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Kernel Memory Interactions with 

Paging and TLB: Linux on x86
• Kernel places itself in lowest part of physical 

memory, but maps itself into highest part of 

each process’ virtual address space

• Bottom part of process’ address range:

• 0x00000000—0xbfffffff are accessible by 

both user-mode and kernel-mode

• Address range covered by first 768/1024 

of the process’ page directory; 

represents unique, per-process pages

• Top part of process’ address range:

• 0xc0000000—0xffffffff can only be 

accessed in kernel-mode

• Address range covered by last 256 

entries of page directory; “user-mode 

accessible?” bit is 0 in PDEs, so user-

level code can’t access those memory 

addresses!
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Kernel Memory Interactions with 

Paging and TLB: Linux on x86
• All virtual memory addresses 

(include ones to kernel memory) 

go through TLB

• Reference to kernel memory 

can cause TLB miss, but not 

page fault—kernel is always 

resident in RAM!

• A system call or interrupt doesn’t 

require changing %cr3—kernel 

is mapped into address space 

already, but now the CPU runs in 

privileged mode, so high virtual 

memory addresses can be 

accessed!
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kseg0: Only accessible in privileged 

mode; cacheable; direct-mapped

Kernel Memory Interactions with 

Paging and TLB: MIPS

0x0

0xffffffff

kuseg: Accessible in user-mode and 

kernel-mode; cacheable; TLB-mapped
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WHY ARE THERE SO MANY 

DIFFERENT SCHEMES?



“The use of one memory management organization 

over another has not catapulted any architecture to the 

top of the performance ladder, nor has the lack of any 

memory management function been the leading cause 

of an architecture’s downfall. So, while it may seem 

refreshing to have so many choices of VM interface, the 

diversity serves little purpose other than to impede the 

porting of system software.”
B. Jacob and T. Mudge, “Virtual Memory in Contemporary 

Microprocessors.” In IEEE Micro, Volume 18, Issue 4, July 1998.

Important job of OS: Hide processor 

quirks using abstraction!



Making fork() Efficient
• fork() creates a new child process whose address space is a copy 

of the parent’s address space

• Naïve implementation: synchronous copying

• The OS gives the child a copy of the parent’s page table . . .

• . . . and then performs repeated, synchronous memcpy() 

operations to duplicate every allocated page in the parent’s 

address space

Parent ChildPhysical RAM

Immediately after fork()



Making fork() Efficient: Copy-on-Write
• OS gives the child a copy of the parent’s page tables 

(i.e., the child gets a copy of the parent’s PTEs), but 

the OS does not copy raw page data

• OS sets all PTEs in both page tables as “read-only”

Parent ChildPhysical RAM

Immediately after fork()



Making fork() Efficient: Copy-on-Write
• When one of the processes tries to write a page, a trap occurs 

(e.g., “MOD” TLB read-only fault on MIPS), allowing the OS to:

• create a copy of the page for the child

• update the child’s PTE to point to new page, and then

• mark the associated PTE in both processes as RW

Parent ChildPhysical RAM

After fork(), after the child has modified the green page



Making fork() Efficient: Copy-on-Write

Parent ChildPhysical RAM

After fork(), after the child has modified the green page

Physical page sharing enables 

a fixed amount of RAM to 

contain more virtual pages

Removes synchronous copy 

cost during fork()



Swapping Pages Out

• Physical RAM may be oversubscribed: the aggregate 

number of pages in the active address spaces may be 

larger than the number of physical pages

• “Swapping” refers to the OS moving virtual pages from 

physical RAM to the swap device(s) and vice versa

• A swap device can be a hard disk, an SSD, or even 

remote network storage (<--maybe not a great idea)

• How does the OS associate a virtual page with its 

location in swap storage?

• Case study: Linux on x86



Present?

012345678910111231

4KB-aligned physFrame addrPTE

If Present?==0, can use this region to 

store location of page in swap space!

struct swap_info_struct{
struct file *swap_file;   /* Where the swap data lives on-disk */
unsigned char *swap_map;  /* For each swapped-out page, stores a

* reference count of how many tasks
* use that page */

unsigned int max;         /* Number of entries in swap_map */
unsigned int inuse_pages; /* Number of swap entries that currently

* contain a virtual memory page */
unsigned int lowest_bit;  /* index of first free element in

* swap_map */
spinlock_t lock;

};
struct swap_info_struct *swap_info[MAX_SWAPFILES];



struct swap_info_struct{
struct file *swap_file;   /* Where the swap data lives on-disk */
unsigned char *swap_map;  /* For each swapped-out page, stores a

* reference count of how many tasks
* use that page */

unsigned int max;         /* Number of entries in swap_map */
unsigned int inuse_pages; /* Number of swap entries that currently

* contain a virtual memory page */
unsigned int lowest_bit;  /* index of first free element in

* swap_map */
spinlock_t lock;

};
struct swap_info_struct *swap_info[MAX_SWAPFILES];

012345678910111231

PTE

Index into swap_map

(lets OS find location of page on disk)

Index into 

swap_info



Q: How does the OS 

represent the logical 

regions of a process’s 

address space?

Case study: Linux on x86



Linux Virtual Memory Areas (VMAs)
• A VMA represents a contiguous chunk of virtual memory that 

the OS has agreed to give to a process

vm_area_struct

VM_READ | VM_EXEC

vm_area_struct

VM_READ | VM_WRITE
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vm_area_struct
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vm_area_struct

VM_READ | VM_WRITE

task_struct

mm_struct

.mm



Linux Virtual Memory Areas (VMAs)
• A VMA represents a contiguous chunk of virtual memory that 

the OS has agreed to give to a process

• VMAs represent the process’ view of its address space . . .

