
CS 161: Lecture 6

2/16/17

Virtual Memory

Assigning RAM to Processes
• Each process has an address space

• The address space contains the process’s code, data, and stack

• Somehow, the hardware and the OS must map chunks of the
virtual address space to physical RAM

Byte 0

Byte P

Physical
RAM

Virtual address
space

Byte 0

Byte V

Code

Static data

Heap

Stack

Mapping
policy

Challenges of Managing RAM
• Oversubscription: A machine has a finite amount

of physical RAM, but multiple processes must use
that RAM—aggregate size of all address spaces
may be larger than the amount of physical RAM!

• Isolation: The OS must prevent different,
untrusting processes from tampering with each
other’s address spaces

• Constrained sharing: In certain cases, processes
may want to share RAM pages, e.g.,

• Shared libraries like libc

• Shared memory pages to facilitate IPC

THE OLDEN

DAYS

Batch Processing
• In olden times, only one process could run at any given moment

• The entire address space was moved into and out of memory at once

• Swap space: the persistent storage that held address spaces not in RAM

• Hardware prevented user code from accessing OS memory (which
was assumed to live in a certain region of physical RAM)

Kernel

RAM

Process

1

Swap space

Process

2 Process

3

Kernel

RAM

Unused

Swap space

Process

3 Process

2

Process

1

Batch Processing
• Advantages

• Simple

• Supports process isolation

• Cheaper than two computers LOLOL

• Disadvantages
• An address space could be no larger than the physical RAM . . .

• . . . but several small address spaces could not be co-located in RAM

• Context switching is slow: an entire address space must be swapped
out, and an entire address space must be swapped in

• No way for two processes to share RAM

• MMU: A piece of hardware (only configurable by privileged
code) that translates virtual addresses to physical addresses
• Virtual addresses are the addresses that a process generates

• Physical addresses are what a processor presents to the actual RAM

//Code in process
sub t1, a0, a1
add t0, t1, t2
lw t4, 16(t0)

MMU

Physical
RAM

VirtAddr: 0x790d4504

PhysAddr: 0x4d0895cb0

Memory-mapping Units (MMUs)

Memory-mapping Units (MMUs)
• Using indirection via the MMU,

we want to allow:
• Over-subscription of physical RAM:

at any given time, some/none/all of
a virtual address space can be
mapped into physical RAM

• Virtual address spaces to be bigger
than physical RAM (and vice versa)

• Faster context switches: after a
context switch to process P, we can
lazily bring in P’s non-resident
memory regions, as P tries to
access them

Virtual address
space 1

Virtual address
space 2

Physical RAM

Swap device

Memory-mapping Units (MMUs)

• Protection: the hardware maps the
same virtual address in two different
processes to different physical
addresses

• Sharing: hardware maps a single
region of physical RAM into
multiple virtual address spaces

• Using indirection via the MMU, we want to allow:

Physical RAM

Virtual address
space 1

Virtual address
space 2

Physical RAM

Virtual address
space 1

Virtual address
space 2

Initial Attempt: Base+Bounds
• Associate each address space with

base+bound registers

• Base register: Contains the physical
address where the address space starts
(or “invalid” if the address space is not
mapped into physical memory)

• Bound register: Contains the length of
the address space in both virtual and
physical memory

• Memory translation uses this formula:
if(virt_addr > bounds){

error();
}else{

phys_addr = base + virt_addr;
}

Virtual address
space 1

Virtual address
space 2

Virtual address
space 3

Physical
RAM

0

hi

a

b
c

d

Base Bounds

a b-a

c d-c

f-eINVALID

Base+Bounds: Pros and Cons
• Advantages

• Allows each virtual address space to be a different size

• Allows a virtual address space to be mapped into any physical RAM
space of sufficient size

• Isolation is straightforward: Just ensure that different address spaces
don’t have overlapping base+bounds!

• Disadvantages
• Wastes physical memory if the virtual address space is not completely full

(which is often the case due to a hole between the stack and the heap)

• Tricky to share physical RAM between two virtual address spaces: can
only do so by having the bottom of one space overlap with the top of
another

• Have to mark the entire address space as readable+writable+executable:
makes it hard to catch bugs and stop attacks

Segmentation

•A single virtual address space has multiple logical
segments
• Code: read but non-write, executable, constant size

• Static data: read/write, non-executable, constant size

• Heap: read/write, non-executable†, dynamic size

• Stack: read/write, non-executable, dynamic size

•Associate each *segment* with
base+bound+protection flags (read/write/execute)
• At any given moment, some/all/none of the segments

can be mapped into physical RAM

†Unless a process is performing just-in-time (JIT) compilation!

