Energy trade-offs in the IBM Wristwatch computer

Noboru Kamijoh, Tadanobu Inoue, C. Michael Olsen’, M. T. Raghunath’, Chandra Narayanaswami"

{kamijo,inouet}@jp.ibm.com, {cmolsen,mtr,chandras}@us.ibm.com

IBM Research Division, Tokyo, Japan
") IBM Research Division, Yorktown Heights, NY, USA

Abstract

We recently demonstrated a high function wrist watch
computer prototype that runs the Linux operating system
and also X11 graphics libraries. In this paper we describe
the unique energy related challenges and tradeoffs we
encountered while building this watch. We show that the
usage duty factor for the device heavily dictates which of
the powers, active power or sleep power, needs to be
minimized more aggressively in order to achieve the
longest perceived battery life. We also describe the energy
issues that percolate through several layers of sofiware all
the way from device usage scenarios, applications, user
interfaces, system level software to device drivers and the
need to systematically address all of them to achieve the
battery life dictated by the hardware components and the
capacity of the battery in the device.

1 Introduction

We built the high function IBM wrist watch computer
prototype to study several areas of mobile computing such
as user interfaces [1], high resolution displays [2], system
software, wireless communication, security, and
interaction patterns between various pervasive devices.
We view this watch as a wearable computing platform
rather than a special purpose device. Therefore our goals
differ quite significantly from those posed to the designer
of a traditional wrist watch with just time keeping
functions.

We chose a watch form factor (see Figure 1) because
watches are easily accessible and get misplaced less often
than PDAs and cell phones since they are worn, not
carried. It is also commonly believed that many people
glance at their watches up to forty times a day and this we
think is a good reason to put some additional useful
information, such as upcoming appointments on the watch
face. The watch is also an ideal device for conveying
information alerts to the user, since it is instantly
viewable.

The watch form factor also takes many of the
packaging, user interface, and power problems to the
extreme which appealed to several of us.

Figure 1. Wrist watch prototypes.

Our watch has a touch sensitive screen and a roller
wheel for user interaction. The main card has an ARM 7
based Cirrus EP 7211 processor, 8MB of Flash memory
and 8MB of DRAM, and serial, IrDA, and expansion
interfaces. We have two monochrome displays, a 96x120
reflective LCD and a 640x480 Organic LED (OLED)
display [2]. Bluetooth™ functionality is provided by an
auxiliary card that connects to the main card in some
watches. The watch is powered by a rechargeable Lithium
polymer batter with 60mAh capacity at a nominal voltage
of 3.7V. Figure 2 shows the hardware block diagram.

We chose the Linux operating system for our watch
because of the availability of source code and a wide
variety of software tools, and programmer familiarity.
Third party software developers are less likely to be
interested in learning new programming interfaces unless
the platform is already widely deployed. For the same
reason we chose the X11 graphics library instead of
defining a new graphics library.

People are often impressed by the amount of function
we have managed to fit into such a small package.
However, a question that often gets asked is how long the
batteries last. Obviously the battery life on a watch like
ours will not compare favorably with conventional
watches that have limited functionality. Notwithstanding,

battery life is an important aspect that we paid attention to,
and is at the heart of many trade-offs in the design of the
entire system [3]. In the rest of this paper, we discuss the
trade-offs we made and the motivations behind these
trade-offs.

Li-Polymer
Battery
] UART T
32KHz 5 Bluetooth H—
DC/DC 3.6MHz || DRAM || Flash
8MB || 8MB

) Exp. IF_x60
Tilt 2
OLED/LCD IF x50
Sensor

CL-EP7211 =

DA }—— 0
TPC LCD OLED
D:'¢ '7 Hl oext20 :| 640x480
Buzzer

Touch Jog Wheel
panel Buttons

Figure 2. Hardware block diagram.

1.1 The Energy Challenge

The holy grail, energy wise, in the design of mobile
devices is to enable them to be self sustaining [4].
Calculators powered by solar cells and self-winding
mechanical watches are examples of devices that have
attained this goal.

