
Virtual

Memory,

Part III
CS 161: Lecture 8

2/23/17

Kernel Memory Interactions with

Paging and TLB: Linux on x86
• Kernel places itself in lowest part of physical

memory, but maps itself into highest part of

each process’ virtual address space

• Bottom part of process’ address range:

• 0x00000000—0xbfffffff are accessible by

both user-mode and kernel-mode

• Address range covered by first 768/1024

of the process’ page directory;

represents unique, per-process pages

• Top part of process’ address range:

• 0xc0000000—0xffffffff can only be

accessed in kernel-mode

• Address range covered by last 256

entries of page directory; “user-mode

accessible?” bit is 0 in PDEs, so user-

level code can’t access those memory

addresses!

Physical

memory

Virtual address

space

0x0

0xffffffff

Kernel

User

Kernel

. . .

Kernel Memory Interactions with

Paging and TLB: Linux on x86
• All virtual memory addresses

(include ones to kernel memory)

go through TLB

• Reference to kernel memory

can cause TLB miss, but not

page fault—kernel is always

resident in RAM!

• A system call or interrupt doesn’t

require changing %cr3—kernel

is mapped into address space

already, but now the CPU runs in

privileged mode, so high virtual

memory addresses can be

accessed!

Virtual address

space

0x0

0xffffffff

Kernel

User

Kernel

. . .

Physical

memory

kseg0: Only accessible in privileged

mode; cacheable; direct-mapped

Kernel Memory Interactions with

Paging and TLB: MIPS

0x0

0xffffffff

kuseg: Accessible in user-mode and

kernel-mode; cacheable; TLB-mapped

0x80000000

Virtual address

space

0xc0000000

0xa0000000

Physical

memory

kseg1: Only accessible in privileged

mode; uncacheable; direct-mapped

kseg2: Only accessible in privileged

mode; cacheable; TLB-mapped

First

512 MB

TLB-

mapped

data

(user

and

kernel)

WHY ARE THERE SO MANY

DIFFERENT SCHEMES?

“The use of one memory management organization

over another has not catapulted any architecture to the

top of the performance ladder, nor has the lack of any

memory management function been the leading cause

of an architecture’s downfall. So, while it may seem

refreshing to have so many choices of VM interface, the

diversity serves little purpose other than to impede the

porting of system software.”
B. Jacob and T. Mudge, “Virtual Memory in Contemporary

Microprocessors.” In IEEE Micro, Volume 18, Issue 4, July 1998.

Important job of OS: Hide processor

quirks using abstraction!

Making fork() Efficient
• fork() creates a new child process whose address space is a copy

of the parent’s address space

• Naïve implementation: synchronous copying

• The OS gives the child a copy of the parent’s page table . . .

• . . . and then performs repeated, synchronous memcpy()

operations to duplicate every allocated page in the parent’s

address space

Parent ChildPhysical RAM

Immediately after fork()

Making fork() Efficient: Copy-on-Write
• OS gives the child a copy of the parent’s page tables

(i.e., the child gets a copy of the parent’s PTEs), but

the OS does not copy raw page data

• OS sets all PTEs in both page tables as “read-only”

Parent ChildPhysical RAM

Immediately after fork()

Making fork() Efficient: Copy-on-Write
• When one of the processes tries to write a page, a trap occurs

(e.g., “MOD” TLB read-only fault on MIPS), allowing the OS to:

• create a copy of the page for the child

• update the child’s PTE to point to new page, and then

• mark the associated PTE in both processes as RW

Parent ChildPhysical RAM

After fork(), after the child has modified the green page

Making fork() Efficient: Copy-on-Write

Parent ChildPhysical RAM

After fork(), after the child has modified the green page

Physical page sharing enables

a fixed amount of RAM to

contain more virtual pages

Removes synchronous copy

cost during fork()

Swapping Pages Out

• Physical RAM may be oversubscribed: the aggregate

number of pages in the active address spaces may be

larger than the number of physical pages

• “Swapping” refers to the OS moving virtual pages from

physical RAM to the swap device(s) and vice versa

• A swap device can be a hard disk, an SSD, or even

remote network storage (<--maybe not a great idea)

• How does the OS associate a virtual page with its

location in swap storage?

