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Virtual Memory



Assigning RAM to Processes
• Each process has an address space

• The address space contains the process’s code, data, and stack

• Somehow, the hardware and the OS must map chunks of the 
virtual address space to physical RAM
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Challenges of Managing RAM
• Oversubscription: A machine has a finite amount 

of physical RAM, but multiple processes must use 
that RAM—aggregate size of all address spaces 
may be larger than the amount of physical RAM! 

• Isolation: The OS must prevent different, 
untrusting processes from tampering with each 
other’s address spaces

• Constrained sharing: In certain cases, processes 
may want to share RAM pages, e.g.,

• Shared libraries like libc

• Shared memory pages to facilitate IPC
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Batch Processing
• In olden times, only one process could run at any given moment

• The entire address space was moved into and out of memory at once

• Swap space: the persistent storage that held address spaces not in RAM

• Hardware prevented user code from accessing OS memory (which 
was assumed to live in a certain region of physical RAM)
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Batch Processing
• Advantages

• Simple

• Supports process isolation

• Cheaper than two computers LOLOL

• Disadvantages
• An address space could be no larger than the physical RAM . . .

• . . . but several small address spaces could not be co-located in RAM

• Context switching is slow: an entire address space must be swapped 
out, and an entire address space must be swapped in

• No way for two processes to share RAM



• MMU: A piece of hardware (only configurable by privileged 
code) that translates virtual addresses to physical addresses
• Virtual addresses are the addresses that a process generates

• Physical addresses are what a processor presents to the actual RAM

//Code in process
sub t1, a0, a1
add t0, t1, t2
lw t4, 16(t0)
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VirtAddr: 0x790d4504

PhysAddr: 0x4d0895cb0

Memory-mapping Units (MMUs)



Memory-mapping Units (MMUs)
• Using indirection via the MMU, 

we want to allow:
• Over-subscription of physical RAM: 

at any given time, some/none/all of 
a virtual address space can be 
mapped into physical RAM

• Virtual address spaces to be bigger 
than physical RAM (and vice versa)

• Faster context switches: after a 
context switch to process P, we can 
lazily bring in P’s non-resident 
memory regions, as P tries to 
access them
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Memory-mapping Units (MMUs)

• Protection: the hardware maps the 
same virtual address in two different 
processes to different physical 
addresses

• Sharing: hardware maps a single 
region of physical RAM into 
multiple virtual address spaces

• Using indirection via the MMU, we want to allow:
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Initial Attempt: Base+Bounds
• Associate each address space with 

base+bound registers

• Base register: Contains the physical 
address where the address space starts 
(or “invalid” if the address space is not 
mapped into physical memory)

• Bound register: Contains the length of 
the address space in both virtual and 
physical memory

• Memory translation uses this formula:
if(virt_addr > bounds){

error();
}else{

phys_addr = base + virt_addr;
}
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Base+Bounds: Pros and Cons
• Advantages

• Allows each virtual address space to be a different size

• Allows a virtual address space to be mapped into any physical RAM 
space of sufficient size

• Isolation is straightforward: Just ensure that different address spaces 
don’t have overlapping base+bounds!

• Disadvantages
• Wastes physical memory if the virtual address space is not completely full 

(which is often the case due to a hole between the stack and the heap)

• Tricky to share physical RAM between two virtual address spaces: can 
only do so by having the bottom of one space overlap with the top of 
another

• Have to mark the entire address space as readable+writable+executable: 
makes it hard to catch bugs and stop attacks



Segmentation

•A single virtual address space has multiple logical 
segments
• Code: read but non-write, executable, constant size

• Static data: read/write, non-executable, constant size

• Heap: read/write, non-executable†, dynamic size

• Stack: read/write, non-executable, dynamic size

•Associate each *segment* with 
base+bound+protection flags (read/write/execute)
• At any given moment, some/all/none of the segments 

can be mapped into physical RAM

†Unless a process is performing just-in-time (JIT) compilation!



Advantages with respect 
to vanilla base+bounds:

• Segmentation allows 
the OS to explicitly 
model sparse address 
spaces which contain 
unused regions

• Segmentation also 
allows the OS to 
associate different 
protections 
(read/write/execute) 
with different regions
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• Address translation uses this formula:

• How do we define find_seg(virt_addr) and offset(virt_addr)?

