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ABSTRACT 
This paper describes the approach taken by the design 
team to ensure that the Intel  Pentium® M processor will 
be a compelling microprocessor for the Intel® Centrino   
mobile technology-based platform.  We discuss the power 
estimation flow and describe the power and thermal driven 
architecture and circuit enhancements of this architecture. 

The Intel Pentium M processor is Intel’s first CPU to 
provide an improved multi-gear low-overhead mechanism 
with Intel SpeedStep  technology and an advanced 
Thermal-Throttling-2 implementation.  In normal 
conditions, the operating system can dynamically adjust 
the processor speed according to the performance 
requirements, allowing a power-on-demand operation.  To 
protect the device from overheating during extreme power 
transitions, the Intel Pentium M processor uses a 
combined voltage and frequency control that provides 
efficient cooling with minimal impact on performance.  

Tools and methodologies were developed by the design 
team to extract and analyze the power data for each of the 
basic functional blocks of the Intel Pentium M processor.  
The flow core component, the Stochastic Dynamic Power 
Estimator (SDPE), is a novel statistical power estimation 
tool.  The power estimation activity provided the 
following: 
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1. Per block power estimation and break down to 
support the setting of the power Plan Of Record 
(POR). 

2. Data to identify and plan power-reduction strategies.   

3. On-going verification to ensure convergence towards 
the power POR. 

To meet the aggressive POR, the design team used the 
data generated from the SDPE tool and invested heavily in 
power optimizations.  Silicon-based measurements 
demonstrate the success of the power reduction work and 
show an excellent correlation with the power and thermal 
pre-silicon estimations. 

The end result is that the Intel Pentium M processor is a 
compelling mobile product delivering high performance 
and improved battery life within a restricted mobile 
thermal envelope.  The developed architecture, 
methodologies, and knowledge base pave the way for the 
design of Intel’s next-generation power-efficient mobile 
products.   

INTRODUCTION 
The design of a mobile processor is guided by the thermal 
limitations of the platform.  A thin form factor is desired, 
affecting the battery size and the efficiency of the cooling 
system.  Reduction of active and idle power consumption 
provides longer battery life and allows operation at higher 
frequencies.  The Intel Pentium M processor design team 
developed and applied pre-silicon analysis utilizing a 
statistical approach that enabled early estimation well 
before the design was stabilized.  As a result we were able 
to identify power-saving opportunities and overheating-
prone areas early in the design cycle.  The Intel Pentium 
M processor power saving amounted to 35% of the 
maximal active power of the processor core.  A novel 
multi-gear low-overhead Intel SpeedStep technology 
mechanism was implemented to provide frequency on 
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demand, and the advanced Thermal-Throttling-2 
significantly improved the utilization of the available 
cooling capabilities, contributing to the overall result of 
making the Intel Pentium M processor an attractive 
mobile processor with high performance and low power 
consumption. 

To accomplish our reduction goals the design team needed 
to first set a POR for every functional unit in the 
processor.  Once a POR was set, we needed to track 
adherence to this POR and provide the designer with the 
relevant feedback.  The power design work included a 
wide range of activities.  We started by developing our 
tools and methodologies.  Analyses of previous-generation 
CPUs served as a baseline for determining the power POR 
for the Intel Pentium M processor and for identifying 
power-saving opportunities.  When the processor RTL 
model became functional we started developing tests and 
power debug techniques and analyzed various high- and 
low-power applications. During the design phase we 
identified power bugs and additional power-saving 
opportunities.  When the circuit database was stabilized, 
we analyzed the thermal stress and guided the setting of 
the temperature control logic.   

Intel Pentium M processor silicon-based measurements 
show that the extensive power-reduction work was 
successful, allowing delivery of higher performance and 
higher frequency without increasing the power envelope.  
The high power vs. idle ratio was significantly improved, 
further reducing the average power consumption and 
extending the battery life.  A review of the pre-silicon 
dynamic power estimates showed an excellent correlation 
with overall error rates in the order of 5%, and it also 
showed accurate identification of the device hot spots. 