Though the energy challenge is often interpreted as
making the device run as long as possible and be as
energy efficient as possible, a more pragmatic viewpoint
is whether battery life can exceed some acceptance
thresholds. Under normal usage patterns, cell phone
batteries last about a week which appears to be an
acceptable threshold. An analogy can be drawn from
automobiles. Both car buyers and manufacturers do not
agonize excessively and solely over gas mileage and pay
attention to form and function because most people don’t
need to refuel on each trip, and when they do, it is fairly
easy to refuel. The device is likely to get used if it
provides services to the user that outweigh the difficulty
for caring for it. So we have the dual challenge of
providing useful function while minimizing the effort of
caring for it.

Devices that are unable to attain the goal of self
sustenance often use primary cells and attempt to make the
replacement of the batteries easy and less frequent. If the
energy requirement is such that the user will need to
replace the battery too often, rechargeable batteries have
to be employed to minimize user aggravation and to
protect the environment. However, while rechargeable
batteries can be charged a several hundred times, they
generally hold four to five times less energy than

non-rechargeable ones for comparable size and weight.
Devices that operate on rechargeable batteries must also
attempt to reduce the time taken to charge up the battery.

If the recharging can be serendipitous, i.e., combined
with some other benefit that is delivered to the user, such
as receiving information from the Internet, the user may
not perceive recharging as an inconvenience.

1.2 Challenges in a wrist watch form factor

In addition to the general energy challenge faced by
other wearable computing devices, there are several
additional challenges imposed by the choice of a wrist
watch form factor.

The simplest way to increase the battery life is to use a
larger capacity battery which will be larger and heavier,
but the size and weight requirements on a wrist watch
place an upper bound on the capacity of the battery that
can be used to power it. With the best available
rechargeable Lithium polymer batteries today, the
maximum capacity of a battery measuring 3cm x 2cm X
0.5cm, that can be fit into a regular size watch, is about
200 mAh.

Second, replacing batteries on a watch is generally
difficult due to the small size of the watch and the need to
make the watch water resistant. A significant number of
customer complaints with watches directly result from
users trying to replace the batteries. Traditional watch
manufacturers attempt to make the battery last so long that
the user is more inclined to buy a new watch when it is
time to replace the battery.

The third problem relates to user perception. Users are
not accustomed to having to recharge wrist watches, but
may be willing to recharge other devices such as cell
phones and PDAs. It is important to make the user
perceive a high function wrist watch as being similar to
these other devices rather than traditional wrist watches.

As mentioned earlier, an advantage of the wrist watch
is that it is instantly viewable. A constraint that arises from
this aspect is that the watch should preferably have some
useful information on its display at all times. While saving
energy by turning off the display is an option on many
devices, doing so on a watch may take a significant
advantage away unless it can be done so cleverly that the
display is always on when the user is looking at the watch.

In the following sections we describe the energy
related tradeoffs associated to the device usage model, the
hardware, system level software and application level
software. We end with some suggestions for further
improvement of battery life.

2 Device usage model

Wearable computing devices are generally in one of
two modes, sleeping or active. The device is in the active
state typically when the device is doing something for the
user; e.g., performing some computation, obtaining and
displaying data etc. The rest of the time, the device sleeps.
It transitions to the active mode in response to some action
by the user or the environment. Depending on how long
the device takes to come out of the sleep mode, there may
also be states in between these two extremes, such as an
idle mode where the device responds more quickly to the
user than if it were in the sleep mode.

As a gross approximation one may characterize the
device using two power metrics: The power consumed in
the active mode (Puive) and the power consumed in the
sleep mode (Pgeep). One can also approximate the actual
usage of the device using a single metric: the usage duty
factor (D) which is the fraction of the time the device
spends in the active mode.

Informal surveys reveal that owners of Palm Pilots™
use them about ten times a day for about 30 seconds at a
time. This adds up to about 5 minutes per day or a duty
factor of about 0.0035. Users of the ParcTAB [5] reported
that their device was on for less than 100 seconds at a
time. With today’s hardware, the device can periodically
go into an idle mode, unbeknownst to the user, even
when the user is actively interacting because of the
reaction time of the human user and further reduce the
actual duty factor. The exceptions to low duty factors
tend to be devices that perform active functions even
when the user is not consciously and actively using the
device. An example of such a device is an MP3 player
watch where the user only needs to initiate the play
function and cause the watch to actively run and play the
music requested.

