
26

Power dissipation limits have
emerged as a major constraint in the design
of microprocessors. At the low end of the per-
formance spectrum, namely in the world of
handheld and portable devices or systems,
power has always dominated over perfor-
mance (execution time) as the primary design
issue. Battery life and system cost constraints
drive the design team to consider power over
performance in such a scenario.

Increasingly, however, power is also a key
design issue in the workstation and server mar-
kets (see Gowan et al.)1 In this high-end arena
the increasing microarchitectural complexities,
clock frequencies, and die sizes push the chip-
level—and hence the system-level—power
consumption to such levels that traditionally
air-cooled multiprocessor server boxes may
soon need budgets for liquid-cooling or refrig-
eration hardware. This need is likely to cause
a break point—with a step upward—in the
ever-decreasing price-performance ratio curve.
As such, a design team that considers power
consumption and dissipation limits early in
the design cycle and can thereby adopt an
inherently lower power microarchitectural line
will have a definite edge over competing teams.

Thus far, most of the work done in the area
of high-level power estimation has been focused
at the register-transfer-level (RTL) description
in the processor design flow. Only recently have
we seen a surge of interest in estimating power
at the microarchitecture definition stage, and
specific work on power-efficient microarchi-
tecture design has been reported.2-8

Here, we describe the approach of using
energy-enabled performance simulators in
early design. We examine some of the emerg-
ing paradigms in processor design and com-
ment on their inherent power-performance
characteristics.

Power-performance efficiency
See the “Power-performance fundamentals”

box. The most common (and perhaps obvious)
metric to characterize the power-performance
efficiency of a microprocessor is a simple ratio,
such as MIPS (million instructions per sec-
ond)/watts (W). This attempts to quantify effi-
ciency by projecting the performance achieved
or gained (measured in MIPS) for every watt
of power consumed. Clearly, the higher the
number, the “better” the machine is.

While this approach seems a reasonable

David M. Brooks
Pradip Bose

Stanley E. Schuster
Hans Jacobson

Prabhakar N. Kudva
Alper Buyuktosunoglu
John-David Wellman

Victor Zyuban
Manish Gupta
Peter W. Cook
IBM T.J. Watson

Research Center

THE ABILITY TO ESTIMATE POWER CONSUMPTION DURING EARLY-STAGE

DEFINITION AND TRADE-OFF STUDIES IS A KEY NEW METHODOLOGY

ENHANCEMENT. OPPORTUNITIES FOR SAVING POWER CAN BE EXPOSED VIA

MICROARCHITECTURE-LEVEL MODELING, PARTICULARLY THROUGH CLOCK-

GATING AND DYNAMIC ADAPTATION.

0272-1732/00/$10.00  2000 IEEE

POWER-AWARE
MICROARCHITECTURE:

Design and Modeling Challenges for Next-Generation Microprocessors

choice for some purposes, there are strong argu-
ments against it in many cases, especially when
it comes to characterizing higher end proces-
sors. Performance has typically been the key

driver of such server-class designs, and cost or
efficiency issues have been of secondary impor-
tance. Specifically, a design team may well
choose a higher frequency design point (which

27NOVEMBER–DECEMBER 2000

At the elementary transistor gate level, we can formulate total power
dissipation as the sum of three major components: switching loss, leak-
age, and short-circuit loss.1-4

(A)

Here, C is the output capacitance, VDD is the supply voltage, f is the chip
clock frequency, and a is the activity factor (0 < a < 1) that determines the
device switching frequency. Vswing is the voltage swing across the out-
put capacitor. Ileakage is the leakage current, and Isc is the average short-
circuit current. The literature often approximates Vswing as equal to VDD

(or simply V for short), making the switching loss around (1/2)C V 2af.
Also for current ranges of VDD (say, 1 volt to 3 volts) switching loss,
(1/2)C V2af remains the dominant component.2 So as a first-order approx-
imation for the whole chip we may formulate the power dissipation as

(B)

Ci , Vi , ai , and fi are unit- or block-specific average values. The sum-
mation is taken over all blocks or units i, at the microarchitecture level
(instruction cache, data cache, integer unit, floating-point unit, load-
store unit, register files, and buses). For the voltage range considered,
the operating frequency is roughly proportional to the supply voltage;
C remains roughly the same if we keep the same design, but scale the
voltage. If a single voltage and clock frequency is used for the whole
chip, the formula reduces to

(C)

where K’s are unit- or block-specific constants. If we consider the worst-
case activity factor for each unit i—that is, if ai = 1 for all i, then

(D)

where Kv and Kf are design-specific constants.
That equation leads to the so-called cube-root rule.2 This points to the

single most efficient method for reducing power dissipation for a proces-
sor designed to operate at high frequency: reduce the voltage (and hence
the frequency). This is the primary mechanism of power control in Trans-
meta’s Crusoe chip (http://www.transmeta.com). There’s a limit, how-
ever, on how much VDD can be reduced (for a given technology), which
has to do with manufacturability and circuit reliability issues. Thus, a
combination of microarchitecture and circuit techniques to reduce power
consumption—without necessarily employing multiple or variable sup-
ply voltages—is of special relevance.

Performance basics
The most straightforward metric for measuring performance is the

execution time of a representative workload mix on the target processor.
We can write the execution time as

(E)

Here, PL is the dynamic path length of the program mix, measured as the
number of machine instructions executed. CPI is the average processor
cycles per instruction incurred in executing the program mix, and CT is
the processor cycle time (measured in seconds per cycle) whose inverse
determines clock frequency f. Since performance increases with decreas-
ing T, we may formulate performance PF as

(F)

Here, the K’s are constants for a given microarchitecture-compiler imple-
mentation. The Kpf value stands for the average number of machine
instructions executed per cycle on the machine being measured. PFchip

in this case is measured in MIPS.
Selecting a suite of publicly available benchmark programs that every-

one accepts as being representative of real-world workloads is difficult.
Adopting a noncontroversial weighted mix is also not easy. For the com-
monly used SPEC benchmark suite (http://www.specbench.org) the SPEC-
mark rating for each class is derived as a geometric mean of execution
time ratios for the programs within that class. Each ratio is calculated as
the speedup with respect to execution time on a specified reference
machine. If we believe in the particular benchmark suite, this method
has the advantage of allowing us to rank different machines unambigu-
ously from a performance viewpoint. That is, we can show the ranking
as independent of the reference machine used in such a formulation.

References
1. V. Zyuban, “Inherently Lower-Power High Performance

Super Scalar Architectures,” PhD dissertation, Univ. of Notre
Dame, Dept. of Computer Science and Engineering, 2000.

2. M.J. Flynn et al., “Deep-Submicron Microprocessor Design
Issues,” IEEE Micro, Vol. 19, No. 4, July/Aug. 1999, pp. 11-22.

3. S. Borkar, “Design Challenges of Technology Scaling,” IEEE
Micro, Vol. 19, No. 4, July/Aug. 1999, pp. 23-29.

4. R. Gonzalez and M. Horowitz, “Energy Dissipation in General
Purpose Microprocessors,” IEEE J. Solid-State Circuits, Vol.
31, No. 9, Sept. 1996, pp. 1277-1284.

PF K f K Vchip pf pv= =

T PL CPI CT PL CPI f= × × = × × (/)1

PW K V K fv fchip = =3 3

PW V K a f a
i

i
v K i

f
i

i
ichip (= =∑ ∑3 3) ()

PW C V a fi i i ichip
i

 = ∑(/) []1 2 2

PW C V afdevice DD swing leakage DD sc DD (/) V I V I V= + +1 2

Power-performance fundamentals at the microarchitecture level

meets maximum power budget constraints)
even if it operates at a much lower MIPS/W
efficiency compared to one that operates at bet-
ter efficiency but at a lower performance level.
As such, (MIPS)2/W or even (MIPS)3/W may
be the metric of choice at the high end.

On the other hand, at the lowest end, where
battery life (or energy consumption) is the pri-
mary driver, designers may want to put an even
greater weight on the power aspect than the
simplest MIPS/W metric. That is, they may
just be interested in minimizing the power for
a given workload run, irrespective of the exe-
cution time performance, provided the latter
doesn’t exceed some specified upper limit.

The MIPS metric for performance and the
watts value for power may refer to average or
peak values, derived from the chip specifica-
tions. For example, for a 1-gigahertz (109

cycles/sec) processor that can complete up to
4 instructions per cycle, the theoretical peak
performance is 4,000 MIPS. If the average
completion rate for a given workload mix is p
instructions/cycle, the average MIPS would
equal 1,000 times p. However, when it comes
to workload-driven evaluation and character-
ization of processors, metrics are often con-
troversial. Apart from the problem of deciding
on a representative set of benchmark applica-
tions, fundamental questions persist about
ways to boil down performance into a single
(average) rating that’s meaningful in compar-
ing a set of machines.

Since power consumption varies, depending
on the program being executed, the bench-

marking issue is also relevant in assigning an
average power rating. In measuring power and
performance together for a given program exe-
cution, we may use a fused metric such as the
power-delay product (PDP) or energy-delay
product (EDP).9 In general, the PDP-based for-
mulations are more appropriate for low-power,
portable systems in which battery life is the pri-
mary index of energy efficiency. The MIPS/W
metric is an inverse PDP formulation, where
delay refers to average execution time per
instruction. PDP, being dimensionally equal to
energy, is the natural metric for such systems.