In this paper we describe the power design efforts 
including the estimation and analysis flows, architecture 
enhancements, and the actual reduction work.  We 
conclude with a few examples demonstrating our thermal 
throttling efficiency and the accuracy of our power-
simulation models.  

DYNAMIC POWER ESTIMATION FLOW  
The dynamic power is dissipated on charging the circuit 
parasitic capacitances and is linearly dependent on the 
number of signal toggles.  To calculate the dynamic power 
we define the activity factor as the average number of 
zero-to-one transitions during a clock cycle.  To extract 
the activity factors we performed logic simulation and 
counted toggles and state statistics.  

For each node we calculated the dynamic power using  
2

CCVCfAFP ⋅⋅⋅=  where AF  is the activity factor, 

f  is the frequency, C is the lumped capacitance, and 

CCV  is the supply voltage. 

The dynamic power analysis flow is described in Figure 1.  
The first stage is the development of the tests.  For high-
power tests, we maximize the command execution 
throughput, taking into account the processor parallel and 
out-of order capabilities.  For low-power tests, we utilize 
the processor bottlenecks to achieve low execution 
throughput.  The high-power tests are used for examining 
the thermal solution and power delivery efficiency.  The 
low-power tests help to identify power bugs and savings 
opportunities. 

We developed low-power tests that are based on execution 
bottlenecks.  Use of slower commands such as division or 
square root cause the system to stall by filling the input 
command queue.  The other types of idle tests are 
characterized by an empty command queue, for example, 
due to a second-level cache miss during code fetch.  In 
high-power tests, we optimize the command flow 
according to the internal dependencies, execution ports 
configuration, and available dispatch and retire 
bandwidth.  Some of the high-power tests maximize the 
overall power consumption, while others stress target 
units. 

 
 

Logic Simulation based activity 
factors and signal probabilities 

extraction 

SDPE  
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Circuit 
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Design Changes 
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Figure 1: The power design cycle of the Intel Pentium 
M processor. Logic simulations were performed to 

collect activity statistics. The data were used by SDPE 
to calculate the power estimates. Analysis of the power 
results yielded design changes in the circuit and in the 

RTL. 

To calculate the dynamic power we first extract the 
activity statistics by logic simulation of the various power 
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tests.  The activity statistics of the Functional Unit Block 
(FUB) inputs were used by our power estimation flow, the 
Stochastic Dynamic Power Estimator (SDPE,) to generate 
vectors and calculate the FUB power.  The SDPE 
estimates activity factors by transistor-level logic 
simulation.  The SDPE flow uses the Monte-Carlo 
approach to generate the FUB input vectors according to 
given activity statistics.  The input vectors are injected 
into the FUB and propagated by a unit delay transistor-
level simulation [1, 2].  Thanks to the statistical 
implementation we estimated the power from the earliest 
design stages, even when mismatches between RTL and 
schematics existed on the FUB interface pins.  The impact 
of missing data on accuracy was measured by comparing 
various default activity assignments.  

The statistical approach drastically reduces the data 
storage requirements and saves simulation time.  In some 
cases, the statistical approach affected the accuracy  of the 
power estimation.  For most FUBs we obtained reasonable 
results and successfully identified the main power 
consumers and power-saving opportunities. Excellent 
correlation was found between the overall pre-silicon 
power estimates and the results of the Intel Pentium  M 
processor power measurements. 

Power Analysis and Validation 
The results of the RTL simulation and SDPE runs provide 
data for a variety of applications.  Every few weeks we 
calculated the power roll-up and compared each unit to 
the POR commitment.  The Max power test was chosen as 
the roll-up reference due to the wide coverage of the chip 
resources.  Other high-power tests were used to cover 
FUBs that were not operated by the Max power test.  Idle 
tests were used for power design validation and for 
identifying additional power-saving opportunities. 

