process

that runs

• Responsible for
launching all other
processes via
fork()+exec(), e.g.,
• Desktop window

manager

• sshd

• Printer daemon

• Reaps all zombie
processes whose
parents did not
wait() on them

Or the equivalent

on your Unix-like

system, e.g.,

• systemd on many Linux
distros (Ubuntu, Debian,
Fedora)

• launchd on Mac OS

Daemon processes run in the

background, without being

directly controlled by a user via

a GUI

Scheduling: Which Process Should Run Now?
• Different processes have different behaviors

• IO-bound: A process mostly waits for IOs to
complete

• CPU-bound: A process issues few IOs, mostly does
computation

• A process may change its behavior throughout its
execution—the scheduler must notice and adjust!

• Often a good idea to prioritize IO-bound processes

• If IO comes from user (e.g., keyboard, mouse), we
want interactive programs to feel responsive

• Network IO may take tens or hundreds of
milliseconds (Comcast! Verizon!)

• IO is typically slow, so start it early!

L1 d-cacheL1 i-cache

L2 cache

L1 d-cacheL1 i-cache

L2 cache
Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache
Socket 1

RAM

Inside a Computer

L3 cache

IO Is Usually Slow: Start It Early!

1 CPU cycle (1 register access): 0.3 ns

L1 cache access: 0.9 ns

L2 cache access: 2.8 ns

L3 cache access: 12.9 ns

RAM access: 120 ns

SSD access: 50—150 µs

Disk access: 5—10 ms

Network RTT: 10—500 ms

User input: 200 ms—seconds

1 OMag

3 OMags

1—2 OMags

1—2 OMags

1+ OMags

1 OMag

Mechanism versus Policy

• Policy: A high-level goal (e.g., “Prioritize IO-bound tasks”)

• Mechanism: The low-level primitives that are used to implement
a policy
• Ideally, a single set of mechanisms are sufficiently generic to support

multiple policies

• Designing a minimal (but expressive) set of mechanisms is often tricky!

• Basic scheduling mechanisms
• Run queue: the set of threads that are ready to execute on the CPU

• Wait channel: a set of threads that are waiting for an event to occur

• Traps: opportunities for the OS to run and make a scheduling decision

First-Come, First-Serve (FCFS)

• Basic idea: Run a task until it’s “finished”
• “Finished” is typically defined as “willingly

blocks” (e.g., due to an IO request)
• The blocked task is placed in the relevant

wait queue
• When a task unblocks, it is placed at the

end of a single FIFO ready queue

• Advantages
• Enables parallel use of the CPU and IO

devices
• Simple!

• Disadvantages
• Seems unfair AF: A single CPU task can

monopolize the processor!

Scheduler (deque)
FIFO ready queue

Wait queues

Enqueue

Blocking
operation

“AF” means “As Fuzz”
For example:

THAT FUZZ
IS IRRITATING

AS F**K

Response Times
• Ideally, a scheduler would maximize both CPU
utilization and IO device utilization

•So, we should overlap computation from CPU-
bound jobs with IO from IO-bound jobs
• Important consequence: When IO-bound jobs are
ready to use the CPU, we should prioritize those jobs
(i.e., minimize the response time needed to assign
them to a core)
•Otherwise, devices lay idle: a sadness

Ex: An IO-bound disk grep, and a CPU-bound

crypto calculation on a single-core machine

Crypto

Grep

CPU

Waiting on CPU :-(Waiting
on IO

Time

FCFS screws over
IO-bound tasks

Waiting
on IO

Waiting
on IO

Crypto

Grep

CPU

Waiting
on IO

CPU CPU

Waiting
on IO

Waiting
on IO

Time

CPU and disk
at almost full
utilization!

Round-Robin
• Insight: After a task has run for a while, the

OS should forcibly preempt the task
• Time slice: the maximum amount of time that a

task can run before being taken off the CPU

• Timer interrupts provide a convenient
mechanism to enforce time slices

• If a task is forcibly preempted, it goes at the
end of the ready queue
• Voluntary blocking places the task in the

appropriate wait queue

• Advantages:
• CPU-bound tasks must share the processor

• No starvation!

• Subtlety: What’s the timer period?

• Problem: What if some tasks are more
important than other tasks?

Scheduler (deque)
FIFO ready queue

Wait queues

Enqueue

Blocking
operation

Timer

Priority-based Round-Robin
• Insight: Maintain several ready queues, one

for each priority level
• Each queue is FIFO

• Scheduler finds highest-priority non-empty
queue and runs the first task in that queue

• Advantage: Allows higher-priority tasks to
receive more CPU time

• Problem: Low-priority tasks may starve!
• Solution: aging (the longer a priority waits

without getting the CPU, the higher its priority
becomes)

• We’ll discuss specific aging approaches next
lecture!