Observations of the usage patterns of wristwatches
suggest that the amount of time the user actually spends
interacting with the advanced features on a digital watch is
generally an insignificant fraction of the total time. This is
true for many high function wrist watches as well.
Calculators probably have an even smaller duty factor.

Based on these metrics, the average power consumed
by the device is given by Py (1-D) + PuciveD. If we
further define the ratio of active power to sleep power as
the power factor ratio: PFR = Pucive/Pscep, then the total
power consumed by the device is Pyeep (1-D) + PFR * Py,
D = Pyeep (1-D + PFR*D).

The PFR for our watch ranges from around 30 to 100
as seen from table in section 3. In comparison, PFR for a
PalmPilot™ ranges from 60 to 280 [6,7], the Psion Series
5™ PDA ranges from 70 to 240 [8], and the Compaq Itsy
ranges from 30 to 90 [9,10].

Relative Battery Life

The battery life can be approximated as Battery
Capacity (mWh) / Average power consumed. This is an
approximation since battery capacity is not really a
constant but is a function of the precise wave form of the
load as opposed to just the average [11,12]. Nevertheless,
it is useful to examine the effects of the different
parameters on the battery life.

Figure 3 below shows the interplay between the usage
duty factor and the predicted battery life for the watch for
different power factor ratios. The duty factor is shown on
a logarithmic scale. The battery life is normalized to one
when the device is in the sleep mode all of the time. Once
the hardware is built, the PFR is fixed, and the
predominant way of extending the battery life is to
minimize the actual duty factor.

Ideally, both the minimum sleep current and the
maximum current consumption must both be minimized.
But which is more important depends on the duty factor.

At the frequently encountered low duty factors, it is
very important to focus on minimizing the sleep power
because reducing the PFR has less perceivable impact on
relative battery life because we are at the left end of the
curves in Figure 3. On the other hand, if the duty factor is
much higher, say two hours a day, then we operate in the
middle of the graph and it is important make the PFR
smaller by reducing the active current consumption very
aggressively.

T T T
PFR=10 —+—
PFR=20 —=— o
PFR=50 —*%—
PFR=100 —&— -
PFR=250 —=&—

0.9 |
0.8 -

0.7
0.6
05
04
03
02

o
=
T

o

1min/day

S5min/day
min/day [
1hr/day
2hriday
Shriday
8hr/day

12 hr/day
always

™
Usage Duty Factor

Figure 3. Relative battery life versus duty factor.

3 Hardware level energy trade-offs

The upper and lower bounds on the battery life for a
device are determined by hardware. The maximum battery
life depends on the minimum sleep current that can be
achieved. Similarly, the minimum battery life is dictated
by the maximum current consumption when all hardware
components are turned on.

We attempted to keep the energy requirement as low
as possible by choosing energy efficient components
whenever possible. However, energy efficiency often
comes with less function, e.g., task specific hardware can
generally operate at a lower energy cost compared to a
programmable processor, and smaller memories consume
less power to refresh than larger ones. Compared to other
wrist watches our design trades off energy efficiency for
greater function, as is evident from the 32-bit processor
and large amount of memory we incorporated.

Fitting all of the components onto a small board,
measuring 27.5 mm x 35.3 mm, was very challenging.
Even when more energy efficient components were
available, we were unable to use them because they were
larger and would have increased the size of the circuit
board. For instance we used a voltage regulator with a
leakage current of 100pA since it was a factor of 8 smaller
than a voltage regulator with a leakage current of 10pA.
Often controls are provided to turn off portions of the
hardware to save energy. For example, in some systems
multiple DRAM banks are used and some banks are
powered off when the software knows that a particular
DRAM bank is not being used. However, we do not have
the room on the main board to be able to fit several
memory modules and hence cannot apply multiple DRAM
banks to mitigate the power problem in the sleep mode.
Likewise we did not have any room to have a battery
backup or a capacitor to preserve DRAM contents if the
main battery was discharged.

In order to drive all of the components in our watch,
except for Bluetooth™, we needed a battery that could
supply currents as high as 50 mA. This constraint ruled
out coin cells and led us to choose a rechargeable Lithium
Polymer battery. A rechargeable battery was also
appropriate since we did not want to open the watch to
replace the battery often.