Advantages with respect
to vanilla base+bounds:

• Segmentation allows
the OS to explicitly
model sparse address
spaces which contain
unused regions

• Segmentation also
allows the OS to
associate different
protections
(read/write/execute)
with different regions

Virtual address
space

Code

Static data

Heap

Stack

Physical RAM
hi

0

g

h

a

b

Stack

Code

a b-a rx

g h-g rw

d-c rw

f-e rw

Base Bounds Perms

Segmentation

• Address translation uses this formula:

• How do we define find_seg(virt_addr) and offset(virt_addr)?

• Partition approach: Use the high-order bits of virt_addr to select the
segment, and the low-order bits to define the offset

• Explicit approach: Use virt_addr as the offset, but force instructions to
explicitly define which segments should be used, e.g., on x86:

mov 0x42, %ds:16(%eax) //Move the constant 0x42 to

//offset %eax+16 in segment %ds

seg = find_seg(virt_addr);
if(offset(virt_addr) > seg.bounds){

error();
}else{

phys_addr = seg.base + offset(virt_addr);
}

Segmentation

//Suppose find_seg(virt_addr) and offset(virt_addr) are implicitly
//determined by the instruction type. This scheme is used by x86:
// cs: code segment (used by control flow instructions, e.g., branches)
// ss: stack segment (used by push, pop)
// ds: data segment (used by mov)
//Code directly assigns to ss and ds segment registers using
//instructions like mov; cs changed via branch instructions like jmp

mov %eax, 4(%ebx) //*(%ebx+4) = %eax
// offset(virt_addr) = virt_addr = %ebx+4
// segment = ds

push %eax //*(--%esp) = %eax
// offset(virt_addr) = virt_addr = --%esp
// segment = ss

jmp 0x64 //%eip = %eip + bytes_in_instr(“jmp”) + 0x64 <---|
// offset(virt_addr) = virt_addr = -------------|
// segment = cs

x86: Real Mode Addressing in the 8086
• Intel’s 8086 chip (1978) had 16-bit

registers but a 20-pin memory bus

• Segments allowed code to access
2^20 bytes of physical RAM

• Real mode provided no support for
privilege levels
• All code can access any part of

memory

• All code can execute any instruction

• Even modern x86 chips start
execution in real mode: backwards
compatibility!

16 bits

Segment base addr >> 4%cs

Segment base addr >> 4%ds

Segment base addr >> 4%ss

//Hardware forces all segments to
//be 64 KB long. Given a particular
//segment, the hardware presents
//the following address to the
//memory hardware:
// (seg.base << 4) + virt_addr

x86: Protected Mode in the 80286
• The 80286 (which had 16-bit registers) used segment registers like %cs to index into

segment descriptor tables

• Local Descriptor Table (LDT): Describes private, per-process segments; LDT address is
pointed to by %ldtr; OS changes LDT during a context switch to a new process

• Global Descriptor Table (GDT): Describes segments available to all processes (e.g., kernel
segments); GDT address is pointed to by %gdtr; not changed on a context switch

• 80286 also added support for privilege levels and memory protections

Index (13 bits)

Table indicator
0: GDT

1: LDT Current privilege level
(2 bits to represent

16-bit segment register %cs

rings 0-3)

%ldtr

%gdtr

Physical RAM

Base Bounds

24 bits 16 bits

phys_addr = seg.base + virt_addr
//2^24 bytes of addressable mem

. . .
R? W? X? Minimum privilege level

needed to access this segment?

Segmentation: Advantages
• Shared advantages with vanilla base+bounds:

• Address space metadata is small: an address spaces has few
segments, and segment descriptors are just a few bytes each

• Address space isolation is easy: don't allow the segments of the two
address spaces to overlap!

• A segment can be mapped into any sufficiently-large region of
physical RAM

• Advantages over vanilla base+bounds
• Can share physical memory between two address spaces at the

segment granularity, instead of via horrible overlapping tricks

• Wastes less memory: don't have to map the hole between the stack
and the heap into physical RAM

• Enables segment-granularity memory protections (read, write,
execute, privilege mode)

Segmentation: Disadvantages
• Segments may be large!

• If a process wants to access just one byte in a segment, the entire
segment must be mapped into physical RAM

• If a segment is not fully utilized, there is no way to deallocate the unused
space—the entire region must be treated as “live”

• When mapping a segment into physical RAM, finding an
appropriately-sized free region in physical RAM is irritating, since
segments are variable-sized
• First-fit, worst-fit, best-fit all have icky trade-offs between the time

needed to find a free space, and the amount of wasted RAM

• Explicit segment management, e.g., mov 0x42, %ds:16(%eax),
is tedious

Paging

MMU

Virtual Page Number Offset

Virtual address

V bits

Physical Page Number Offset

Physical address

P bits

• Divide the address space into fixed-sized
chunks called pages
• No need for bounds entries, since the page

size is constant

• Each page aligned to a page-size boundary

• A “segment” is now a collection of pages

• Make each page small (e.g., 4 KB)
• Good: Can allocate virtual address space

with fine granularity

• Good: Only need to bring the specific
pages that process needs into physical RAM

• Bad: Bookkeeping overhead increases, since
there are many pages!