For higher end systems (workstations) the
EDP-based formulation is more appropriate,
since the extra delay factor ensures a greater
emphasis on performance. The (MIPS)2/W
metric is an inverse EDP formulation. For the
highest performance server-class machines, it
may be appropriate to weight the delay part
even more. This would point to the use of
(MIPS)3/W, which is an inverse ED2P for-
mulation. Alternatively, we may use
(CPI)3 ×W (the cube of cycles per instruction
times power) as a direct ED2P metric applic-
able on a per-instruction basis.

The energy × (delay)2 metric, or perfor-
mance3/power formula, is analogous to the
cube-root rule,10 which follows from constant
voltage-scaling arguments (see Equations A
through D in the “Power-performance funda-
mentals” box). Clearly, to formulate a voltage-
invariant power-performance characterization
metric, we need to think in terms of perfor-
mance3/power.

28

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

0

5

10

15

20

25

30

In
te

l P
en

tiu
m

 II
I

AM
D A

th
lon

HP-P
A86

00

IB
M

 P
ow

er
3

Com
pa

q
21

26
4

M
ot

or
ola

 P
PC74

0

In
te

l C
ele

ro
n

M
IP

S R
12

00
0

Sun
 U

SII

Hal
Spa

rc
 6

4I
II

0

10

20

30

40

50
Im

pr
ov

em
en

t
ov

er
 w

or
st

 p
er

fo
rm

er

In
te

l P
en

tiu
m

 II
I

AM
D A

th
lon

HP-P
A86

00

IB
M

 P
ow

er
3

Com
pa

q
21

26
4

M
ot

or
ola

 P
PC74

0

In
te

l C
ele

ro
n

M
IP

S R
12

00
0

Sun
 U

SII

Hal
Spa

rc
 6

4I
II

Im
pr

ov
em

en
t

ov
er

 w
or

st
 p

er
fo

rm
er

SpecInt/W
SpecInt2/W
SpecInt3/W

SpecFp/W
SpecFp2/W
SpecFp3/W

(a) (b)

Figure 1. Performance-power efficiencies across commercial processor products. The newer processors appear on the left.

When we are dealing with
the SPEC benchmarks, we
may evaluate efficiency as
(SPECrating)x/W, or (SPEC)x/
W for short; where exponent
value x (equaling 1, 2, or 3)
may depend on the class of
processors being compared.

Figure 1a,b shows the
power-performance efficiency
data for a range of commercial processors of
approximately the same generation. (See
http://www.specbench.org, the Aug. 2000
Microprocessor Report, and individual vendor
Web pages, for example, http://www.intel.
com/design/pentiumiii/datashts/245264.htm.)

In Figure 1a,b the latest available processor
is plotted on the left and the oldest on the
right. We used SPEC/W, SPEC2/W, and
SPEC3/W as alternative metrics, where SPEC
stands for the processor’s SPEC rating. (See
earlier definition principles.) For each cate-
gory, the worst performer is normalized to 1,
and other processor values are plotted as
improvement factors over the worst
performer.

The data validates our assertion that—
depending on the metric of choice, and the
target market (determined by workload class
and/or the power/cost)—the conclusion
drawn about efficiency can be quite different.
For performance-optimized, high-end proces-
sors, the SPEC3/W metric seems fairest, with
the very latest Intel Pentium III and AMD
Athlon offerings (at 1 GHz) at the top of the
class for integer workloads. The older HP-PA
8600 (552 MHz) and IBM Power3 (450
MHz) still dominate in the floating-point
class. For power-first processors targeted
toward integer workloads (such as Intel’s
mobile Celeron at 333 MHz), SPEC/W
seems the fairest.

Note that we’ve relied on published perfor-
mance and “max power” numbers; and,
because of differences in the methodologies
used in quoting the maximum power ratings,
the derived rankings may not be completely
accurate or fair. This points to the need for
standardized methods in reporting maximum
and average power ratings for future proces-
sors so customers can compare power-perfor-
mance efficiencies across competing products
in a given market segment.

Microarchitecture-level power estimation
Figure 2 shows a block diagram of the basic

procedure used in the power-performance sim-
ulation infrastructure (PowerTimer) at IBM
Research. Apart from minor adaptations spe-
cific to our existing power and performance
modeling methodology, at a conceptual level it
resembles the recently published methods used
in Princeton University’s Wattch,4 Penn State’s
SimplePower,5 and George Cai’s model at Intel.8

The core of such models is a classical trace- or
execution-driven, cycle-by-cycle performance
simulator. In fact, the power-performance mod-
els4-6,8 are all built upon Burger and Austin’s
widely used, publicly available, parameterized
SimpleScalar performance simulator.11

We are building a tool set around the exist-
ing, research- and production-level simula-
tors12,13 used in the various stages of the
definition and design of high-end PowerPC
processors. The nature and detail of the ener-
gy models used in conjunction with the work-
load-driven cycle simulator determine the key
difference for power projections.

During every cycle of the simulated proces-
sor operation, the activated (or busy) micro-
architecture-level units or blocks are known
from the simulation state. Depending on the
particular workload (and the execution snap-
shot within it), a fraction of the processor
units and queue/buffer/bus resources are
active at any given cycle.

We can use these cycle-by-cycle resource usage
statistics—available easily from a trace- or exe-
cution-driven performance simulator—to esti-
mate the unit-level activity factors. If accurate
energy models exist for each modeled resource,
on a given cycle and if unit i is accessed or used,
we can estimate the corresponding energy con-
sumed and add it to the net energy spent over-
all for that unit. So, at the end of a simulation,
we can estimate the total energy spent on a unit
basis as well as for the whole processor.

29NOVEMBER–DECEMBER 2000

Program
executable

or trace Cycle-by-cycle
performance

simulator

Microarchitecture
parameters

Circuit/technology
parameters

Energy models

Performance estimate

Power
estimate

Figure 2. PowerTimer high-level block diagram.

Since the unit-level and
overall execution cycle
counts are available from
the performance simula-
tion, and since the tech-
nology implementation
parameters (voltage, fre-
quency) are known, we
can estimate average and
peak power dissipation
profiles for the whole chip,
in the context of the input
workload. Of course, this
kind of analysis implicitly
assumes that we can use
clock-gating techniques at
the circuit level (for exam-
ple, see Tiwari et al.14) to
selectively turn off dynam-
ic power consumption in

inactive functional units and on-chip stor-
age/communication resources.

Figure 3 shows the unit-level usage data for
some of the key functional units, based on a
detailed, cycle-accurate simulation of a proces-
sor similar in complexity and functionality to
a current generation superscalar such as the
Power4 processor.15 The data plot shown is
obtained by running simulations using a rep-
resentative sampled trace repository. This cov-
ers a range of benchmark workloads (selections
from SPEC95 and TPC-C) commonly used
in such designs. The functional units tracked
in this graph are the floating-point unit (FPU),
integer (fixed-point) unit (FXU), branch unit
(BRU), load-store unit (LSU), and “logic on
condition register” unit (CRU).

This simulation data indicates the poten-
tial power savings gained by selectively “gating
off ” unused processor segments during the
execution of a given workload mix. For exam-
ple, the FPU is almost totally inactive for gcc,
go, ijpeg, li, vortex, and tpcc-db2. The max-
imum unit use is about 50% (FXU for
m88ksim and vortex).

The potential here is especially significant if
we consider the distribution of power within
a modern processor chip. In an aggressive
superscalar processor that doesn’t employ any
form of clock gating, a design’s clock tree, dri-
vers, and clocked latches (pipeline registers,
buffers, queues) can consume up to 70% of
the total power. Even with the registers and

cache structures accounted for separately, the
clock-related power for a recent high-perfor-
mance Intel CPU is reported to be almost half
the total chip power.14 Thus, the use of gated
clocks to disable latches (pipeline stages) and
entire units when possible is potentially a
major source of power savings.

Depending on the exact hardware algo-
rithm used to gate off clocks, we can depict
different characteristics of power-performance
optimization. In theory, for example, if the
clock can be disabled for a given unit (perhaps
even at the individual pipeline stage granu-
larity) on every cycle that it’s not used, we’d
get the best power efficiency, without losing
any or much performance. However, such ide-
alized clock gating provides many implemen-
tation challenges for designers of high-end
processors due to considerations such as

• the need to include additional on-chip
decoupling capacitance to deal with large
current swings (L × [di/dt] effects), where
L stands for inductance and di/dt denotes
current gradients over time;

• more-complicated timing analysis to deal
with additional clock skew and the pos-
sibility of additional gate delays on crit-
ical timing paths, and

• more effort to test and verify the micro-
processor.