Within the constraints of function and size, we
designed the hardware to be as energy efficient as
possible. The processor we chose, an EP7211 chip [16]
from Cirrus Logic, supported most of our required
peripherals such on chip ROM, integrated LCD controller,
IrDA controller, UART, serial, PCM and serial bus
interfaces, etc., and we did not require the space or power
for additional glue logic. The processor itself was used in
bare die package instead of the regular package to save
both space and power. We run the processor at 18Mhz
though it can run up to 74 Mhz. The processor supports
two power saving modes called IDLE and STANDBY
which are described below. In addition, we ensured the
input devices on the watch, namely a touch panel, a roller
wheel and a tilt sensor, consumed no power in the standby
mode.

Another significant power saving feature we
incorporated into the OLED display was the ability rapidly

turn the pixels on and off and to control its brightness by
adjusting the ratio of the time that the pixels are on to the
time they are is off. We also have a clear instruction in the
OLED that clears the display without requiring the CPU to
zero all the pixels individually.

Table 1 lists the manufacturer specified power
consumption for various components in operational and
standby state in our system. (Vdd=3.3V in most cases.)

Operational Sleep
Component max/typ [mW] max/typ [mW]
CPU (EP 7211) 50/- 0.010/-
DRAM (8MB) 363/- 0.660/-
Flash (8MB) 72/- -/0.001
Touchpanel ctrller 1.8/- 0.008/-
IrDA 86/66 0.003/0.000
LCD -/3 0.017/0.000
Codec 27/15 0.031
SPK Amp 7.2/4.8 0.002
DC-DC 3V 0.6/0.3 0.003/0.000
DC-DC 2.5V 0.6/0.3 0.003/0.000
Bluetooth (early hw) 198/132 1.82

Table 1. Manufacturer specified power consumption in
operational mode and in sleep/disable mode.

The range for power quoted by the specifications
sheets for some components is rather large and the actual
consumption is determined by the usage scenario and how
the components are configured and interoperate, e.g., can
the Flash and the DRAM be consuming their peak powers
at the same time due to the bus architecture. Tools are
needed to measure power accurately [13]. Also, measuring
the power consumed by the various components is not
straightforward in many situations because there may be
no way to turn off a particular component explicitly, e.g.,
the DRAM, once Linux is running. In these situations we
devise a set of tests that are similar to power on self test,
and measure the power consumed by various components
before the operating system is loaded. One more issue we
had was that the battery capacity also reduces over time
and some of our current batteries appear to have only
35mAh as opposed to 60mAh when they were fresh.

Furthermore we managed to reduce the operational
voltage to be a little lower, i.e. from 3.3V to 3.0V, by
selecting all other components such as Flash memory,
DRAM, touch panel controller and the IrDA module to be
the same and this reduced the power consumption by an
estimated 17.3%, assuming static CMOS. The voltage
regulators consume 200 uA and 45 pA is consumed in
bias circuits. Table 2 shows the current consumption in
the watch in the different states of its usage. (Note,
multiply by 3.7V nominal battery voltage to get
corresponding power.)

As a comparison, typical standby currents of the Palm
Ix™ (4 MB of memory) is 300uA, that of the Psion

Series 5™ is 540uA (8 MB of RAM). In active modes
(with the backlight off though), the current consumption
in the Palm IIIx™ ranges from around 15 mA to 65
mA[6,7], and that for the Psion Series 5™ ranges from 35
mA to 130 mA [8]. The backlights on the Palm IlIx add
about 40 mA and on the Psion Series 5 add about 70 mA
to the above numbers.

How far can we go with hardware improvements?
Even with the 200mAh in a state of the art Lithium
polymer battery, if the system designer wants the battery
to last a year, to a first order approximation, ignoring
battery non-linearities and dependence on battery recovery
processes on peak current drained and the self discharge
of the battery, the average current consumption in the
device should be 200/(365*24) = 23uA or less. This is an
order of magnitude lower than the Palm IIIx™ consumes
with 4MB RAM. We also have to fight about a 5% self
discharge rate per month in Lithium polymer batteries
[14].