• Related problem: IO-bound tasks may suffer
if not given high priorities

• Problem: priority inversion

(priority-deque) Priority queues

Wait queues

Enqueue

Blocking
operation

Scheduler

Timer

Priority Inversion
• Assume that a system has three tasks T1, T2, and T3

• Priority: T3 > T2 > T1

• Imagine that T1 and T3 both use the same lock . . .

Time

T1

T2

T3

Running

Acquires lock

RunningWaiting on IO

Tries to acquire lock

Waiting on IO Ready

Waiting on IO

Running Running

Ready Ready

Waiting on lock Waiting on lock

but it’s blocked

T3 is the highest
priority thread,

by T2 and T1!

Priority Inheritance
A task which owns a lock inherits the highest priority
of any task that wishes to acquire the lock

Time

T1

T2

T3

Running

Acquires lock

RunningWaiting on IO

Tries to acquire lock

Waiting on IO Ready

Waiting on IO Ready

Waiting on lock

Ready

Running

Inherits T3’s priority Releases lock, drops priority

Running

Ready

Acquires lock

Shortest Time to Completion First (STCF)

• Goal: Minimize the amount of time that a runnable task has
to wait before it actually runs
• Define “completion time” as the length of a task’s next CPU burst
• Scheduler estimates each runnable task’s completion time (e.g.,

using the average length of the task’s recent CPU bursts)
• Scheduler keeps a single run queue sorted by estimated

completion time
• The front of the queue gets to run next

• STCF can be used with or without preemption
• Non-preemptive STCF: Once a task is running, it does not

relinquish the CPU until the CPU burst is finished
• Preemptive STCF: The currently-running task can be kicked off

the CPU if a new task arrives with a shorter burst time

Shortest Time to Completion First (STCF)

T0 0 7

T1 2 4

T2 4 1

T3 5 4

Task Arrival time Burst time

Non-preemptive

0 7 8 12 16

T0 T2 T1 T3

Shortest Time to Completion First (STCF)

T0 0 7

T1 2 4

T2 4 1

T3 5 4

Task Arrival time Burst time

Preemptive

0 2 4 5 7 11 16

T0T0 T1 T2 T3T1

T1 shows up and has
shortest burst (4 vs 5)

T2 shows up and has
shortest burst (1 vs 2)

T2 done
T0: 5 T1: 2 T3: 4

STCF minimizes average

response time, but, unlike

RR, does not prevent

starvation! So, aging is

necessary.

Round-Robin
• Insight: After a task has run for a while, the

OS should forcibly preempt the task
• Time slice: the maximum amount of time that a

task can run before being taken off the CPU

• Timer interrupts provide a convenient
mechanism to enforce time slices

• If a task is forcibly preempted, it goes at the
end of the ready queue
• Voluntary blocking places the task in the

appropriate wait queue

• Advantages:
• CPU-bound tasks must share the processor

• No starvation!

• Subtlety: What’s the timer period?

• Problem: What if some tasks are more
important than other tasks?

Scheduler (deque)
FIFO ready queue

Wait queues

Enqueue

Blocking
operation

or
timer

•Direct cost: CPU cycles devoted to bookkeeping
• Save and restore registers

• Invoke scheduler logic

• Switch address spaces from old process to new process

Context switches are pure overhead!

• Indirect costs
• L1/L2/L3 caches are polluted by kernel code and data;

new task must warm the caches with its code and data

• TLB entries become invalid

CPU Affinity
struct task_struct{ //From the Linux kernel

volatile long state; //TASK_RUNNING,
//TASK_ZOMBIE,
//etc.

void *stack; //Kernel stack
int exit_code;
struct mm_struct *mm;//Address space info
unsigned long cpus_allowed;

//Bitmask representing which
//cpus the task can run on

...
};

CPU Affinity

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1

RAM

CPU Affinity

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1

RAM

CPU Affinity

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1

RAM

X

Expensive
cross-
socket
fetch!

CPU Affinity

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1

RAM

INVALIDATE

CPU Affinity

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1

RAM

INVALIDATE DONE

X
X

X
X
X

CPU Affinity

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 0

L1 d-cacheL1 i-cache

L2 cache

L3 cache

L1 d-cacheL1 i-cache

L2 cache

Socket 1

RAM

X
X

X
X
X

Your Machine is a Distributed System!
•Components are connected by a network

• Some components talk directly (e.g., core/registers)

• Others require multiple hops to communicate (e.g., core
and L3 cache; two cores on different sockets)

• More hops = more communication latency!

• Ideally, the OS scheduler can:
• Avoid network latencies by co-locating related threads on

the same subset of cores (or at least on the same socket)

• Keep all of the cores utilized (to avoid convoy effects on a
small set of highly-utilized cores)