• Partition approach: Use the high-order bits of virt_addr to select the 
segment, and the low-order bits to define the offset

• Explicit approach: Use virt_addr as the offset, but force instructions to 
explicitly define which segments should be used, e.g., on x86:

mov 0x42, %ds:16(%eax) //Move the constant 0x42 to

//offset %eax+16 in segment %ds

seg = find_seg(virt_addr);
if(offset(virt_addr) > seg.bounds){

error();
}else{

phys_addr = seg.base + offset(virt_addr);
}

Segmentation



//Suppose find_seg(virt_addr) and offset(virt_addr) are implicitly 
//determined by the instruction type. This scheme is used by x86:
//  cs: code segment (used by control flow instructions, e.g., branches)
//  ss: stack segment (used by push, pop)
//  ds: data segment (used by mov)
//Code directly assigns to ss and ds segment registers using
//instructions like mov; cs changed via branch instructions like jmp

mov %eax, 4(%ebx) //*(%ebx+4) = %eax
//   offset(virt_addr) = virt_addr = %ebx+4
//   segment = ds

push %eax //*(--%esp) = %eax
//   offset(virt_addr) = virt_addr = --%esp
//   segment = ss

jmp 0x64  //%eip = %eip + bytes_in_instr(“jmp”) + 0x64  <---|
//   offset(virt_addr) = virt_addr = -------------|
//   segment = cs



x86: Real Mode Addressing in the 8086
• Intel’s 8086 chip (1978) had 16-bit 

registers but a 20-pin memory bus

• Segments allowed code to access 
2^20 bytes of physical RAM

• Real mode provided no support for 
privilege levels
• All code can access any part of 

memory

• All code can execute any instruction

• Even modern x86 chips start 
execution in real mode: backwards 
compatibility!

16 bits

Segment base addr >> 4%cs

Segment base addr >> 4%ds

Segment base addr >> 4%ss

//Hardware forces all segments to
//be 64 KB long. Given a particular 
//segment, the hardware presents
//the following address to the 
//memory hardware:
//    (seg.base << 4) + virt_addr



x86: Protected Mode in the 80286
• The 80286 (which had 16-bit registers) used segment registers like %cs to index into 

segment descriptor tables

• Local Descriptor Table (LDT): Describes private, per-process segments; LDT address is 
pointed to by %ldtr; OS changes LDT during a context switch to a new process

• Global Descriptor Table (GDT): Describes segments available to all processes (e.g., kernel 
segments); GDT address is pointed to by %gdtr; not changed on a context switch

• 80286 also added support for privilege levels and memory protections

Index (13 bits)

Table indicator
0: GDT

1:  LDT Current privilege level
(2 bits to represent

16-bit segment register %cs

rings 0-3)

%ldtr

%gdtr

Physical RAM

Base Bounds

24 bits 16 bits

phys_addr = seg.base + virt_addr
//2^24 bytes of addressable mem

. . .
R? W? X? Minimum privilege level 

needed to access this segment?



Segmentation: Advantages
• Shared advantages with vanilla base+bounds:

• Address space metadata is small: an address spaces has few 
segments, and segment descriptors are just a few bytes each

• Address space isolation is easy: don't allow the segments of the two 
address spaces to overlap!

• A segment can be mapped into any sufficiently-large region of 
physical RAM

• Advantages over vanilla base+bounds
• Can share physical memory between two address spaces at the 

segment granularity, instead of via horrible overlapping tricks

• Wastes less memory: don't have to map the hole between the stack 
and the heap into physical RAM

• Enables segment-granularity memory protections (read, write, 
execute, privilege mode)



Segmentation: Disadvantages
• Segments may be large!