Despite these additional design challenges,
some commercial high-end processors have
begun to implement clock gating at various
levels of granularity, for example, the Intel
Pentium series and Compaq Alpha 21264.
The need for pervasive use of clock gating in
our server-class microprocessors has thus far
not outweighed the additional design com-
plexity. For the future, however, we continue
to look at methods to implement clock gat-
ing with a simplified design cost. Simpler
designs may implement gated clocks in local-
ized hot spots or in league with dynamic feed-
back data. For example, upon detection that
the power-hungry floating-point unit has
been inactive over the last, say, 1,000 cycles,
the execution pipes within that unit may be
gated off in stages, a pipe at a time to mini-
mize current surges. (See Pant et al.16)

Also for a given resource such as a register file,
enabling only the segment(s) in use—depend-

30

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

co
m

pr
es

s

fp
pp

p

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

tp
cc

-d
b2

0

0.1

0.2

0.3

0.4

0.5

0.6

E
xe

cu
tio

n
pi

pe
 u

se
 r

at
io

FXU
FPU
LSU
BRU
CRU

Figure 3. Unit-level usage data for a current-gen-
eration server-class superscalar processor.

ing on the number of ports that are active at a
given time—might conserve power. Alterna-
tively, at a coarser grain an entire resource may
be powered on or off, depending on demand.

Of course, even when a unit or its part is
gated off, the disabled part may continue to
burn a small amount of static power. To mea-
sure the overall advantage, we must carefully
account for this and other overhead power con-
sumed by the circuitry added to implement
gated-clock designs. In Wattch,4 Brooks et al.
report some of the observed power-perfor-
mance variations, with different mechanisms

of clock-gating control. Other dynamic adap-
tation schemes (see the “Adaptive microarchi-
tectures” box) of on-chip resources to conserve
power are also of interest in our ongoing power-
aware microarchitecture research.

Asynchronous circuit techniques such as
interlocked pipeline CMOS (IPCMOS) pro-
vide the benefits of fine-grain clock gating as a
natural and integrated design aspect. (See the
“Low-power, high-performance circuit tech-
niques” box.) Such techniques have the further
advantage that current surges are automatical-
ly minimized because each stage’s clock is gen-

31NOVEMBER–DECEMBER 2000

Current-generation microarchitectures are usually not adaptive; that
is, they use fixed-size resources and a fixed functionality across all pro-
gram runs. The size choices are made to achieve best overall perfor-
mance over a range of applications. However, an individual application’s
requirements not well matched to this particular hardware organization
may exhibit poor performance. Even a single application run may exhib-
it enough variability during execution, resulting in uneven use of the chip
resources. The result may often be low unit use (see Figure 3 in the main
text), unnecessary power waste, and longer access latencies (than
required) for storage resources. Albonesi et al.1,2 in the CAP (Complexi-
ty-Adaptive Processors) project at the University of Rochester, have stud-
ied the power and performance advantages in dynamically adapting
on-chip resources in tune with changing workload characteristics. For
example, cache sizes can be adapted on demand, and a smaller cache
size can burn less power while allowing faster access. Thus, power and
performance attributes of a pair (program, machine) can both be
enhanced via dynamic adaptation.

Incidentally, a static solution that attempts to exploit the fact that
most of the cache references can be trapped by a much smaller “filter
cache”3 can also save power, albeit at the expense of a performance hit
caused by added latency for accessing the main cache.

Currently, as part of the power-aware microarchitecture research pro-
ject at IBM, we are collaborating with the Albonesi group in implementing
aspects of dynamic adaptation in a prototype research processor. We’ve
finished the high-level design (with simulation-based analysis at the cir-
cuit and microarchitecture levels) of an adaptive issue queue.4 The dynam-
ic workload behavior controls the queue resizing. The transistor and
energy overhead of the added counter-based monitoring and decision
control logic is less than 2%.

Another example of dynamic adaptation is one in which on-chip power
(or temperature) and/or performance levels are monitored and fed back
to control the progress of later instruction processing. Manne et al.5 pro-
posed the use of a mechanism called “pipeline gating” to control the
degree of speculation in modern superscalars, which employ branch pre-
diction. This mechanism allows the machine to stall specific pipeline
stages when it’s determined that the processor is executing instructions

in an incorrectly predicted branch path. This determination is made using
“confidence estimation” hardware to assess the quality of each branch
prediction. Such methods can drastically reduce the count of misspecu-
lated executions, thereby saving power. Manne5 shows that such power
reductions can be effected with minimal loss of performance. Brooks and
colleagues6 have used power dissipation history as a proxy for tempera-
ture, in determining when to throttle the processor. This approach can
help put a cap on maximum power dissipation in the chip, as dictated by
the workload at acceptable performance levels. It can help reduce the
thermal packaging and cooling solution cost for the processor.

References
1. D.H. Albonesi, “The Inherent Energy Efficiency of Complexity-

Adaptive Processors,” presented at the ISCA-25 Workshop on
Power-Driven Microarchitecture, 1998; http://www.ccs.
rochester.edu/projects/cap/cappublications.htm.

2. R. Balasubramonian et al., “Memory Hierarchy
Reconfiguration for Energy and Performance in General-
Purpose Processor Architectures,” to be published in Proc.
33rd Ann. Int’l Symp. Microarchitecture, (Micro-33), IEEE
Computer Society Press, Los Alamitos, Calif., 2000.

3. J. Kin, M. Gupta, and W. Mangione-Smith, “The Filter Cache:
An Energy-Efficient Memory Structure,” Proc. IEEE Int’l
Symp. Microarchitecture, IEEE CS Press, 1997, pp. 184-193.

4. A. Buyuktosunoglu et al., “An Adaptive Issue Queue for
Reduced Power at High Performance,” IBM Research Report
RC 21874, Yorktown Heights, New York, Nov. 2000.

5. S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating:
Speculation Control for Energy Reduction,” Proc. 25th Ann.
Int’l Symp. Computer Architecture (ISCA-25), 1998, IEEE CS
Press, pp. 132-141.

6. D. Brooks and M. Martonosi, “Dynamic Thermal
Management for High Performance Microprocessors,” to be
published in Proc. Seventh Int’l Symp. High Performance
Computer Architecture HPCA-7, IEEE CS Press, 2001.

Adaptive microarchitectures

erated locally and asynchronously with respect
to other pipeline stages. Thus, techniques such
as IPCMOS have the potential of exploiting the
unused execution pipe resources (depicted in
Figure 3) to the fullest. They burn clocked latch
power strictly on demand at every pipeline stage,
without the inductive noise problem.

The usefulness of microarchitectural power
estimators hinges on the accuracy of the
underlying energy models. We can formulate
such models for given functional unit blocks
(the integer or floating-point execution data
path), storage structures (cache arrays, regis-
ter files, or buffer space), or communication

32

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

Stanley Schuster, Peter Cook, Hans Jacobson, and Prabhakar Kudva
Circuit techniques that reduce power consumption while sustaining

high-frequency operation are a key to future power-efficient processors.
Here, we mention a couple of areas where we’ve made recent progress.

IPCMOS
Chip performance, power, noise, and clock synchronization are becom-

ing formidable challenges as microprocessor performances move into
the GHz regime and beyond. Interlocked Pipelined CMOS (IPCMOS),1 a
new asynchronous clocking technique, helps address these challenges.

Figure A (reproduced from Schuster et al.1) shows a typical block (D)
interlocked with all the blocks with which it interacts. In the forward
direction, dedicated Valid signals emulate the worst-case path through
each driving block and thus determine when data can be latched within
the typical block. In the reverse direction, Acknowledge signals indicate
that data has been received by the subsequent blocks and that new data
may be processed within the typical block. In this interlocked approach
local clocks are generated only when there’s an operation to perform.

Measured results on an experimental chip demonstrate robust oper-
ation for IPCMOS at 3.3 GHz under typical conditions and 4.5 GHz under
best-case conditions in 0.18-micron, 1.5-V CMOS technology. Since the
locally generated clocks for each stage are active only when the data
sent to a given stage is valid, power is conserved when the logic blocks
are idling. Furthermore, with the simplified clock environment it’s possi-
ble to design a very simple single-stage latch that can capture and launch
data simultaneously without the danger of a race.

The general concepts of interlocking, pipelining and asynchronous
self-timing are not new and have been proposed in a variety of forms.2,3

However the techniques used in those approaches are too slow, espe-
cially for macros that receive data from many separate logic blocks. IPC-
MOS achieves high-speed interlocking by combining the function of a
static NOR and an input switch to perform a unique cycle-dependent
AND function. Every local clock circuit has a strobe circuit that imple-
ments the asynchronous interlocking between stages. (See Schuster et
al.1 for details). A significant power reduction results when there’s no
operation to perform and the local clocks turn off. The clock transitions
are staggered in time, reducing the peak di/dt—and therefore noise—
compared to a conventional approach with a single global clock. The IPC-
MOS circuits show robust operation with large variations in power supply
voltage, operating temperature, threshold voltage, and channel length.

Low-power memory structures
With ever-increasing cache sizes and out-of-order issue structures,

the energy dissipated by memory circuitry is becoming a significant part
of a microprocessor’s total on-chip power consumption.

Random access memories (RAMs) found in caches and register files
consume power mainly due to the high-capacitance bitlines on which
data is read and written. To allow fast access to large memories, these
bitlines are typically implemented as precharged structures with sense
amplifiers. Such structures combined with the high load on the bitlines
tend to consume significant power.