• Case study: Linux on x86

Present?

012345678910111231

4KB-aligned physFrame addrPTE

If Present?==0, can use this region to

store location of page in swap space!

struct swap_info_struct{
struct file *swap_file; /* Where the swap data lives on-disk */
unsigned char *swap_map; /* For each swapped-out page, stores a

* reference count of how many tasks
* use that page */

unsigned int max; /* Number of entries in swap_map */
unsigned int inuse_pages; /* Number of swap entries that currently

* contain a virtual memory page */
unsigned int lowest_bit; /* index of first free element in

* swap_map */
spinlock_t lock;

};
struct swap_info_struct *swap_info[MAX_SWAPFILES];

struct swap_info_struct{
struct file *swap_file; /* Where the swap data lives on-disk */
unsigned char *swap_map; /* For each swapped-out page, stores a

* reference count of how many tasks
* use that page */

unsigned int max; /* Number of entries in swap_map */
unsigned int inuse_pages; /* Number of swap entries that currently

* contain a virtual memory page */
unsigned int lowest_bit; /* index of first free element in

* swap_map */
spinlock_t lock;

};
struct swap_info_struct *swap_info[MAX_SWAPFILES];

012345678910111231

PTE

Index into swap_map

(lets OS find location of page on disk)

Index into

swap_info

Q: How does the OS

represent the logical

regions of a process’s

address space?

Case study: Linux on x86

Linux Virtual Memory Areas (VMAs)
• A VMA represents a contiguous chunk of virtual memory that

the OS has agreed to give to a process

vm_area_struct

VM_READ | VM_EXEC

vm_area_struct

VM_READ | VM_WRITE

Stack

Code

Data

BSS

Heap

Virtual address

space

vm_area_struct

VM_READ | VM_WRITE

vm_area_struct

VM_READ | VM_WRITE

vm_area_struct

VM_READ | VM_WRITE

task_struct

mm_struct

.mm

Linux Virtual Memory Areas (VMAs)
• A VMA represents a contiguous chunk of virtual memory that

the OS has agreed to give to a process

• VMAs represent the process’ view of its address space . . .

• . . . but the page table’s “present?” bits indicate the actual

situation with respect to backing physical memory!

Virtual page i +1

Virtual page i

Virtual page i +2

Virtual page i +3

vm_area_struct

VM_READ | VM_WRITE

Unmapped!

Phys page y

Phys page x

• Accessing virtual page i+2 or i+3 causes a page fault

• In page fault handler, kernel sees that the faulting address resides in a

valid VMA

• Handler extracts location of page in swap space by examining the PTE for

the faulting address

The Core Map

• For each physical page, the core

map records metadata like:

• Is the physical page free or

allocated?

• If the physical page is

allocated, which address space

and virtual page are using the

physical page?

• Is the page locked in memory

(e.g., because it is being

written to disk, or written from

disk)?

• Other metadata

Uses For The Core Map

• The OS can mark kernel pages in the

core map so that kernel pages are

not assigned to user processes

• When the OS needs to map a

swapped-out/new virtual page into

physical memory, the OS consults the

core map to see whether a free

physical page is available

• If the core map tracks whether each

physical page is dirty, a background

kernel thread can asynchronously

flush dirty pages to disk (the hope is

to avoid a synchronous IO when a

physical page must be evicted!)

BEWARE OF
CONCURRENCY

ISSUES

Demand Paging
• In most OSes, when a new program is loaded, the associated

process gets:

• A page table with all/almost all of the “valid” bits turned off

• No/very few virtual pages in physical RAM

• As the process executes, its instructions touch virtual

addresses which are not resident in physical RAM

• Page faults induce the OS to bring the missing virtual

pages into physical RAM on-demand

• A process’s working set is the set of all virtual pages that

the process is currently accessing

• If there is enough free RAM to hold a process’s working

set, then once the working set has been paged in, the

process will not cause additional page faults . . .