Processor LCD DRAM Total current
OPERATION | On Active 15-55mA
access average of
14mA 348 uA 0.3-40mA 27.5mA
IDLE On Processor
Refresh
<3744uA 348 uA > 298 uA 4.6 mA
STANDBY On Self Refresh
298 uA
22 uA 348 uA 913 uA
STANDBY Off Self Refresh
298 uA
22 uA OuA 565 uA

Table 2. Current consumption of main components
in various states (measured at battery
terminal).

4 System software level energy trade-offs

As noted earlier, battery life depends to a large extent
on the power consumed in the sleep state if the usage duty
factor is low. So reducing the power consumed in the
sleep state is the first issue we looked at.

4.1 Kernel Optimizations

When the system is in the sleep mode, the task
scheduler in the Linux kernel sees no tasks that are ready
to run. In this situation, the kernel switches the processor
into the IDLE mode. Also the kernel relies on a timer to
interrupt it every 10 ms in order to guarantee fair
scheduling amongst the tasks that are ready to run. Every
10 ms when the timer interrupt occurs the processor
switches to the active mode for a short duration when it
updates the kernel time variables and checks the task

queue. If there are no tasks that are runnable, the kernel
puts the processor back into the IDLE mode. The
processor also comes out of the IDLE mode when there is
an external interrupt as would occur if the user wanted to
interact with the watch. Also tasks can request to be
woken up at some point in the future. The kernel
maintains a list of such tasks in a timer list. At each timer
tick the kernel checks to see if sufficient time has elapsed
to wake up one or more sleeping tasks.

As observed earlier, the energy required by the
processor in the IDLE mode is much higher than the
energy required in the STANDBY mode. So we first
focused on trying to get the processor into the STANDBY
mode instead of the IDLE mode when there was no work
to do.

On the ARM processor we used in our watch the 10 ms
timer is not available in the STANDBY mode. However
I/O interrupts work and a real time clock (RTC) which
operates on a one second granularity is available. Also the
processor may take up to 250ms to get out of STANDBY
mode but coming out of the IDLE mode typically takes
only a few clock cycles. From a user perspective, the
250ms delay is perceptible, but not annoyingly so.

In order to take advantage of the more efficient
STANDBY mode, we had to rewrite the Linux timing
methodology for our system. The basic idea is as follows:
Whenever the scheduler found that it could put the
processor in the IDLE mode, we scan the timer list to see
how much time needs to elapse before any of the tasks
need to woken up. If this time-out interval is long enough
we put the processor in STANDBY mode after
programming the real-time clock (RTC) to wake us up
before this time-out. When we come out of the
STANDBY mode either on a RTC interrupt or some other
interrupt, we adjust the kernel time variables so that the
kernel knows how much time has really elapsed. If the
nearest task is too close for the 1 second granularity of the
RTC, we go into IDLE mode instead and program the
10ms timer to wake us up at the time-out period.

Our changes to the Linux kernel seem to work fine
with all of the applications we have tested so far, though
we have not tested this code with a more demanding set of
user workloads.

Figure 4 shows a pseudo code snippet of the changes
we made. This code is from the "main idle loop" in Linux,
and is in the file arch/arm/kernel/process.c. The lines in
bold are the statements we have added. The operation is as
follows. Whenever the current task that is executing in
Linux has run to completion, control is returned to the
main idle loop. At the very top of the loop, the current
task is checked to see if it needs scheduling. If there is no
current task that needs scheduling, work candidate() is
called to resolve if there are other tasks that are eligible
for scheduling. If there are no tasks, then there's no work

to be done at the current time. So to determine when there
is work to be done, we parse the Linux timer list in
get _nearest_timeout() to find the nearest time-out. The
returned time-out value is then used by adjust hw_timer()
to program either the RTC (if the time is long enough) or
the 10ms timer to expire before or at that time-out value.
adjust_hw_timer() also sets the flag B STANDBY VALID
if the time is long enough to go into STANDBY mode.

The selection, programming and handling of the
hardware timers and the related issue of keeping accurate
time is complex and we expect to publish the details in the
future.

while(1) {
if (lcurrent->need_resched && !hlt_counter) {
cli();
if (!work_candidate()) {
get_nearest_timeout();
adjust_hw_timer(); }
sti();
if (B_STANDBY VALID)
proc_stdby();
else
proc_idle(); }
current->policy = SCHED YIELD;
schedule();

Figure 4. Modified Linux 2.2.1 "main idle loop".