Paging

MMU

Virtual Page Number Offset

Virtual address

V bits

Physical Page Number Offset

Physical address

P bits

• Divide the address space into fixed-sized
chunks called pages
• No need for bounds entries, since the page

size is constant

• Each page aligned to a page-size boundary

• A “segment” is now a collection of pages

• Make each page small (e.g., 4 KB)
• Good: Can allocate virtual address space

with fine granularity

• Good: Only need to bring the specific
pages that process needs into physical RAM

• Bad: Bookkeeping overhead increases, since
there are many pages!

Virtual address
space of 2^V pages

Physical RAM
with 2^P pages

MMU

Single-level Page Table
• Suppose that we have 32-bit virtual

addresses and 4 KB pages
• Offset: Low-order 12 bits in virtual address
• Virtual page number: High-order 20 bits

• Associate each process with a mapping
table from virtual page numbers to
physical page numbers
• The table will have 2^20 ≈ 1 million

entries!
• OS registers the mappings with the MMU

Virtual page number

(20 bits)
Offset

(12 bits)

32-bit virtual address

Physical page number

(P bits)
Offset

(12 bits)

Physical page number

(P bits)
Physical page number

(P bits)

Physical page number

(P bits)

...

Page table

P+12 bit physical RAM address

Two-level Page Table
• Most address spaces are sparse:

not every page in the address
space is actually used
• Single-level page table requires us

to have an entry for each page
(null entries for unused pages,
and real entries for used pages)

• With a two-level page table, we
don’t have to materialize
second-level tables for which
there are no used pages
• There may be null entries

in both the first and
second levels

Virtual directory

number (10 bits)
Offset

(12 bits)

32-bit virtual address

Virtual page

number (10 bits)

Physical page

number (P bits)

...

Page table

Physical page

number (P bits)

Physical page

number (P bits)

Directory entry

...

Directory entry

Directory entry

Page directory

Physical page number

(P bits)
Offset

(12 bits)

P+12 bit physical RAM address

Virtual directory

number (4 bits)

Offset

(4 bits)

12-bit virtual address

Virtual page

number (4 bits)

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Page directory

NULL

NULL

NULL

NULL

NULL

NULL

NULL

0x03

0x04

NULL

0xA0

NULL

NULL

0x0A

NULL

Page table

NULL

NULL

0x0F

NULL

0x00

0x01

NULL

0x02

NULL

NULL

0x11

0x12

0x13

NULL

NULL

NULL

Page table

NULL

NULL

NULL

NULL

Two-level Page Table:
Simple Example

Questions:
• What is the page size?

• What are the physical addresses for
these virtual addresses?

VA 0x133 VA 0x234

VA 0xE23 VA 0xE45

VA 0xEEE VA 0xFEE

Virtual directory

number (4 bits)

Offset

(4 bits)

12-bit virtual address

Virtual page

number (4 bits)

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Page directory

NULL

NULL

NULL

NULL

NULL

NULL

NULL

0x03

0x04

NULL

0xA0

NULL

NULL

0x0A

NULL

Page table

NULL

NULL

0x0F

NULL

0x00

0x01

NULL

0x02

NULL

NULL

0x11

0x12

0x13

NULL

NULL

NULL

Page table

NULL

NULL

NULL

NULL

Two-level Page Table:
Simple Example

Questions:
• What is the size of the virtual

address space?

• What is the maximum amount of
physical memory that an address
space can use?

• How many pages are in use?

Generating Code On The Fly

• A process’s code segment is read-only and static size . . .

• . . . but sometimes a process needs to generate code dynamically
• Ex: The just-in-time (JIT) compiler for a dynamic language like JavaScript

will dynamically translate JavaScript statements into machine code;
executing the new machine code will be faster than interpretation

• Ex: Dynamic binary translation tools perform machine-code-to-
machine-code translation to inject diagnostics, security checks, etc.

• Dynamic code generation typically places the new code in heap
pages which are marked as executable

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>

int main(int argc, char *argv[]){
//x86 code for:
// mov eax, 0
// ret
unsigned char code[] = {0xb8, 0x00, 0x00,

0 0x00, 0x00, 0xc3};

if(argc != 2){
fprintf(stderr, "Usage: jit <integer>\n");
return 1;

}

//Overwrite immediate value "0" in mov instruction
//with the user's value. Now our code will be:
// mov eax, <user's value>
// ret
int num = atoi(argv[1]);
memcpy(&code[1], &num, 4);

//Allocate writable+executable memory.
void *mem = mmap(NULL, sizeof(code),

PROT_WRITE | PROT_EXEC,
MAP_ANON | MAP_PRIVATE, -1, 0);

memcpy(mem, code, sizeof(code));

//The function will return the user's value.
int (*func)() = mem;
return func();

}

