Scheduling

CS 167: Lecture 4
2/9/17

Where does the
first process
come from?

BRACE\OURSELVESS

STORY TIIEIS, m’
ETONING.

The Linux Boot Process

MBR: first sector on the storage device

Machine turned on; BIOS runs
 BIOS: Basic Input/Output System

» Stored in flash memory on
motherboard

e Determines which devices are
available, loads Master Boot
Record (MBR) of the bootable
storage device into RAM, jumps
to It

jump to it

Bootloader code: Find
active partition, read its
boot record into RAM,

Partition T metadata

Partition 2 metac

dl

d

Partition 3 metad

d

Ld

Partition 4 metac

at

d

Magic number: Ox55AA

Remaining Sectors

—_—

_

446

bytes

64
bytes

= 2

bytes
— GBs

The Linux Boot Process

* The stage 2 bootloader loads the OS kernel into RAM and then
jumps to its first instruction
* The stage 2 bootloader code is larger than a single sector, so it can do
fancy things
* Ex: Present user with a GUI for selecting one of several kernels to load

* The kernel starts running and does low-level system initialization,
e.qg.,
e Setting up virtual memory hardware
* Installing interrupt handlers
* Loading device drivers
* Mounting the file system

 But how do user-level processes get started?

TSN AN LW e T
/ Or the equwalent = NIt
. on your Unix-like
system e.q., |
* systemd on many Lmux

distros (Ubuntu, Debian,
Fedora)

¥ * launchd on Mac OS

- * The first process
¥ that runs
'° Responsible for

aunching all other
Drocesses via

fork()+exec()
e N ANNGE R * Desktop window
o manager
Daemon processes run in the . sshdg

background, without being
directly controlled by a user via .
L » Reaps all zombie

|
a GU orocesses whose

=5 did
1 LAM@YOUR GO‘D N / szﬁ%“én them

e Printer daemon

Ahd—

Schedullng Which Process Should Run Now?

* Different processes have different behaviors

* |O-bound: A process mostly waits for 10s to
complete

« CPU-bound: A process issues few 10s, mostly does
computation

A process may change its behavior throughout its
execution—the scheduler must notice and adjust!
 Often a good idea to prioritize 10-bound processes

* |[f 1O comes from user (e.qg., keyboard, mouse), we
want interactive programs to feel responsive

« Network 10 may take tens or hundreds of
milliseconds (Comcast! Verizon!)

* 1O is typically slow, so start it early!

Socket 0 —

Inside a Computer

.

.

L1 i-cache || L1 d-cache

L1 i-cache

L1 d-cache

L2 cache

L2 cache

Socket 1 —

L3 cache

.

.

L1 i-cache || L1 d-cache

L1 i-cache

L1 d-cache

L2 cache

L2 cache

L3 cache

RAM

|O Is Usually Slow: Start It Early!

T CPU cycle (1 register access): 0.3 ns

1 cache access:

Jser input:

2 cache access:

0.9 ns

200 ms—seconds

Mechanism versus Policy

* Policy: A high-level goal (e.g., “Prioritize |O-bound tasks”)

» Mechanism: The low-level primitives that are used to implement
a policy
e |deally, a single set of mechanisms are sufficiently generic to support
multiple policies
* Designing a minimal (but expressive) set of mechanisms is often tricky!

* Basic scheduling mechanisms
* Run queue: the set of threads that are ready to execute on the CPU
» Wait channel: a set of threads that are waiting for an event to occur
* Traps: opportunities for the OS to run and make a scheduling decision

First-Come, First-Serve (FCFS)

e Basic idea: Run a task until it's “finished”

* "Finished” is typically defined as vv||||ng|y
blocks” (e.g., due to an IO request)

 The blocked task is placed in the relevant -
wait queue

* When a task unblocks, it is placed at the
Blockin
end of a single FIFO ready queue operangn

» Advantages Engueue

* Enables parallel use of the CPU and 1O
devices

* Simple!