4.2 Other Optimizations

Once we have done all that we can to reduce the power
consumption in the sleep state, the next focus from a
system software perspective is to ensure that the duration
spent in the active state in response to user action is
minimized. In order to reduce the time spent in the active
state, device drivers are optimized to reduce the number of
instructions that are executed in response to interrupts.
Device drivers also use interrupts and eliminate polling or
kernel timer based scheduling whenever possible.

As noted above, we run the X11 graphics library on
our watches. The X11 code consists of the Xserver and
the Xlib library that applications can link to. The Xserver
typically draws directly to a frame buffer and in our case
would typically directly write to the LCD or the OLED.
Individual byte or word writes to these devices are
expensive in terms of power consumption and can also
result in a visible flicker. We address both of these
problems by letting the Xserver write to a shadow display
buffer maintained in DRAM. When we know that the
Xserver has completed all of its drawing calls and will go
into a mode where it waits for the next event, we copy the
contents of the shadow display buffer to the actual
display.

5 Application level energy trade-offs

In the default mode the application displays the time
and calendar information. By using the touch screen and
the roller wheel the user can navigate to other screens and
access information such as phone lists, things to do, etc.
The application program is written in C and uses the X11,
math and standard C libraries.

While it is clear that the application code may have
control over the energy consumed in the active mode, it is
interesting to note that in the case of our watch it has an
impact on the energy consumed in the sleep mode as well.
Our watch shows the current time on the display when the
watch is in the sleep mode. Both the LCD and OLED
displays consume less energy if fewer pixels are turned
on. So the application code can help reduce the amount of
energy required in the sleep mode by turning on fewer
pixels. The impact of the number of pixels on the energy
required is greater on the OLED display, but on the LCD
the difference is not as pronounced.

On the 640x480 OLED display, we calculated the
number of pixels that had to be turned on to display both
an analog clock face (with hands) and a numeric time
display. We found that an analog clock face could be
displayed with fewer pixels. We can reduce the number of
pixels for a digital display by reducing the font size, but
this impacts readability. In addition, an analog clock face
was generally perceived to be much easier to read (since it
also indicated the amount of time remaining till some
point in the future as well as the current time) and
appeared more elegant. The different screens we
compared are shown in Figure 5 below in actual size.

Hollow minute hand

Pixel count: 3849 (1.25%)

Thinner hands

Pixel count: 3280 (1.07%)

Triangular hands

Pixel count: 4088 (1.33%)

120 pixel tall Verdana font

10:10:00

Pixel count: 13916 (4.53%)

120 pixel tall Arial font

10:10:00

Pixel count: 9492 (3.09%)

80 pixel tall Arial font, w/o seconds

Pixel count: 2589 (0.84%)

Figure 5. Screen images and pixel count for various
methods of displaying time.

Eliminating the second hand increased the time the
watch could spend in sleep state from one second to sixty
seconds as it was sufficient for the watch to wake up once
a minute to update the hands rather than once a second.

We examined all the different screens presented by the
application software, making changes to convey the same
information with fewer pixels. Fonts, icons and graphics
shown on the OLED are all designed to minimize the
number of pixels that are turned on. On an emissive
display with a fine dot pitch, we find that fine lines (even
those that are just one pixel wide), are quite visible.
Accordingly, fonts that use thin lines are preferred to bold
fonts. Icons are designed to use outlines instead of solid
fills so that fewer pixels are turned on. Thin line graphics
are used whenever possible.

In a memory constrained device such as ours, we first
concentrate on reducing the size (memory footprint) of the
libraries and application executables to ensure that they
fit. However, often there is a trade-off between size and
the dynamic number of instructions executed to
accomplish a certain task. For instance we can get code to
execute faster (i.e., fewer number of instructions) if we
use macros instead of functions or expand functions
in-line. Reducing the number of instructions to perform a
certain task is desirable from an energy perspective since
the processor spends a shorter duration in the active mode.
However, the memory is generally far more precious to
trade-off for the reduction in energy consumption,
especially if the duty factor is small to begin with. As seen
in the graphs in Figure 3, the battery life curves are
relatively flat when the duty factor is small.