To monitor the clock-gating efficiency we analyzed the 
idle tests activity.  Unlike the power-down state, during 
the idle tests the global clock is active and local logic 
gates the clock in the idle units.  Observing the FUBs that 
are still active is an excellent way to identify gating 
candidates and power-design bugs.  To implement the 
proposed gating one must justify the additional design 
effort.  SDPE provides “what if” analysis for estimating 
the power-saving return on investment (ROI).  The 
analysis is performed by overriding the clock enable 
signals. 

We applied several techniques to identify power bugs and 
additional gating candidates.  Wide vectors that are active 
during the idle tests were identified in RTL simulation and 
SDPE data.  The root cause was mapped in most cases to 
one of the following categories: domino-driven gates, 
wide latches with a non-gated clock, or bugs in the clock-
gating control logic.  

Using schematics analysis we identified all gated clocks 
and compared the activity in various tests.  We identified 
clocks that operated during idle tests more than during 
high-power tests and clocks that operated at all times.  

During the power debug we encountered power-related 
bugs that did not have a functional impact, hence they 
were not detected by traditional validation methods.  To 
detect such bugs, tests were modified to step between 
power modes.  We verified that the power consumed was 
not affected by the history of the machine prior to the 
tested time window. 

The estimation and automated analysis flows were 
developed and regularly run by a small group of three 
engineers.  The total simulation run time is 13 hours for 
the core FUBs and an additional 30 hours for all the Level 
2 cache arrays.  Power analysis runs were performed every 
few weeks during the design phase of the Intel Pentium M 
processor. 

Logic Optimizations 
The most effective power-saving opportunities are to be 
found at the logic level.  First priority was given to clock 
gating in order to prevent circuits from running when not 
used.  The hierarchy in which this gating is to be 
implemented must be chosen carefully.  Choosing a too 
high level hierarchy can significantly reduce the gating 
opportunities while a too low level hierarchy can end up 
with a control logic that consumes more power than is 
saved by the gated logic.  By carefully structuring the 
microarchitecture, the machine is optimized to focus on 
the required activities and minimize the redundant ones.   

New control logic was added to the first-level instruction 
cache and data cache units to detect and eliminate cases 
where accesses are being requested within the same 
page/line, thereby eliminating the tag lookup and 
minimizing the number of accessed banks.  The power 
saved by eliminating these cycles outweighs the power 
consumed by the additional control logic, yielding a net 
savings for the overall design.  

In the RAT (register renaming) unit, the register files were 
partitioned according to the data types (MMX , Integer, 
Floating Point) instead of creating a worst-case combined 
data width, and accesses are performed based on the 
required data type.  Thus the access of redundant data was 
eliminated up front, reducing the active power consumed 
by these circuits.  

In the Branch Prediction Unit (BPU), which was designed 
from scratch for the Intel Pentium M processor, many 
                                                           
 MMX is a trademark of Intel Corporation or its 
subsidiaries in the United States and other countries. 
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power optimizations were made: Target Lookups take 
place only when needed, and Predictions are prevented for 
Unconditional Branches. 

CIRCUIT OPTIMIZATIONS 
Circuit techniques have a wide impact on the power 
budget required for implementing a given functionality.  
In the Intel Pentium M processor design, many domino-
based circuits were replaced with static CMOS circuits 
eliminating the strong power effect domino circuits have 
on the input data polarity.  Furthermore, by simplifying 
the timing restrictions on the domino inputs we were able 
to reach a favorable solution for both power and speed.  

All arrays and register files were reviewed to ensure 
optimal banks partitioning such that the capacitive load 
that was toggled per access was minimized. 

In the 1M second-level cache, leakage current becomes a 
significant factor hence the required performance (i.e., 
access latency) was balanced with the power constraints, 
yielding a design that reduced the second-level cache 
leakage by a factor of two, by using non-minimal channel 
lengths for almost the entire array.   