• . . . but the page table’s “present?” bits indicate the actual 

situation with respect to backing physical memory! 

Virtual page i +1

Virtual page i

Virtual page i +2

Virtual page i +3

vm_area_struct

VM_READ | VM_WRITE

Unmapped!

Phys page y

Phys page x

• Accessing virtual page i+2 or i+3 causes a page fault

• In page fault handler, kernel sees that the faulting address resides in a 

valid VMA

• Handler extracts location of page in swap space by examining the PTE for 

the faulting address



The Core Map

• For each physical page, the core 

map records metadata like:

• Is the physical page free or 

allocated?

• If the physical page is 

allocated, which address space 

and virtual page are using the 

physical page?

• Is the page locked in memory 

(e.g., because it is being 

written to disk, or written from 

disk)?

• Other metadata



Uses For The Core Map

• The OS can mark kernel pages in the 

core map so that kernel pages are 

not assigned to user processes

• When the OS needs to map a 

swapped-out/new virtual page into 

physical memory, the OS consults the 

core map to see whether a free 

physical page is available

• If the core map tracks whether each 

physical page is dirty, a background 

kernel thread can asynchronously 

flush dirty pages to disk (the hope is 

to avoid a synchronous IO when a 

physical page must be evicted!)

BEWARE OF
CONCURRENCY

ISSUES



Demand Paging
• In most OSes, when a new program is loaded, the associated 

process gets:

• A page table with all/almost all of the “valid” bits turned off

• No/very few virtual pages in physical RAM

• As the process executes, its instructions touch virtual 

addresses which are not resident in physical RAM

• Page faults induce the OS to bring the missing virtual 

pages into physical RAM on-demand

• A process’s working set is the set of all virtual pages that 

the process is currently accessing

• If there is enough free RAM to hold a process’s working 

set, then once the working set has been paged in, the 

process will not cause additional page faults . . .

• . . . until the working set changes



Page Replacement
• OS limits how much physical RAM can be 

allocated to one process

• After that limit is reached, if the 

process wants to swap something in 

(or create a totally new page), the OS 

must first evict a preexisting virtual 

page

• The OS uses a page replacement 

algorithm to select the victim page

• Belady’s replacement algorithm: Evict the 

page that won’t be accessed for the 

longest time

• Good: the algorithm is provably 

optimal!

• Bad: PERFECT FORECASTING IS 

IMPOSSIBLE UGGGGGH

You’ve been
Belady-ied!



Page Replacement: FIFO
• OS maintains a FIFO queue of virtual pages

• The queue has a maximum length of num_phys_pages

• When the queue reaches maximum size and the OS needs to 

make room for a new virtual page:

• the oldest virtual page is evicted from physical RAM

• the new virtual page is placed in the newly-freed physical 

page

• the new virtual page is added to the beginning of the 

queue

• The intuition is that the page that’s been in RAM for the longest 

is no longer needed

• This intuition may be wrong (e.g., a hot code page that is 

used for the entirety of a process’s execution)

• FIFO also suffers from Belady’s anomaly: the page fault rate 

might increase when FIFO is given *more* physical memory
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Page Replacement: Least-recently Used (LRU)

• Replace the page which hasn’t been used for the 

longest amount of time: intuitively, if a page has been 

used recently, it will probably be used again soon
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Page Replacement: Least-recently Used (LRU)
• LRU provides good performance, but it is difficult to implement 

efficiently

• Naïve implementation:

• OS has a software-managed list of in-memory virtual pages

• On each memory access, OS moves the accessed page to 

the front of the list: O(n)

• At eviction time, OS evicts the page at the back of list: O(1)

• Disadvantages: finding the page to promote is O(n); list must be 

updated on each memory access



Page Replacement: Least-recently Used (LRU)

• An alternative implementation uses hardware counters (a 

single global counter, and per-physical-page counters)

• Hardware increments global counter after each load or 

store

• After each memory instruction, hardware also tags the 

relevant physical page with the global counter value

• At eviction time, OS evicts the page with the lowest 

counter

• Advantage: Per-memory-reference updates are fast if the 

hardware supports per-physical-page counters

• Disadvantages: Finding the page-to-evict is O(n), and 

most hardware doesn’t support per-physical-page 

counters



Page Replacement: Clock
• The clock approach tries to approximate LRU

• Assumes that:

• The hardware will automatically set a “referenced” bit in the 

PTE when a load or store touches a page

• Once set, the bit will only be cleared by software

• x86 can provide such a bit, but not MIPS (why?)

• OS maintains a circular list of physical pages

while True:
if physPages[clock].r == 0:
evict(physPages[clock])
break

physPages[clock].r = 0
clock = (clock+1)%numPhysPages

VP:9

r:1

VP:0

r:1

VP:3

r:1

VP:6
r:0



Page Replacement: Clock

• If the clock hand is sweeping very slowly, there is plenty 

of physical RAM and few page faults (this is good)

• If the clock hand is sweeping quickly, there is too little 

physical RAM---page faults are frequent, and the 

machine is thrashing (i.e., spending a lot of time 

swapping instead of doing real work)

while True:
if physPages[clock].r == 0:
evict(physPages[clock])
break

physPages[clock].r = 0
clock = (clock+1)%numPhysPages

VP:9

r:1

VP:0

r:1

VP:3

r:1

VP:6
r:0
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