• If a process wants to access just one byte in a segment, the entire 
segment must be mapped into physical RAM

• If a segment is not fully utilized, there is no way to deallocate the unused 
space—the entire region must be treated as “live”

• When mapping a segment into physical RAM, finding an 
appropriately-sized free region in physical RAM is irritating, since 
segments are variable-sized
• First-fit, worst-fit, best-fit all have icky trade-offs between the time 

needed to find a free space, and the amount of wasted RAM

• Explicit segment management, e.g., mov 0x42, %ds:16(%eax), 
is tedious



Paging

MMU

Virtual Page Number Offset

Virtual address

V bits

Physical Page Number Offset

Physical address

P bits

• Divide the address space into fixed-sized 
chunks called pages
• No need for bounds entries, since the page 

size is constant

• Each page aligned to a page-size boundary

• A “segment” is now a collection of pages

• Make each page small (e.g., 4 KB)
• Good: Can allocate virtual address space 

with fine granularity

• Good: Only need to bring the specific 
pages that process needs into physical RAM

• Bad: Bookkeeping overhead increases, since 
there are many pages!



Paging

MMU

Virtual Page Number Offset

Virtual address

V bits

Physical Page Number Offset

Physical address

P bits

• Divide the address space into fixed-sized 
chunks called pages
• No need for bounds entries, since the page 

size is constant

• Each page aligned to a page-size boundary

• A “segment” is now a collection of pages

• Make each page small (e.g., 4 KB)
• Good: Can allocate virtual address space 

with fine granularity

• Good: Only need to bring the specific 
pages that process needs into physical RAM

• Bad: Bookkeeping overhead increases, since 
there are many pages!

Virtual address
space of 2^V pages

Physical RAM
with 2^P pages

MMU



Single-level Page Table
• Suppose that we have 32-bit virtual 

addresses and 4 KB pages
• Offset: Low-order 12 bits in virtual address
• Virtual page number: High-order 20 bits

• Associate each process with a mapping 
table from virtual page numbers to 
physical page numbers
• The table will have 2^20 ≈ 1 million 

entries!
• OS registers the mappings with the MMU

Virtual page number 

(20 bits)
Offset 

(12 bits)

32-bit virtual address

Physical page number

(P bits)
Offset 

(12 bits)

Physical page number

(P bits)
Physical page number

(P bits)

Physical page number

(P bits)

...

Page table

P+12 bit physical RAM address



Two-level Page Table
• Most address spaces are sparse: 

not every page in the address 
space is actually used
• Single-level page table requires us 

to have an entry for each page 
(null entries for unused pages, 
and real entries for used pages)

• With a two-level page table, we 
don’t have to materialize 
second-level tables for which 
there are no used pages
• There may be null entries            

in both the first and             
second levels
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Virtual page 
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Directory entry

...
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Page directory

Physical page number
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Offset 
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P+12 bit physical RAM address



Virtual directory 

number (4 bits)
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12-bit virtual address

Virtual page 

number (4 bits)
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Two-level Page Table:
Simple Example

Questions:
• What is the page size?

• What are the physical addresses for 
these virtual addresses?

VA 0x133 VA 0x234

VA 0xE23 VA 0xE45

VA 0xEEE VA 0xFEE
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Two-level Page Table:
Simple Example

Questions:
• What is the size of the virtual 

address space?

• What is the maximum amount of 
physical memory that an address 
space can use?

• How many pages are in use?



Generating Code On The Fly

• A process’s code segment is read-only and static size . . .

• . . . but sometimes a process needs to generate code dynamically
• Ex: The just-in-time (JIT) compiler for a dynamic language like JavaScript 

will dynamically translate JavaScript statements into machine code; 
executing the new machine code will be faster than interpretation

• Ex: Dynamic binary translation tools perform machine-code-to-
machine-code translation to inject diagnostics, security checks, etc.

• Dynamic code generation typically places the new code in heap 
pages which are marked as executable



#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>

int main(int argc, char *argv[]){
//x86 code for:
//   mov eax, 0
//   ret
unsigned char code[] = {0xb8, 0x00, 0x00,

0 0x00, 0x00, 0xc3};

if(argc != 2){
fprintf(stderr, "Usage: jit <integer>\n");
return 1;

}

//Overwrite immediate value "0" in mov instruction
//with the user's value.  Now our code will be:
//   mov eax, <user's value>
//   ret
int num = atoi(argv[1]);
memcpy(&code[1], &num, 4);

//Allocate writable+executable memory.
void *mem = mmap(NULL, sizeof(code),

PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, code, sizeof(code));

//The function will return the user's value.
int (*func)() = mem;
return func();

}


