Computer Science 161: Operating Systems
How to write a Design Document

(CS161 Course Staff
csl1l61Q@eecs.harvard.edu

January 22, 2013

1 Introduction

Assignments 2, 3, and 4 require that you write and submit a design doc-
ument. Your design document will be reviewed in two phases. First, we
will conduct in-class peer reviews. Your group will pair up with another
group and you will spend half the class reviewing their document and half
the class with them reviewing your document. Second, you will submit your
(possibly revised) design document to your TF, who will review it, give you
feedback, and assign a grade. Your grade will reflect both the quality of
your design as well as your participation in the peer review. Peer review
participation has many aspects. You will learn a great deal from doing a
careful review of another design. Ideally you will be exposed to alternative
thought processes and conclusions. You should ask good questions; if you
do a good review, then you will help the other group improve their design
document. Both teams will document the interaction from their vantage
point and your full engagement in both sides of the review is expected. You
will be asked to explain how your design evolved after the peer review. You
are welcome to adopt ideas and mechanisms that you learn about through
the peer review, but you must cite them. For example, if you adopt your
peer team’s approach to managing your file table, that’s fine, but you have
to tell us that that is where you got the idea.

The CS161 design documents are, in the opinions of the course staff, the
single most important piece of work you will do in this class. (Corollary:
They are the single most important piece of work you will do in your life.)
Yes, other CS classes have required you to submit a “design” “document”.
But let’s be honest, in such classes you tabled the design document and



hacked away at the assignment until it worked, only to go back and write
the design document at the end.

This method, however, will not work in CS161. The motto here is “measure
twice, cut once”. We give you a week to complete design documents for a
reason; we want you to spend a significant amount of time thinking about
how the pieces will fit together (and what new pieces you might need), before
you run off to hack them together. We give you two weeks after the design
document due date to code, so there should be no need to rush this process.

To further motivate you, we remind you that the design is worth 30% of
your final grade for the assignment. You do not want to spend four nights
perfecting your system only to lose 10 points on the assignment because your
design document wasn’t of the right level of sophistication / completeness.

That brings us to an important question. What is a design doc and how
do I write one? A good design document is as valuable as the code you
will write. A design document should be a document that will allow a good
programmer to write working code, even if that programmer doesn’t know
the internals of os/161 too well. In other words, a design doc should reflect
all the research and brainstorming you did before attempting the coding
task. Do not shy away from details!

The rest of this document presents guidelines for writing a good design
doc. Don’t feel like you have to stick to them exactly, but if you do not
know where to start, this should provide some guidance.

2 Introduction

In the introduction you should decompose the assignment into the major
parts that you need to complete and what your approach will be to each
part. Clearly, you will not go into detail about the different pieces, but
after reading the introduction, the reader should be able to predict the
outline of the rest of your document and some idea of what s/he will find in
each section. The introduction is also the right place to identify any open
problems you have not solved and about which you would welcome feedback.
This doesn’t mean that we’ll tell you how to do the entire assignment, but if
you know that you have some confusion that you’ve not been able to resolve,
tell us about it now! We expect that you will not have foreseen every problem
you will encounter, but the more you identify early, the better prepared you
will be when you start coding.



3 Overview

In the introduction you’ve provided an outline of the rest of your design.
The overview is where you dive into the design in more detail. For example,
tell us how the different parts of the design fit together, describe the APIs
between the different pieces. Introduce the data structures that you’ll be
using. If there are overarching algorithmic tasks, provide pseudo code for the
algorithms you’ll use. If you are going to be using global variables, this is the
place to introduce them and tell us how they will be synchronized. If there
is complex synchronization between different parts of the assignment, that
is also a good topic for the overview. Finally, provide a brief explanation of
why your design will work.

Here is how we think of the overview: In a large software project, there
is usually a chief architect responsible for the overall vision of the project.
The architect hands out individual tasks that require detailed design and
implementation and decides what the pieces are, how they interact, what
the important interfaces, data structures, and algorithms are. The overview
is what the architect produces.