* Disadvantages o
» Seems unfair AF: A single CPU task can AR Q

monopolize the processor! ,
Wait queues

Scheduler (deque)
FIFO ready queue

means ‘A
FOr exam

P AT re
'.‘,.- w:*:‘\""

M

v
N
<}

Response Times

*|deally, a scheduler would maximize both CPU
utilization and 10O device utilization

* 50, we should overlap computation from CPU-
bound jobs with 1O from 10-bound jobs
* Important consequence: When |O-bound jobs are
ready to use the CPU, we should prioritize those jobs

(i.e., minimize the response time needed to assign
them to a core)

» Otherwise, devices lay idle: a sadness

Ex: An 1O-bound disk grep, and a CPU-bound
crypto calculation on a single-core machine

B FCFS screws over
% |0-bound tasks

Crypto CPU
Grep . Wailing | Waiting on CPU :~(I Waiting Waiting l
Time
qscm cru B ccu B cru o e el
Waiting Waiting Waiting at almost tull
Grep on 10 on |10 on 10 utilization!

>

Time

Round-Robin

e Insight: After a task has run for a while, the
OS should forcibly preempt the task

e Time slice: the maximum amount of time that a
task can run before being taken off the CPU

« Timer interrupts provide a convenient
mechanism to enforce time slices

e If a task is forcibly preempted, it goes at the
end of the ready queue

* Voluntary blocking places the task in the
appropriate wait queue Blocking

 Advantages: operation
« CPU-bound tasks must share the processor
* No starvation!

» Subtlety: What's the timer period?

* Problem: What if some tasks are more ﬁ Q

important than other tasks? Wait queues

Scheduler (deque)
FIFO ready queue
- -

Timer
Enqueue

Priority-based Round-Robin Scfiedler

(priorit —deque) Priority queues

* Insight: Maintain several ready queues, one
for each priority level
e Each queueis FIFO

* Scheduler finds highest-priority non-empty
queue and runs the first task in that queue

» Advantage: Allows higher-priority tasks to
receive more CPU time

* Problem: Low-priority tasks may starve!

« Solution: aging (the longer a Emonty waits
without getting the CPU, the higher its priority

al

Enqueue

becomes)
« We'll discuss specific aging approaches next
lecture!
» Related problem: 10-bound tasks may suffer
if not given high priorities Blockin
* Problem: priority inversion operat 3

Wait queues

Priority Inversion

* Assume that a system has three tasks T1, T2, and T3

* Priority: T3 > T2 > T

* Imagine that T1 and T3 both use the same lock . . .

T3 Waiting on 10

Tries to acquire lock

T2 Waitingon O | Ready

Waiting on Iock‘ Waiting on lock

l

T3 Is the highest

oriority thread,
put it's blocked

T1 Waiting on |10

Ready

Ready

Time

oy T2 and T1!

Acqun"es lock

Priority Inheritance

A task which owns a lock inherits the highest priority
of any task that wishes to acquire the lock

T3 Waiting on 10 ol Waiting on lock 0
Tries to acquire lock Acquires lock
T2 Waiting on IO Ready Ready Ready
T watingon1o |
Time >

Acqun"es lock INherits T3 s priority Releases lock, drops priority

Shortest Time to Completion First (STCF)

» Goal: Minimize the amount of time that a runnable task has
to wait before it actually runs
* Define “completion time” as the length of a task’s next CPU burst

* Scheduler estimates each runnable task’s completion time (e.g.,
using the average length of the task’s recent CPU bursts)

* Scheduler keeps a single run queue sorted by estimated
completion time

 The front of the queue gets to run next

* STCF can be used with or without preemption

* Non-preemptive STCF: Once a task is running, it does not
relinquish the CPU until the CPU burst is finished

» Preemptive STCF: The currently-running task can be kicked oft
the CPU if a new task arrives with a shorter burst time