Application software optimizations that result in fewer
number of instructions executed without increasing the
footprint are desirable. In particular, application software
tries to avoid busy loops that wait for events to occur.
Instead, the application relies on select calls into the Linux
kernel, which in turn results in the kernel putting the
application to sleep till the event occurs. When there are
no active applications the kernel goes into the STANDBY
mode as described above. So eliminating busy loops in the
application helps the kernel save energy by going into the
STANDBY mode quicker.

Select calls are also used by the application to get
woken up at precise points of time in the future. When an
application goes into a select call with a timeout, the
kernel creates an entry on the timer list that gets triggered
when after the desired time interval. As described above,
our modifications to the Linux kernel look at the timer list
to decide how long the processor stays in the STANDBY
mode.

Reducing the duty factor for the OLED display saves
power by reducing its brightness. At night (between the
hours of 10PM to 6AM, say) the watch face can be
dimmed automatically to a level configurable by the user.

We have three alternative ways in which the watch can
receive data from other devices, infrared, Bluetooth™ and
serial connection on the docking station/charger for the
watch. The most convenient way of getting data into the
watch is Bluetooth and is recommended when the battery
is freshly charged. Infrared consumes less power than the
Bluetooth and can be used at other times. When the user
does not want to deplete the watch battery for getting data
updates, putting the watch on the charger and using the
docking station is recommended. We do not have power
measurements on the Bluetooth module since they are
early prototypes and do not implement all the power
saving modes of the Bluetooth protocol.

Understanding the wusage pattern for the device
thoroughly can further help to reduce the power
consumption. For example if the user sleeps regularly
between 10PM and 6AM and does not look at or operate
the watch during that interval, the display and the wireless
communication subsystems could be turned off. Knowing
the exact usage pattern is very important to help further
reduce the duty factor of the device.

6 Future Work

In order to gracefully degrade the operation of the
device as the battery is depleted we need to measure the
remaining battery energy and also to define a set of
degradation policies. So when the battery reaches below a
certain threshold, the most power consuming subsystems
may be disabled from operation and the processor may be
allowed to operate only at lower frequencies to reduce the
peak current drained from the battery.

For example, when the system is in sleep mode, most
of the power is consumed by the display and the DRAM
refresh. By definition we did not want the display to be
turned off since it is annoying to glance at your watch and
not see the time. Such a policy is fine when the battery is
still reasonably charged. However, if the battery has been
largely depleted, the system may shut the display off to
conserve power as it may be more useful in this stage to
prolong the time keeping ability. When this mode is
entered, user would tap the watch face to turn the display

on. Since the display has turned blank it serves as a
warning to the user to recharge or change his battery.

Another possibility for saving power in the sleep state
is turning off the DRAM. This is not straightforward since
there is a significant amount of dynamic state and data
maintained in the DRAM and this needs to be saved.
Issues such as how much energy is required to save the
state in Flash and how long it takes to save and restore the
data need to be explored.

Over time we expect the hardware components to
operate at lower energy levels and also that battery
capacity will improve. Using swappable batteries is one
pragmatic solution. Several current processors operate at
2.5 V and so when they start operating at 1.0V at some
point in the future the improvement for the active power
consumed by the processor will be a factor of 2.5%2.5 =
6.25 since the power consumed by the circuits is
proportional to the square of the voltage. Improved
voltage regulators are also needed to cut regulator losses
due to the mismatch in the circuit and battery voltages.

Another important question is whether the current
required for the device to be in sleep mode can be
provided by external means so that the user pays only for
active use of the device and not for the sleep mode. For
example if we consider solar energy that is incident of the
watch face and attempt to use it to charge the watch
battery, are we home free? The average solar energy
incident on the surface of earth is about 164 W/m?
accounting for variations in location, time of day, and
seasons. The conversion efficiency of the best solar panels
is around 9%. If we assume that the is 3 cm x 2 cm watch
face has transparent solar cells such as a Gratzelcell[15],
and use the above power and efficiency numbers (precise
efficiency numbers on transparent solar cells are not
readily available), the amount of power that can be
redirected towards charging the watch battery is
164x0.1x0.03x0.02 = 9.84mw. We need to derate this
number further by a factor of fifty or so since the user is
not out in the sun all the time. Overall, it appears we might
soon be able to self power the sleep mode.