4 Topics

Finally, break up your design into appropriate topics and discuss the details
of each topic as explained below. For example, in assignment 2, a good topic
breakdown is as follows:

e Identifying processes
e File descriptors

e fork

® execv

e waitpid/exit

e Other system calls

e Scheduling

e Synchronization issues

In this more detailed discussion, you might come back to topics of inter-
action that appeared in the overview. However, when you do it here, you're



doing it in the context of your implementation and diving into the details.
Using assignment 2 as an example once again, in the section on fork you will
undoubtedly want to explain the implications for file descriptor management
or how the various system calls will use process identification?

Sometimes it might be useful to write down which files you will need to
modify for each part. This will force you to think about the actual imple-
mentation and how it fits in the system. You are not designing in isolation;
you are designing in the context of 0s/161, and you need to make sure that
your designs make sense in that environment. Spend more time reading
through the 0s/161 code to see where these pieces should be placed.

4.1 Functions

Describe each function you have to implement. Discuss the algorithms you
are going to use and why. Including pseudocode for key parts is a good idea.
Work hard to figure out where the subtleties and hidden problems await.
Every bug you find during design will save you hours of debugging. ' If you
can identify any helper or utility functions that you’ll find useful, describe
them here.

4.2 Plan of Action

Describe how you will divide up the work. There are two extremes that
groups often try. One is, “We will do everything together.” The other is,
"T’ll do half, my partner will do half, and we’ll glue those two halfs together
in a few minutes.” Neither extreme works particularly well. You should
divide work to allow you to work in parallel and to account for variations
in working schedules. However, you should coordinate, sync up, and meet
regularly. Review each other’s code. You will be stunned both by how much
you learn from reviewing code and by how many bugs you find by reviewing
code.

When you divide up work, set milestones so you are each accountable to
the other for completing your tasks in time for integration. If either or both
of you start to slip, speak up. Do not hide from your partner. Do not keep
saying, “Just a couple more hours.” Speak up. Explain how far you are
and what your strategy is for getting to the endline. Many a partnership

1This is perhaps something that doesn’t quite resonate with you. In previous courses,
debugging was relatively easy and you could play fast and loose and fix it all up during
the debugging cycle. Such is not the case with an operating system. You are working
in the context of a concurrent asynchronous system. By definition, thow two properties
make things more difficult. Deep, thoughtful design will save you time.



has produced bad feelings, because individuals were too embarrassed to say,
“Um, I'm confused and don’t quite know what to do next.” or “I partied
too late last night and didn’t get done what I needed to get done today.” Be
honest. When we review your design, we can also flag partitionings that we
think won’t work — we have a rough idea how long the various pieces take
and if they don’t look balanced, we can say something.

Former students frequently chuckle when they look back at their design
documents, which outlined in detail what each person was going to do on
which day, and compared their schedule with reality. For example, one
assignment 2 initial design document featured the following “breakdown”:

Friday PIDs, getpid, descriptors,
More Friday chdir, getcwd, scheduler
Saturday i/o, exit, waitpid, execv
Sunday fork, scheduler

Monday test

Tuesday test

Wednesday test

Thursday test

Friday party

In fact, the actual schedule looked more like this:

Friday nothing

Saturday PIDs, getpid

Sunday nothing

Monday my partner and I panic

Tuesday descriptors, chdir, getcwd
Wednesday scheduler, we panic some more
Thursday i/o, exit, waitpid

More Thursday (procrastinating before execv and fork)
Friday execv, fork, test, test, test, test
Saturday sleep

Sunday sleep

Monday sleep

5 Finishing up

After writing a design document, you should look at it and convince your-
selves that you have explained every difficult detail. Often students write



things that translate into “I don’t really know how I’'m going to solve it,
but somehow I will” or “We will implement read. We will also implement
write.” If you find yourself writing things like this, seek out assistance!
Talk to your TF, head to office hours, post a question on Piazza. If you
are still lost, then right there in black and white, expose that confusion in
your design document, “I DON'T KNOW HOW TO DO THIS, HELP!!”
Ideally your peer review partners will help you. If they can’t help either,
then they should have a similar line in their design document and you can
ask for assistance during class, after class, on Piazza, or in the document
you turn in.

As a rule of thumb, the more code-looking text you include in your design
document, the better off you will be. However, code and prose should be
well-balanced. No one should have to read your code to figure out what you
are doing, but reading the code should tell them how you are doing it.