• . . . until the working set changes

Page Replacement
• OS limits how much physical RAM can be

allocated to one process

• After that limit is reached, if the

process wants to swap something in

(or create a totally new page), the OS

must first evict a preexisting virtual

page

• The OS uses a page replacement

algorithm to select the victim page

• Belady’s replacement algorithm: Evict the

page that won’t be accessed for the

longest time

• Good: the algorithm is provably

optimal!

• Bad: PERFECT FORECASTING IS

IMPOSSIBLE UGGGGGH

You’ve been
Belady-ied!

Page Replacement: FIFO
• OS maintains a FIFO queue of virtual pages

• The queue has a maximum length of num_phys_pages

• When the queue reaches maximum size and the OS needs to

make room for a new virtual page:

• the oldest virtual page is evicted from physical RAM

• the new virtual page is placed in the newly-freed physical

page

• the new virtual page is added to the beginning of the

queue

• The intuition is that the page that’s been in RAM for the longest

is no longer needed

• This intuition may be wrong (e.g., a hot code page that is

used for the entirety of a process’s execution)

• FIFO also suffers from Belady’s anomaly: the page fault rate

might increase when FIFO is given *more* physical memory

3

2

4

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

0 1 2 3 0 1 4 0 1 2 3 4
Youngest

page

Oldest
page

FIFO: Three Physical Pages

Time

Nine page faults

0 1 2 3 0 1 4 0 1 2 3 4

FIFO: Four Physical Pages

Time

Youngest
page

Oldest
page

0

0

1

1

0

2

2

1

0

3

2

1

0

3

2

1

0

3

3

2

1

4

4

3

2

0

0

4

3

1

1

0

4

2

2

1

0

3

3

2

1

4

Ten page faults

Page Replacement: Least-recently Used (LRU)

• Replace the page which hasn’t been used for the

longest amount of time: intuitively, if a page has been

used recently, it will probably be used again soon

3

0

2

7 0

7

1

0

7

2

1

0

0

2

1

3

0

2

0

3

2

4

0

3

2

4

0

3

2

4

0

3

2

7 0 1 2 0 3 0 4 2 3 0 3
Youngest

page

Oldest
page

Time

Page Replacement: Least-recently Used (LRU)
• LRU provides good performance, but it is difficult to implement

efficiently

• Naïve implementation:

• OS has a software-managed list of in-memory virtual pages

• On each memory access, OS moves the accessed page to

the front of the list: O(n)

• At eviction time, OS evicts the page at the back of list: O(1)

• Disadvantages: finding the page to promote is O(n); list must be

updated on each memory access

Page Replacement: Least-recently Used (LRU)

• An alternative implementation uses hardware counters (a

single global counter, and per-physical-page counters)

• Hardware increments global counter after each load or

store

• After each memory instruction, hardware also tags the

relevant physical page with the global counter value

• At eviction time, OS evicts the page with the lowest

counter

• Advantage: Per-memory-reference updates are fast if the

hardware supports per-physical-page counters

• Disadvantages: Finding the page-to-evict is O(n), and

most hardware doesn’t support per-physical-page

counters

Page Replacement: Clock
• The clock approach tries to approximate LRU

• Assumes that:

• The hardware will automatically set a “referenced” bit in the

PTE when a load or store touches a page

• Once set, the bit will only be cleared by software

• x86 can provide such a bit, but not MIPS (why?)

• OS maintains a circular list of physical pages

while True:
if physPages[clock].r == 0:
evict(physPages[clock])
break

physPages[clock].r = 0
clock = (clock+1)%numPhysPages

VP:9

r:1

VP:0

r:1

VP:3

r:1

VP:6
r:0

Page Replacement: Clock

• If the clock hand is sweeping very slowly, there is plenty

of physical RAM and few page faults (this is good)

• If the clock hand is sweeping quickly, there is too little

physical RAM---page faults are frequent, and the

machine is thrashing (i.e., spending a lot of time

swapping instead of doing real work)

while True:
if physPages[clock].r == 0:
evict(physPages[clock])
break

physPages[clock].r = 0
clock = (clock+1)%numPhysPages

VP:9

r:1

VP:0

r:1

VP:3

r:1

VP:6
r:0

P
a
g

e
 f

a
u
lt
s/

se
c

Physical pages allocated to process

Thrashing

Unfair to other
processes

Globally optimal