Techniques typically used to improve access time, such as dividing
the memory into separate banks, can also be used as
effective means to reduce the power consumption.
Only the sub-bitline in one bank then needs to be
precharged and discharged on a read, rather than the
whole bitline, saving energy. Dividing often-unused
bitfields (for example, Immediates) into segments and
gating the wordline drive buffers with valid signals
associated with these segments may in some situa-
tions further save power by avoiding having to drive
parts of the high-capacitance wordline and associat-
ed bitlines.

Content addressable memories (CAMs)4 store data
and provide an associative search of their contents.
Such memories are often used to implement register
files with renaming support and issue queue struc-
tures that require support for operand and instruction

Low-power, high-performance circuit techniques

DATA (A)

VALID (A)

ACK (D)
Block

A

Block
D

Block
E

Block
F

DATA (B)

VALID (B)

ACK (D)

DATA (D)

VALID (D)

ACK (E)

DATA (D)

VALID (D)

ACK (F)

Block
B

DATA (C)

VALID (C)

ACK (D)
Block

C

Figure A. Interlocking at block level.

bus structures (instruction dispatch bus or
result bus) using either

• circuit-level or RTL simulation of the
corresponding structures with circuit and
technology parameters germane to the
particular design, or

• analytical models or equations that for-
mulate the energy characteristics in terms
of the design parameters of a particular
unit or block.

Prior work4,6 discusses the formulation of
analytical capacitance equations that describe
microarchitecture building blocks. Brooks et
al.,4 for example, provides categories of struc-
tures modeled for power: 1) array structures
including caches, register files, and branch pre-
diction tables; 2) content-addressable memo-
ry (CAM) structures including those used in
issue queue logic, translation look-aside buffers
(TLBs); 3) combinational logic blocks and
wires including the various functional units
and buses; and 4) clocking structures includ-
ing the corresponding buffers, wires, and
capacitive loads.

Brooks et al. validated the methodology for
forming energy models by comparing the ener-
gy models for array structures with schematic
and layout-level circuit extractions for array
structures derived from a commercial Intel
microprocessor. They were found to be accu-
rate within 10%. This is similar to the accu-
racy reported by analytical cache delay models
that use a similar methodology. On the other
hand, since the core simulation occurred at the
microarchitectural abstraction, the speed was
1,000 times faster when compared to existing
layout-level power estimation tools.

If detailed power and area measurements for
a given chip are possible, we could build rea-
sonably accurate energy models based on power
density profiles across the various units. We can
use such models to project expected power
behavior for follow-on processor design points
by using standard technology scaling factors.
These power-density-based energy models have
been used in conjunction with trace-driven
simulators for power analysis and trade-off
studies in some Intel processors.8 We’ve devel-
oped various types of energy models: 1) power-
density-based models for design lines with
available power and area measurements from
implemented chips; and 2) analytical models
in terms of microarchitecture-level design para-
meters such as issue width, number of physi-
cal registers, pipeline stage lengths,
misprediction penalties, cache geometry para-
meters, queue/buffer lengths, and so on.

We formulated the analytical energy behav-

33NOVEMBER–DECEMBER 2000

tag matching. The high energy dissipation of CAM
structures physically limits the size of such memories.4

The high power consumption of CAMs is a result of
the way the memory search is performed. The search
logic for a CAM entry typically consists of a matchline
to which a set of wired-XNOR functions are connect-
ed. These XNOR functions implement the bitwise com-
parison of the memory word and an externally supplied
data word. The matchline is precharged high and is
discharged if a mismatch occurs. In the use of CAMs
for processor structures such as the issue queue, mis-
matches are predominant. Significant power is thus
consumed without performing useful work. In addi-
tion, precharge-structured logic requires that the high-
capacitance taglines that drive the match transistors
for the externally supplied word must be cleared before
the matchline can be precharged. This results in further
wase of power.

AND-structured CAM match logic has been pro-
posed to reduce power dissipation since it discharges
only the matchline if there’s actually a match. How-
ever, AND logic is inherently slower than wired-XNOR
logic for wide memory words. New CAM structures
that can offer significantly lower power while offer-
ing performance comparable to wired-XNOR CAMs
have recently been studied as part of our research in
this area.

References
1. S. Schuster et al., “Asynchronous Inter-

locked Pipelined CMOS Circuits Operating
at 3.3-4.5 GHz,” Proc. 2000 IEEE Int’l Solid-
State Circuits Conf. (ISSCC), IEEE Press, Pis-
cataway, N.J., 2000, pp. 292-293.

2. I. Sutherland, “Micropipelines,” Comm.
ACM, Vol. 32, No. 6, ACM Press, New York,
June 1989.

3. C. Mead and L. Conway, Introduction To
VLSI Systems, Addison-Wesley Publishing
Company, Reading, Mass., 1980.

4. K.J. Schultz, “Content-Addressable Memory
Core Cells: A Survey,” Integration, the VLSI
J., Vol. 23, 1997, pp. 171-188.

iors based on simple area determinants and
validated the constants with circuit-level sim-
ulation experiments using representative test
vectors. Data-dependent transition variations
aren’t considered in our initial energy model
formulations, but we will factor them into the
next simulator version.

We consider validation to be an integrated
part of the methodology. Our focus is on
building models that rate highly for relative
accuracy. That is, our goal is to enable design-
ers to explore early-stage microarchitecture
options that are inherently superior from a
power-efficiency standpoint. Absolute accu-
racy of early-stage power projection for a
future processor isn’t as important, so long as
tight upper bounds are established early.

Power-performance trade-off result
In our simulation toolkit, we assumed a

high-level description of the processor model.
We obtained results using our current version
of PowerTimer, which works with presilicon
performance and energy models developed for
future, high-end PowerPC processors.

Base microarchitecture model
Figure 4 shows the high-level organization of

our modeled processor. The model details make
it equivalent in complexity to a modern, out-
of-order, high-end microprocessor (for exam-
ple, the Power4 processor15). Here, we assume
a generic, parameterized, out-of-order super-
scalar processor model adopted in a research
simulator called Turandot.12,13 (Figure 4 is essen-

34

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

I-TLB1 L1-Icache

I-buffer

I-TLB2

D-TLB1

D-TLB2

L2 cache
Decode/
expand

Rename/
dispatch

L1-Dcache

Main
memory

Cast-out
queue

Branch predictor

Issue queue
integer

Issue logic

Register read

Integer units

Issue queue
load/store

Issue logic

Register read

Load/store units

Load/store
reorder buffer

Store
queue

Miss
queue

Issue queue
floating point

Issue logic

Retirement
queue

Retirement logic

Register read

Floating-point
units

Issue queue
branch

Issue logic

Register read

Branch units

I-fetch

Figure 4. Processor organization modeled by the Turandot simulator.

tially reproduced from Moudgill et al.13)
As described in the Turandot validation

paper, this research simulator was calibrated
against a pre-RTL, detailed, latch-accurate
processor model (referred to here as the R-
model13). The R-model served as a validation
reference in a real processor development pro-
ject. The R-model is a custom simulator writ-
ten in C++ (with mixed VHDL “interconnect
code”). There is a virtual one-to-one corre-
spondence of signal names between the R-
model and the actual VHDL (RTL) model.
However, the R-model is about two orders of
magnitude faster than the RTL model and con-
siderably more flexible. Many microarchitec-
ture parameters can be varied, albeit within
restricted ranges. Turandot, on the other hand
is a classical trace/execution-driven simulator,
written in C, which is one to two orders of
magnitude faster than the R-model. It supports
a much greater number and range of parame-
ter values (see Moudgill et al.13 for details).

Here, we report power-performance results
using the same version of R-model as that
used in Moudgill et al.13 That is, we decided
to use our developed energy models first in
conjunction with the R-model to ensure accu-
rate measurement of the resource use statis-
tics within the machine. To circumvent the
simulator speed limitations, we used a paral-
lel workstation cluster (farm). We also post-
processed the performance simulation output
and fed the average resource use statistics to
the energy models to get the average power
numbers. Looking up the energy models on
every cycle during the actual simulation run
would have slowed the R-model execution
even further. While it would’ve been possible
to get instantaneous, cycle-by-cycle energy
consumption profiles through such a method,
it wouldn’t have changed the average power
numbers for entire program runs.

Having used the detailed, latch-accurate ref-
erence model for our initial energy character-
ization, we could look at the unit- and
queue-level power numbers in detail to under-
stand, test, and refine the various energy mod-
els. Currently, we have reverted to using an
energy-model-enabled Turandot model, for
fast CPI versus power trade-off studies with
full benchmark traces. Turandot lets us exper-
iment with a wider range and combination of
machine parameters.

Our experimental results are based on the
SPEC95 benchmark suite and a commercial
TPC-C trace. All workload traces were collect-
ed on a PowerPC machine. We generated
SPEC95 traces using the Aria tracing facility
within the MET toolkit.13 We created the SPEC
trace repository by using the full reference input
set, however, we used sampling to reduce the
total trace length to 100 million instructions
per benchmark program. In finalizing the
choice of exact sampling parameters, the per-
formance team also compared the sampled
traces against the full traces in a systematic val-
idation study. The TPC-C trace is a contiguous
(unsampled) trace collected and validated by
the processor performance team at IBM Austin
and is about 180 million instructions long.