7 Conclusions

Power consumption is very important for wearable
computers, and the smaller they get, the more significant
this issue becomes, and as we have shown, a wrist watch
formfactor is pushing the limit.

We studied the power consumption problem at several
levels such as hardware, operating system scheduler, and
the application level. We illustrated various trade-offs at
these different levels and how they impact overall battery
life. In many cases, we found that we had to trade-off
energy efficiency for other factors such as function, size
and usability, that were more important.

We have covered a significant distance in the race to
design high function devices that are small, truly wearable
and usable. We believe that such devices will achieve
acceptable battery life times in the near future.

8 References

1 C. Narayanaswami, M. T. Raghunath, “Application
Design for a Smart Watch with a High Resolution
Display,” Proceedings of the International
Symposium on Wearable Computing, Atlanta,
Georgia, 2000, pages 7-14.

2 J. Sanford and E. Schlig, “Direct view active matrix
VGA OLED-on-crystalline-silicon display,” 2001
SID International Symposium digest of technical
papers, Vol. XXXII.

3 Smailagic, A., Siewiorek, D., "System Level Design
as Applied to CMU Wearable Computers", Journal of
VLSI Signal Processing Systems, Kluwer Academic
Publishers, Vol. 21, No. 3, 1999.

4 T. Starner, “Human powered wearable computing,”
IBM Systems Journal, Vol 35, Nos. 3&4, 1996.

5 Want, R., Schilit, B., Adams, N., Gold, R., Petersen,
K., Goldberg, D., Ellis, J., and Weiser, M. “The
PARCTAB Ubiquitous Computing Experiment,”
Technical Report CSL-95-1, Xerox Palo Alto
Research Center, March 1995

6 M. Newman, J. Hong, “A Look at Power
Consumption and Performance on the 3Com Palm
Pilot”
http://www.google.com/search?q=cache:guir.cs.
berkeley.edu/projects/p6/finalpaper.html+standby-+cu
rrent+measurement+on-+the+palm+pilot&hl=en

7 Coutinho, L. “Power Supply of Palm Pilot,”
http://www.massena.com/darrin/pilot/luiz/item7.htm

8 Ulrich Hornstein, “Power Consumption of a Psion S5
8MB with CF,” http://home.t-online.de/home/u.
hornstein/ps_power_consumption.htm

9 J. Flinn, K. 1. Farkas, and J. Anderson, "Power and
Energy Characterization of the Itsy Pocket Computer
(Version 1.5) Compaq Western Research Laboratory
Technical Note TN-56, February, 2000

10 W. R. Hamburgen, D. A. Wallach, A. Viredaz, L. S.
Brakmo, C.A. Waldspurger, J.F. Bartlett, T. Mann, K.
I. Furkas, Itsy: "Stretching the Bounds of Mobile
Computing", pp. 28-36, IEEE Computer, April 2001

11 D. Linden, “Handbook of Batteries”, 2nd Edition,
McGraw Hill, 1994.

12 T. Martin and D. Siewiorek, "Non-ldeal Battery
Behavior and Its Impact on Power Performance
Trade-offs in Wearable Computing," Proceedings
1999 International Symposium Wearable Computers,
San Francisco, CA, October 18-19, 1999.

13

14

J. Flinn and M. Satyanarayanan, “PowerScope: A
Tool for Profiling the Energy Usage of Mobile
Applications”, Proceedings 2nd IEEE Workshop on
Mobile Computing Systems and Applications, New
Orleans, Louisiana, February, 1999.

Lithium Polymer battery discharge rates_Http: //
WWW. idongho.com/battery.htm. http://www.
selfcharge.com /technicalb.html,

15

16

http://battery.rnd.lgchem.co.kr/ english/doc
/oran-product2.html, http://www. chungpak.
com/new2.htm

ETRI developed nanoparticle oxide-based solar cells
http://www.etri.re.kr/nano.htm

Cirrus EP7211 datasheet,
http://www.cirrus.com/pubs/ep7211-1.pdf?Document
ID=123