Shortest Time to Completion First (STCF)

Task Arrival time Burst time
T0 0 7/
T1 2 4
T2 4 1
13 5 4
Non-preemptive T0 T2 T1 T3
0 /7 8 12 16

Shortest Time to Completion First (STCF)

Task
10

T1
T2
T3

T1 shows up and has
shortest burst (4 vs 5)

Arrival time

0

2
4
5

/
4
1
4

T2 shows up and has
shortest burst (1 vs 2)

T2 done
TO:5 T2 T3:4

Burst time

STCF minimizes average
response time, but, unlike
RR, does not prevent
starvation! So, aging is
necessary.

Preemptive| TO

T1

T2 T1 T3

T

0 2

4 §5 /

11 16

Context switches are pure overhead!

* Direct cost: CPU cycles devoted to bookkeeping
* Save and restore registers
* Invoke scheduler logic
* Switch address spaces from old process to new process

e Indirect costs

 L1/L2/L3 caches are polluted by kernel code and data;
new task must warm the caches with its code and data

* TLB entries become invalid

CPU Affinity

struct task struct{ //From the Linux kernel
volatile long state; //TASK RUNNING,
//TASK ZOMBIE,
//etc.
void *stack; //Kernel stack
int exit code;
struct mm_struct *mm;//Address space info
unsigned long cpus allowed;
//Bitmask representing which
//cpus the task can run on

s

CPU Afflnlty

1

Socket0 _J | Lli-cache || L1 d-cache L1 i-cache L1 d-

L2 cache L2 cache

L3 cache |

Socket 1 _J L1 i-cache L1 d-cache L1 i-cache L1 d-cache

L2 cache L2 cache

L3 cache -

CPU Afflnlty

i

Socket0 _J L1 i-cache L1 d- L1 i-cache L1 d-

L2 cache L2 cache

B 7

Socket 1 _J L1 i-cache L1 d-cache L1 i-cache L1 d-cache

L2 cache L2 cache

L3 cache —

SchedU/er

Socket1

Socket0 —

i

CPU Afflnlty

L1 i-cache L1 d- L1i-cache L1 d-

L2 cache

L2 cache

L3 cache

rnoves72?h)

—

Expensive

1

Cross-
socket
fetch!

L1 i-cache L1 d-cache L1 i-cache L1 d-

L2 cache

L2 cache

L3 cache

LI RAM

]

CPU Affinity

4k

)
Socket0 _J | Lli-cache L1 d- J/;_l i-cache L1 d- 2,13/\\"§
L2 cache Cl's=_ L2cache | ”
\\'§§§\\Q =— — |
13 cache —= L= || Il
- \ l—/s:
7
|N\"l|.||ll\TE /ﬁ AN

I
Il RAM

Socket1 _J L1 i-cache L1 d-cache

L2 cache

L3 cache Il_ ______ﬁ

CPU Afflnlty

4k

Socket0 __ L1 i-cache L1 d- L1 i-cache L1 d- "

L2 cache / =2 cache

s
= Ll
t\ =

’T

RAM

Socket 1 __ L1 i-cache L1 d-cache L1 i-

L2 cache

L3 cache

CPU Afflnlty

Socket0 _J L1 i-cache L1 d- L1 i-cache L1 d-

L2 cache L2 cache

L3 cache |

.| RAM

Socket 1 _J | Lli-cache L1 d-cache L1 i-cache L1 d-

L2 cache L2 cache

L3 cache -

Your Machine iIs a Distributed System!

» Components are connected by a network
* Some components talk directly (e.q., core/reqisters)

 Others require multiple hops to communicate (e.q., core
and L3 cache; two cores on different sockets)

* More hops = more communication latency!

* |deally, the OS scheduler can:

 Avoid network latencies by co-locating related threads on
the same subset of cores (or at least on the same socket)

* Keep all of the cores utilized (to avoid convoy effects on a
small set of highly-utilized cores)