Data cache size and effect of scaling techniques
We evaluated the relationship between per-

formance, power, and level 1 (L1) data cache
size. We varied the cache size by increasing the
number of cache lines per set while leaving
the line size and cache associativity constant.
Figure 5a,b (next page) shows the results of
increasing the cache size from the baseline
architecture. This is represented by the points
corresponding to the current design size; these
are labeled 1x on the x-axis in those graphs.

Figure 5a (next page) illustrates the varia-
tion of relative CPI with the L1 data cache size
(CPI and related power-performance metric
values in Figures 5 and 6 are relative to the
baseline machine values, that is, points 1x on
the x-axes.) Figure 5b shows the variation
when considering the metric (CPI)3 × power.
From Figure 5b, it’s clear that the small CPI
benefits of increasing the data cache are out-
weighed by the increases in power dissipation
due to larger caches.

Figure 5b shows the [(CPI)3 ×power] metric
with two different scaling techniques. The first
technique assumes that power scales linearly
with the cache size. As the number of lines dou-
bles, the power of the cache also doubles. The
second scaling technique is based on data from
a study17 of energy optimizations within multi-
level cache architectures: cache power dissipa-
tion for conventional caches with sizes ranging
from 1 Kbyte to 64 Kbytes. In the second scal-
ing technique, which we call non-lin, the cache
power is scaled with the ratios presented in the
same study. The increase in cache power by dou-

35NOVEMBER–DECEMBER 2000

bling cache size using this technique is roughly
1.46x, as opposed to the 2x with the simple lin-
ear scaling method. Obviously, the choice of
scaling technique can greatly affect the results.
However, with either scaling choice, conven-
tional cache organizations (that is, cache designs
without partial array shutdowns to conserve
power) won’t scale in a power-efficient manner.
Note that the curves shown in Figure 5b assume

a given, fixed circuit/technology generation;
they show the effect of adding more cache to an
existing design.

Ganged sizing
Out-of-order superscalar processors of the

class considered rely on queues and buffers to
efficiently decouple instruction execution and
increase performance. The pipeline depth and

36

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

1x 2x 4x 8x 16x

Relative cache size

0.95

0.97

0.96

0.98

0.99

1

1.01

R
el

at
iv

e
C

P
I

1x 2x 4x 8x 16x

Relative cache size

0

1

2

3

4

5

R
el

at
iv

e
C

P
I3

×
po

w
er

(a) (b)

SpecFp
SpecInt
TPC-C

SpecFp-lin
SpecFp-nonlin
SpecInt-lin
SpecInt-nonlin
TPC-C-lin
TPC-C-nonlin

R
el

at
iv

e
C

P
I3 ×

 p
ow

er

(a) (b)

0.5

1

1.5

2

2.5

3
SpecFp
SpecInt
TPC-C

SpecFp
SpecInt
TPC-C

0.6x 0.8x 1x 1.2x 1.4x

Relative core size

0.6x 0.8x 1x 1.2x 1.4x

Relative core size

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R
el

at
iv

e
C

P
I

Figure 5. Variation of performance (a) and power-performance (b) with cache size.

Figure 6. Variation of performance (a) and power-performance (b) with core size (ganged parameters).

the resource size required to support decou-
pled execution combine to determine the
machine performance. Because of this decou-
pled execution style, increasing the size of one
resource without regard to other machine
resources may quickly create a performance
bottleneck. Thus, we considered the effects of
varying multiple parameters rather than just
a single parameter in our modeled processor.

Figure 6a,b shows the effects of varying all
of the resource sizes within the processor core.
These include issue queues, rename registers,
branch predictor tables, memory disambigua-
tion hardware, and the completion table. For
the buffers and queues, the number of entries
in each resource is scaled by the values speci-
fied in the charts (0.6x, 0.8x, 1.2x, and 1.4x).
For the instruction cache, data cache, and
branch prediction tables, the sizes of the struc-
tures are doubled or halved at each data point.

From Figure 6a, we can see that perfor-
mance increased by 5.5% for SPECfp, 9.6%
for SPECint, and 11.2% for TPC-C as the
size of the resources within the core is
increased by 40% (except for the caches that
are 4x larger). The configuration had a power
dissipation of 52% to 55% higher than the
baseline core. Figure 6b shows that the most
power-efficient core microarchitecture is
somewhere between the 1x and 1.2x cores.

Power-efficient microarchitecture design
ideas and trends

With the means to evaluate power efficien-
cy during early-stage microarchitecture eval-
uations, we can propose and characterize
processor organizations that are inherently
energy efficient. Also, if we use the right effi-
ciency metric in the right context (see earlier
discussion), we can compare alternate points
and rank them using a single power-perfor-
mance efficiency number. Here, we first exam-
ine the power-performance efficiency trend
exhibited by the current regime of superscalar
processors. The “SMT/CMP differences and
energy efficiency issues” box uses a simple
loop-oriented example to illustrate the basic
performance and power characteristics of the
current superscalar regime. It also shows how
the follow-on paradigms such as simultane-
ous multithreading (SMT) may help correct
the decline in power-performance efficiency
measures.

Single-core, wide-issue, superscalar processor chip
paradigm

One school of thought envisages a contin-
ued progression along the path of wider,
aggressively speculative superscalar paradigms.
(See Patt et al.18 for an example.) Researchers
continue to innovate in efforts to exploit

37NOVEMBER–DECEMBER 2000

SMT/CMP differences and energy-efficiency issues
Consider the floating-point loop kernel shown in Table A. The loop body consists of seven

instructions labeled A through G. The final instruction is a conditional branch that causes
control to loop back to the top of the loop body. Labels T through Z are used to tag the cor-
responding instructions for a parallel thread when considering SMT and CMP. The lfdu/stfdu
instructions are load/store instructions with update where the base address register (say, r1,
r2, or r3) is updated to hold the newly computed address.

We assumed that the base machine (refer to Figure 4 in the main text) is a four-wide super-
scalar processor with two load-store units supporting two floating-point pipes. The data
cache has two load ports and a separate store port. The two load-store units (LSU0 and LSU1)
are fed by a single issue queue LSQ; similarly, the two floating-point units (FPU0 and FPU1)
are fed by a single issue queue FPQ. In the context of the loop just shown, we essentially focus
on the LSU-FPU subengine of the whole processor.

Assume that the following high-level parameters (latency and bandwidth) characterizing
the base superscalar machine:

• Instruction fetch bandwidth fetch_bw of two times W is eight instructions per cycle.
• Dispatch/decode/rename bandwidth equals W, which is four instructions/cycle; dis-

patch stalls beyond the first branch scanned in the instruction fetch buffer.
• Issue bandwidth from LSQ (reservation station) lsu_bw of W/2 is two instructions/cycle.
• Issue bandwidth from FPQ fpu_bw of W/2 is two instructions/cycle.
• Completion bandwidth compl_bw of W is four instructions/cycle.
• Back-to-back dependent floating-point operation issue delay fp_delay is one cycle.

Table A. Example loop test case.

Parallel

instruction Load/store

tags Instruction instruction Description

T A fadd fp3, fp1, fp0 ; add FPR fp1 and fp0; store into
target register fp3

U B lfdu fp5, 8(r1) ; load FPR fp5 from memory
address: 8 + contents of GPR r1

V C lfdu fp4, 8(r3) ; load FPR fp4 from memory
address: 8 + contents of GPR r3

W D fadd fp4, fp5, fp4 ; add FPR fp5 and fp4; store into
target register fp4

X E fadd fp1, fp4, fp3 ; add FPR fp4 and fp3; store into
target register fp1

Y F stfdu fp1, 8(r2) ; store FPR fp1 to memory
address: 8 + contents of GPR r2

Z G bc loop_top ; branch back conditionally to
top of loop body

continued on p. 38

38

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

• The best-case load latency from fetch to write back is five cycles
• The best-case store latency, from fetch to writing in the pending

store queue is four cycles. (A store is eligible to complete the cycle
after the address-data pair is valid in the store queue.)

• The best-case floating-point operation latency from fetch to write
back is seven cycles (when the FPQ issue queue is bypassed
because it’s empty).

Load and floating-point operations are eligible for completion (retire-
ment) the cycle after write back to rename buffers. For simplicity of analy-
sis assume that the processor uses in-order issue from issue queues LSQ
and FPQ.

In our simulation model, superscalar width W is a ganged parameter,
defined as follows:

• W = (fetch_bw/2) = disp_bw = compl_bw.
• The number of LSU units, ls_units, FPU units, fp_units, data cache

load ports, l_ports, and data cache store ports, the term s_ports,
vary as follows as W is changed: ls_units = fp_units = l_ports =
max [floor(W/2), 1]. s_ports = max [floor(l_ports/2), 1].

We assumed a simple analytical energy model in which the power
consumed is a function of parameters W, ls_units, fp_units, l_ports, and
s_ports. In particular, the power (PW) in pseudowatts is computed as

PW = W 0.5+ ls_units + fp_units + l_ports + s_ports.

Figure B shows the performance and performance/power ratio vari-
ation with superscalar width. The MIPS values are computed from the
CPI values, assuming a 1-GHz clock frequency.

The graph in Figure B1 shows that a maximum issue width of four could
be used to achieve the best (idealized) CPI performance. However as shown
in Figure B2, from a power-performance efficiency viewpoint (measured
as a performance over power ratio in this example), the best-case design
is achieved for a width of three. Depending on the sophistication and accu-
racy of the energy model (that is, how power varies with microarchitec-

tural complexity) and the exact choice of the power-performance efficien-
cy metric, the maximum value point in the curve in Figure B2 will change.
However beyond a certain superscalar width, the power-performance effi-
ciency will diminish continuously. Fundamentally, this is due to the single-
thread ILP limit of the loop trace.

Note that the resource sizes (number of rename buffers, reorder buffer
size, sizes of various other queues, caches, and so on) are assumed to be
large enough that they’re effectively infinite for the purposes of our running
example. Some of the actual sizes assumed for the base case (W = 4) are

• completion (reorder) buffer size cbuf_size of 32,
• load-store queue size lsq_size of 6,
• floating-point queue size fpq_size of 8, and
• pending store queue size psq_size of 16.

As indicated in the main text, the microarchitectural trends beyond
the current superscalar regime are effectively targeted toward the goal
of extending the processing efficiency factors. That is, the complexity
growth must ideally scale at a slower rate than performance growth.
Power consumption is one index of complexity; it also determines pack-
aging and cooling costs. (Verification cost and effort is another impor-
tant index.) In that sense, striving to ensure that the power-performance
efficiency metric of choice is a nondecreasing function of time is a way
of achieving complexity-effective designs (see reference 3 in the main
text reference list).

Let’s examine one of the paradigms, SMT, discussed in the main text
to understand how this may affect our notion of power-performance effi-
ciency. Table B shows a snapshot of the steady-state, cycle-by-cycle,
resource use profile for our example loop trace executing on the base-
line, with a four-wide superscalar machine (with a fp_delay of 1). Note the
completion (reorder) buffer, CBUF, LSQ, LSU0, LSU1, FPQ, FPU0, FPU1, the
cache access ports (C0, C1: read and C3: write), and the pending store
queue. The use ratio for a queue, port, or execution pipe is measured as
the number of valid entries/stages divided by the total for that resource.
Recall from Figure B that the steady-state CPI for this case is 0.28.

The data in Table B shows that the steady-state use of the CBUF is 53%,
the LSU0/FPU0 pipe is fully used (100%), and the average use of the

1 2 3 4 5 6 7 8 9 10 11 12

Superscalar width (W)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

S
te

ad
y-

st
at

e
lo

op
 (

CP
I)

1 2 3 4 5 6 7 8 9 10

Superscalar width (W)

50

100

150

200

250

M
IP

S
/p

se
ud

ow
at

ts

Simple, analytical energy model

(1) (2)

Figure B. Loop performance (1) and performance/power variation (2) with issue width.

continued from p. 37

39NOVEMBER–DECEMBER 2000

LSU1/FPU1 pipe is 50% [(0.6 + 0.4)/2
= 0.5 for FPU1]. The LSQ and FPQ are
totally unused (0%) because of the
queue bypass facility and the rela-
tive lack of dependence stalls. The
average read/write port use of the
data cache is roughly 33%; and the
pending store queue residency is a
constant 2 out of 16 (= 0.125, or
roughly 13%). Due to fundamental
ILP limits, the CPI won’t decrease
beyond W = 4, while queue/buffer
sizes and added pipe use factors will
go on decreasing as W is increased.
Clearly, power-performance efficiency will be on a downward trend (see
Figure B). (Of course, here we assume maximum processor power num-
bers, without clock gating or dynamic adaptation to bring down power).

With SMT, assume that we can fetch from two threads (simultane-
ously, if the instruction cache has two ports, or in alternate cycles if the
instruction cache has one port). Suppose two copies of the same loop
program (see Table A) are executing as two different threads. So, thread-
1 instructions A-B-C-D-E-F-G and thread-2 instructions T-U-V-W-X-Y-Z
are simultaneously available for dispatch and subsequent execution on
the machine. This facility allows the use factors, and the net throughput
performance to increase, without a significant increase in the maximum
clocked power. This is because the width isn’t increased, but the exe-
cution and resource stages or slots can be filled up simultaneously from
both threads.

The added complexity in the front end—of maintaining two program
counters (fetch streams) and the global register space increase alluded
to before—adds to the power a bit. On the other hand, the core execu-
tion complexity can be relaxed somewhat without a performance hit. For
example, we can increase the fp_delay parameter to reduce core com-
plexity, without performance degradation.

Figure C shows the expected performance and power-performance
variation with W for the two-thread SMT processor. The power model
assumed for the SMT machine is the same as that of the underlying

superscalar, except that a fixed fraction of the net power is added to
account for the SMT overhead. (Assume the fraction added is linear in
the number of threads in an n-thread SMT.)

Figure C2 shows that under the assumed model, the power-perfor-
mance efficiency scales better with W, compared with the base super-
scalar (Figure B1).

In a multiscalar-type CMP machine, different iterations of a loop pro-
gram could be initiated as separate tasks or threads on different core
processors on the same chip. Thus in a two-way multiscalar CMP, a glob-
al task sequencer would issue threads A-B-C-D-E-F-G and T-U-V-W-X-Y-
Z derived from the same user program in sequence to two cores.

Register values set in one task are forwarded in sequence to depen-
dent instructions in subsequent tasks. For example, the register value in fp1
set by instruction E in task 1 must be communicated to instruction T in task
2. So instruction T must stall in the second processor until the value com-
munication has occurred from task 1. Execution on each processor pro-
ceeds speculatively, assuming the absence of load-store address conflicts
between tasks. Dynamic memory address disambiguation hardware is
required to detect violations and restart task executions as needed.

If the performance can be shown to scale well with the number of
tasks, and if each processor is designed as a limited-issue, limited-
speculation (low-complexity) core, we can achieve better overall scala-
bility of power-performance efficiency.

Table B. Steady-state, cycle-by-cycle resource use profile (W = 4 superscalar). C: cache access port, CBUF: completion

(reorder) buffer, PSQ: pending store queue

Cycle CBUF LSQ LSU0 LSU1 FPQ FPU0 FPU1 C0 C1 C3 PSQ

n 0.53 0 1 0.5 0 1 0.6 1 1 0 0.13
n+1 0.53 0 1 0.5 0 1 0.4 0 0 1 0.13
n+2 0.53 0 1 0.5 0 1 0.6 1 1 0 0.13
n+3 0.53 0 1 0.5 0 1 0.4 0 0 1 0.13
n+4 0.53 0 1 0.5 0 1 0.6 1 1 0 0.13
n+5 0.53 0 1 0.5 0 1 0.4 0 0 1 0.13
n+6 0.53 0 1 0.5 0 1 0.6 1 1 0 0.13
n+7 0.53 0 1 0.5 0 1 0.4 0 0 1 0.13
n+8 0.53 0 1 0.5 0 1 0.6 1 1 0 0.13
n+9 0.53 0 1 0.5 0 1 0.4 0 0 1 0.13

1 2 3 4 5 6 7 8 9 10 11 12
Superscalar width (W)

50

100

150

200

250

300

M
IP

S
/p

se
ud

o
w

at
ts

Simple, analytical energy model

2-thread SMT

1 2 3 4 5 6 7 8 9 101112
Superscalar width (W)

0

0.2

0.4

0.6

0.8

1

S
te

ad
y-

st
at

e
 th

ro
ug

hp
ut

 (
C

P
I)

2-thread SMT

fp_delay=1
fp_delay=2

(1) (2)

Figure C. Performance (1) and power-performance variation (2) with W for a two-thread SMT.

single-thread instruction-level parallelism
(ILP). Value prediction advances (see Lipasti
et al.18) promise to break the limits imposed
by data dependencies. Trace processors (Smith
et al.18) ease the fetch bandwidth bottleneck,
which can otherwise impede scalability.

Nonetheless, increasing the superscalar
width beyond a certain limit seems to yield
diminishing gains in performance, while con-
tinuously reducing the performance-power
efficiency metric (for example, SPEC3/W).
Thus, studies show that for the superscalar par-
adigm going for wider issue, speculative hard-
ware in a core processor ceases to be viable
beyond a certain complexity point. (See an
illustrative example in the “SMT/CMP dif-
ferences and energy efficiency issues” box).
Such a point certainly seems to be upon us in
the processor design industry. In addition to
power issues, more complicated, bigger cores
add to the verification and yield problems,
which all add up to higher cost and delays in
time-to-market goals.

Advanced methods in low-power circuit
techniques and adaptive microarchitectures
can help us extend the superscalar paradigm
for a few more years. (See the earlier “Low-
power, high-performance circuit techniques”
and “Adaptive microarchitectures” boxes.)
Other derivative designs, such as those for
multicluster processors and SMT, can be more
definitive paradigm shifts.

Multicluster superscalar processors
Zyuban6 studied the class of multicluster

superscalar processors as a means of extending
the power-efficient growth of the basic super-
scalar paradigm. Here, we provide a very brief
overview of the main results and conclusions
of Zyuban’s work (see also Zyuban and
Kogge7). We’ll use elements of this work in the
modeling and design work in progress within
our power-aware microarchitecture project.

As we’ve implied, the desire to extract more
and more ILP using the superscalar approach
requires the growth of most of the centralized
structures. Among them are instruction fetch
logic, register rename logic, register file,
instruction issue window with wakeup and
selection logic, data-forwarding mechanisms,
and resources for disambiguating memory ref-
erences. Zyuban analyzed circuit-level imple-
mentation of these structures. His analysis

shows that in most cases, the energy dissipat-
ed per instruction grows in a superlinear fash-
ion. None of the known circuit techniques
solves this energy growth problem. Given that
the IPC performance grows sublinearly with
issue width (with asymptotic saturation), it’s
clear why the classical superscalar path will
lead to increasingly power-inefficient designs.

One way to address the energy growth
problem at the microarchitectural level is to
replace a classical superscalar CPU with a set
of clusters, so that all key energy consumers
are split among clusters. Then, instead of
accessing centralized structures in the tradi-
tional superscalar design, instructions sched-
uled to an individual cluster would access local
structures most of the time. The primary
advantage of accessing a collection of local
structures instead of a centralized one is that
the number of ports and entries in each local
structure is much smaller. This reduces access
latency and lowers power.

Current high-performance processors (for
example, the Compaq Alpha 21264 and IBM
Power4) certainly have elements of multi-
clustering, especially in terms of duplicated
register files and distributed issue queues.
Zyuban proposed and modeled a specific mul-
ticluster organization. Simulation results
showed that to compensate for the interclus-
ter communication and to improve power-
performance efficiency significantly, each
cluster must be a powerful out-of-order super-
scalar machine by itself. This simulation-based
study determined the optimal number of clus-
ters and their configurations, for a specified
efficiency metric (the EDP).

The multicluster organization yields IPC
performance inferior to a classical superscalar
with centralized resources (assuming equal net
issue width and total resource sizes). The laten-
cy overhead of intercluster communication is
the main reason behind the IPC shortfall.
Another reason is that centralized resources are
always better used than distributed ones. How-
ever, Zyuban’s simulation data shows that the
multicluster organization is potentially more
energy-efficient for wide-issue processors with
an advantage that grows with the issue width.7

Given the same power budget, the multiclus-
ter organization allows configurations that can
deliver higher performance than the best con-
figurations with the centralized design.

40

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

VLIW or EPIC microarchitectures
The very long instruction word (VLIW)

paradigm has been the conceptual basis for
Intel’s future thrust using the Itanium (IA-64)
processors. The promise here is (or was) that
much of the hardware complexity could be
moved to the software (compiler). The latter
would use global program analysis to look for
available parallelism and present explicitly par-
allel instruction computing (EPIC) execution
packets to the hardware. The hardware could
be relatively simple in that it would avoid
much of the dynamic unraveling of paral-
lelism necessary in a modern superscalar
processor. For inferences regarding perfor-
mance, power, and efficiency metrics for this
microarchitecture class, see the September-
October 2000 issue of IEEE Micro, which
focuses on the Itanium.

Chip multiprocessing
Server product groups such as IBM’s Pow-

erPC division have relied on chip multipro-
cessing as the future scalable paradigm. The
Power4 design15 is the first example of this
trend. Its promise is to build multiple proces-
sor cores on the same die or package to deliv-
er scalable solutions at the system level.

Multiple processor cores on a single die can
operate in various ways to yield scalable perfor-
mance in a complexity- and power-efficient
manner. In addition to shared-memory chip
multiprocessing (see Hammond et al.18), we
may consider building a multiscalar processor,19

which can spawn speculative tasks (derived from
a sequential binary) to execute concurrently on
multiple cores. Intertask communication can
occur via register value forwarding or through
shared memory. Dynamic memory disam-
biguation hardware is required to detect mem-
ory-ordering violations. On detecting such a
violation, the offending task(s) must be
squashed and restarted. Multiscalar-type para-
digms promise scalable, power-efficient designs,
provided the compiler-aided task-partitioning
and instruction scheduling algorithms can be
improved effectively.

Multithreading
Various flavors of multithreading have been

proposed and implemented in the past as a
means to go beyond single-thread ILP limits.
One recent paradigm that promises to provide

a significant boost in performance with a small
increase in hardware complexity is simultane-
ous multithreading.20 In SMT, the processor
core shares its execution-time resources among
several simultaneously executing threads (pro-
grams). Each cycle, instructions can be fetched
from one or more independent threads and
injected into the issue and execution slots.
Because the issue and execution resources can
be filled by instructions from multiple inde-
pendent threads in the same cycle, the per-
cycle uses of the processor resources can be
significantly improved, leading to much
greater processor throughput. Compaq has
announced that its future 21x64 designs will
embrace the SMT paradigm.

For occasions when only a single thread is
executing on an SMT processor, the processor
behaves almost like a traditional superscalar
machine. Thus the same power reduction
techniques are likely to be applicable. When
an SMT processor is simultaneously executing
multiple threads, however, the per-cycle use
of the processor resources should noticeably
increase, offering fewer opportunities for
power reduction via such traditional tech-
niques as clock gating. An SMT processor—
when designed specifically to execute multiple
threads in a power-aware manner—provides
additional options for power-aware design.

The SMT processor generally provides a
boost in overall throughput performance, and
this alone will improve the power-perfor-
mance ratio for a set of threads, especially in
a context (such as server processors) of greater
emphasis on the overall (throughput) perfor-
mance than on low power. Furthermore, a
processor specifically designed with SMT in
mind can provide even greater power perfor-
mance efficiency gains.

Because the SMT processor takes advan-
tage of multiple execution threads, it could be
designed to employ far less aggressive specu-
lation in each thread. By relying on instruc-
tions from a different thread to provide
increased resource use when speculation
would have been used in a single-threaded
architecture (and accepting higher through-
put over the multiple threads rather than sin-
gle-thread latency performance), the SMT
processor can spend more of its effort on non-
speculative instructions. This inherently
implies a greater power efficiency per thread;

41NOVEMBER–DECEMBER 2000

that is, the power expended in the execution
of useful instructions weighs better against

misspeculated instructions on a per-thread
basis. This also implies a somewhat simpler
branch unit design (for example, fewer
resources devoted to branch speculation) that
can further aid in the development by reduc-
ing design complexity and verification effort.

SMT implementations require an overhead
in terms of additional hardware to maintain a
multiple-thread state. This increase in hardware
implies some increase in the processor’s per-cycle
power requirements. SMT designers must
determine whether this increase in processor
resources (and thus per-cycle power) can be well
balanced by the reduction of other resources
(less speculation) and the increase in perfor-
mance attained across the multiple threads.

Compiler support
Compilers can assist the microarchitecture

in reducing the power consumption of pro-
grams. As explained in the “Compiler sup-
port” box, a number of compiler techniques
developed for performance-oriented opti-
mizations can be exploited (usually with
minor modifications) to achieve power reduc-
tion. Reducing the number of memory access-
es, reducing the amount of switching activity
in the CPU, and increasing opportunities for
clock gating will help here.

Energy-efficient cache architectures
We’ve seen several proposals for power-effi-

cient solutions to the cache hierarchy design.2-

5,17 The simplest of these is the filter cache idea
first proposed by Kin et al. (referenced in the
“Adaptive microarchitectures” box). More
recently, Albonesi (see same box) investigat-
ed the power-performance trade-offs that can
be exploited by dynamically changing the
cache sizes and clock frequencies during pro-
gram execution.

Our tutorial-style contribution may help
enlighten the issues and trends in this

new area of power-aware microarchitectures.
Depending on whether the design priority is
high performance or low power, and what
form of design scaling is used for energy
reduction, designers should employ different
metrics to compare a given class of compet-
ing processors.

As explained by Borkar,21 the static (leak-
age) device loss will become a much more sig-

42

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

Compiler support
Manish Gupta

Figure D shows a high-level organization of the IBM XL family of compilers. The front ends
for different languages generate code in a common intermediate representation called W-
code. The Toronto Portable Optimizer (TPO) is a W-code-to-W-code transformer. It performs
classical data flow optimizations (such as global constant propagation, dead-code elimina-
tion, as well as loop and data transformations) to improve data locality (such as loop fusion,
array contraction, loop tiling, and unimodular loop transformations.)1,2 The TPO also performs
parallelization of codes based on both automatic detection of parallelism and use of Open-
MP directives for parallel loops and sections. The back end for each architecture performs
machine-specific code generation and optimizations.

The loop transformation capabilities of the TPO can be used on array-intensive codes
(such as SPECfp-type codes and multimedia codes2) to reduce the number of memory access-
es and, hence, reduce the energy consumption. Recent research (such as the work by Kan-
demir et al.3) indicates that the best loop configuration for performance need not be the best
from an energy point of view. Among the optimizations applied by the back end, register allo-
cation and instruction scheduling are especially important for achieving power reduction.

Power-aware register allocation involves not only reducing the number of memory access-
es but also attempting to reduce the amount of switching activity by exploiting any known
relationships between variables that are likely to have similar values. We can use power-
aware instruction scheduling to increase opportunities for clock gating of CPU components,
by trying to group instructions with similar resource use, as long as the impact on perfor-
mance is kept to a reasonable limit.

References
1. U. Banerjee, Loop Transformations for Restructuring Compilers, Kluwer

Academic Publishers, Boston, Mass., 1997.
2. C. Kulkarni et al., “Interaction Between Data-Parallel Compilation and Data Transfer

and Storage Cost for Multimedia Applications,” Proc. EuroPar 99, Lecture Notes
in Computer Science, Vol. 1685, Springer-Verlag, Sep. 1999, pp. 668-676.

3. M. Kandemir et al., “Experimental Evaluation of Energy Behavior of Iteration
Space Tiling,” to appear in Proc. 13th Workshop on Languages and Compilers
for Parallel Computing, Lecture Notes on Computer Science, Springer-Verlag,
2001, pp.141-156.

Source
program

Machine
code

Fortran90
front end

PowerPC
back end

TPO

C/C++
front end

S/390
back end

W-code W-code

Figure D. Architecture of IBM XL compilers. (TPO: Toronto Portable Optimizer)

nificant component of total power dissipation
in future technologies. This will impose many
more difficult challenges in identifying ener-
gy-saving opportunities in future designs.

The need for robust power-performance
modeling at the microarchitecture level will
continue to grow with tomorrow’s workload
and performance requirements. Such models
will enable designers to make the right choic-
es in defining the future generation of ener-
gy-efficient microprocessors. MICRO

References
1. M.K. Gowan, L.L. Biro, and D.B. Jackson,

“Power Considerations in the Design of the
Alpha 21264 Microprocessor,” Proc.
IEEE/ACM Design Automation Conf., 1998,
ACM, New York, pp. 726-731.

2. 1998 ISCA Workshop on Power-Driven Micro-
architecture papers; http://www.cs.colorado.
edu/~grunwald/LowPowerWorkshop.

3. 2000 ISCA Workshop Complexity-Effective
Design papers; http://www.ece.rochester.
edu/~albonesi/ced00.html.

4. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,”
Proc. 27th Ann. Int’l Symp. Computer
Architecture (ISCA), IEEE Computer Society
Press, Los Alamitos, Calif., 2000, pp. 83-94.

5. N. Vijaykrishnan et al., “Energy-Driven Inte-
grated Hardware-Software Optimizations
Using SimplePower,” Proc. 27th Ann. Int’l
Symp. Computer Architecture (ISCA), 2000,
pp. 95-106.

6. V. Zyuban, “Inherently Lower-Power High
Performance Super Scalar Architectures,”
PhD thesis, Dept. of Computer Science and
Engineering, Univ. of Notre Dame, Ind., 2000.

7. V. Zyuban and P. Kogge, “Optimization of
High-Performance Superscalar Architectures
for Energy Efficiency,” Proc. IEEE Symp.
Low Power Electronics and Design, ACM,
New York, 2000.

8. Cool Chips Tutorial talks presented at
MICRO-32, the 32nd Ann. IEEE Int’l Symp.
Microarchitecture, Dec. 1999, http://www.
eecs.umich.edu/~tnm/cool.html.

9. R. Gonzalez and M. Horowitz, “Energy
Dissipation in General Purpose Micro-
processors,” IEEE J. Solid-State Circuits,
Vol. 31, No. 9, Sept. 1996, pp. 1277-1284.

10. M.J. Flynn et al., “Deep-Submicron Micro-

processor Design Issues,” IEEE Micro, Vol.
19, No. 4, July/Aug. 1999, pp. 11-22.

11. D. Burger and T.M. Austin, “The
SimpleScalar Toolset, Version 2.0,”
Computer Architecture News, Vol. 25, No.
3, Jun. 1997, pp. 13-25.

12. M. Moudgill, J-D Wellman, and J.H. Moreno,
“Environment for PowerPC Microarchitecture
Exploration,” IEEE Micro, Vol. 19, No. 3,
May/June 1999, pp. 15-25.

13. M. Moudgill, P. Bose, and J. Moreno,
“Validation of Turandot, a Fast Processor
Model for Microarchitecture Exploration,”
Proc. IEEE Int’l Performance, Computing
and Communication Conf., IEEE Press,
Piscataway, N.J., 1999, pp. 451-457.

14. V. Tiwari et al., “Reducing Power in High-
Performance Microprocessors,” Proc.
IEEE/ACM Design Automation Conf., ACM,
New York, 1998, pp. 732-737.

15. K. Diefendorff, “Power4 Focuses on
Memory Bandwidth,” Microprocessor
Report, Oct. 6, 1999, pp. 11-17.

16. M. Pant et al., “An Architectural Solution for
the Inductive Noise Problem Due to Clock-
Gating,” Proc. Int’l Symp. Low-Power Elec-
tronics and Design, ACM, New York, 1999.

17. U. Ko, P.T. Balsara, and A.K. Nanda, “Energy
Optimization of Multilevel Cache Archi-
tectures for RISC and CISC Processors,”
IEEE Trans. VLSI Systems, Vol. 6, No. 2,
1998, pp. 299-308.

18. Theme issue, “The Future of Processors,”
Computer, Vol. 30, No. 9, Sept. 1997,
pp. 37-93.

19. G. Sohi, S.E. Breach and T.N. Vijaykumar,
“Multiscalar Processors,” Proc. 22nd Ann.
Int’l Symp. Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 1995, pp. 414-425.

20. D.M. Tullsen, S.J. Eggers, and H.M. Levy,
“Simultaneous Multithreading: Maximizing
On-Chip Parallelism,” Proc. 22nd Ann. Int’l
Symp. Computer Architecture, IEEE CS
Press, 1995, pp. 392-403.

21. S. Borkar, “Design Challenges of
Technology Scaling,” IEEE Micro, Vol. 19,
No. 4, July/Aug., 1999, pp. 23-29.

Several authors at IBM T.J. Watson
Research Center in Yorktown Heights, New
York, collaborated on this tutorial. David
Brooks, a PhD student at Princeton, worked
as a co-op student while at IBM Watson.

43NOVEMBER–DECEMBER 2000

Pradip Bose is a research staff member, work-
ing on power-aware architectures. He is a
senior member of the IEEE. Stanley Schuster
is a research staff member, working in the area
of low-power, high-speed digital circuits. He
is a Fellow of the IEEE. Hans Jacobson, a PhD
student at the University of Utah, worked as an
intern at IBM Watson. Prabhakar Kudva, a
research staff member, works on synthesis and
physical design with the Logic Synthesis
Group. Alper Buyuktosunoglu, a PhD stu-
dent at the University of Rochester, New York,
worked as an intern at IBM Watson. John-
David Wellman is a research staff member,
working on high-performance processors and

modeling. Victor Zyuban is a research staff
member, working on low-power embedded
and DSP processors. Manish Gupta is a
research staff member and manager of the
High Performance Programming Environ-
ments Group. Peter Cook is a research staff
member and manager of High Performance
Systems within the VLSI Design and Archi-
tecture Department.

Direct comments about this article to
Pradip Bose, IBM T.J. Watson Research Cen-
ter, PO Box 218, Yorktown Heights, NY
10598; pbose@us.ibm.com.

44

POWER-AWARE MICROARCHITECTURE

IEEE MICRO

January-February
Hot Interconnects

This issue focuses on the hardware and software architec-
ture and implementation of high-performance interconnec-
tions on chips. Topics include network-attached storage; voice
and video transport over packet networks; network interfaces,
novel switching and routing technologies that can provide dif-
ferentiated services, and active network architecture.
Ad close date: 2 January

March-April
Hot Chips

An extremely popular annual issue, Hot Chips presents the
latest developments in microprocessor chip and system tech-
nology used to construct high-performance workstations and
systems.
Ad close date: 1 March

May-June
Mobile/Wearable computing

The new generation of cell phones and powerful PDAs has
made mobile computing practical. Wearable computing will
soon be moving into the deployment stage.
Ad close date: 1 May

July-August
General Interest

IEEE Micro gathers together the latest details on new devel-
opments in chips, systems, and applications.
Ad close date: 1 July

September-October
Embedded Fault-Tolerant Systems

To avoid loss of life, certain computer systems—such as
those in automobiles, railways, satellites, and other vital sys-
tems—cannot fail. Look for articles that focus on the verifi-
cation and validation of complex computers, embedded
computing system design, and chip-level fault-tolerant designs.
Ad close date: 1 September

November-December
RF-ID and noncontact smart card applications

Equipped with radio-frequency signals, small electronic tags
can locate and recognize people, animals, furniture, and other
items.
Ad close date: 1 November

IEEE Micro 2001 Editorial Calendar

IEEE Micro is a bimonthly publication of the IEEE Computer Society. Authors should submit paper proposals to micro-

ma@computer.org, include author name(s) and full contact information.