To meet the Intel Pentium M processor speed goal we 
used a high-performance-Low-Vt (LVT) device that has a 
lower threshold voltage (Vt) at the expense of higher 
leakage.  The need to carefully balance the utilization of 
LVT devices to improve the speed of circuits with the 
increase in leakage, led to the setting of an explicit LVT 
usage POR for every block in the design.  The synthesis 
flow we used assigned the LVT devices at the cell level; 
therefore, the synthesis blocks had very high initial 
insertion levels.  To reduce this insertion level, a device-
level flow was utilized leaving LVT devices only on 
critical paths.  This flow saved more than two-thirds of the 
original assignments.  A similar flow was used on data 
path designs to identify redundant assignments.  When a 
block exceeded the allocated budget, a review was held to 
ensure the design was optimal. 

I/O Optimizations  
The I/O power supply was separated from the core power 
supply to allow independent optimization of each of the 
power supply’s voltage levels, as is evident from the Intel 
Pentium M processor data sheet. A special Dynamic On 
Die Termination (ODT) circuit was added to the output 
buffer design that enables disconnecting the on die 
termination when the CPU drives the bus low, thereby 
reducing by half the power consumed by the I/O.  Data 
inversion support (first implemented in the Pentium  4  

processor) between the Intel® 855PM chipset and the Intel 
Pentium M processor further reduces the power 
dissipation, due to the line termination, by minimizing the 
number of bits driven low on the Gunning Transceiver 
Logic (GTL) bus.  To minimize the time during which the 
bias current is on in the input buffers of the Processor Side 
Bus (PSB), a new signal (DPWR#) was added to the 
interface to indicate to the processor when to operate the 
input buffers.  The overall impact of all these 
optimizations reduced the active power of the PSB 
interface by a factor of 2 and the average power by a 
factor of 10. 

Power Management Optimization   
The dynamic power component increases linearly with the 
frequency of the processor clock and by the square of the 
voltage, hence being able to dynamically adjust the 
voltage and frequency to the workload has an enormous 
impact on the average power.  The Multi-gear Intel  
SpeedStep technology that was implemented in the Intel 
Pentium M processor allows the operating system to 
provide frequency on demand stepping through pre-
defined voltage-frequency pairs, spanning a range of 
about 8x in the power and almost 3x in performance 
between the lowest and highest power-performance points 
[3]. 

Models generated from study of real applications usage in 
a mobile environment indicate that high performance is 
typically needed only for short bursts of time.  Average 
power optimization therefore relies on the ability to switch 
the operating point frequently and in an efficient manner.  
To satisfy user interactive demands, the system response 
time must be kept low.  Optimization of the Intel  
SpeedStep transition process implemented in the Pentium 
M processor reduced the switching time and allowed 
efficient use of the Multi-Gear Intel SpeedStep technology 
mechanism with minimal latency and performance 
degradation. 
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Previous generations of Intel CPUs integrated a linear 
throttle mechanism, stopping the CPU for short periods of 
time and allowing it to cool.  The power impact of 
controlling both core voltage and frequency is 
significantly higher than the linear yield of the standard 
frequency adaptation.  The Pentium M processor is Intel’s 
first CPU designed specifically for the mobile market 
implementing improved Thermal Throttle 2.  Thermal 
Throttle 2 uses frequency and voltage scaling to control 
maximum and average CPU power.  The use of combined 
voltage and frequency scaling results in a lower 
performance degradation compared to standard clock-
throttling techniques within any given cooling solution. 

THERMAL THROTTLING VALIDATION   
The cooling intensity of mobile CPUs is adjusted by the 
system according to the processor temperature.  Control is 
achieved by using variable fan speeds.  The fan is 
activated only at high core temperatures to save the 
battery and reduce acoustic noise.  The response of the 
cooling system is significantly slower than the processor 
self-heating process.  As a result, the system cannot react 
on time to prevent rapid temperature increases affecting 
the device reliability, degrading maximal operating speed, 
and possibly even causing accidental shut-down due to 
temporary overheating. 

To study the system dynamic thermal response, a special 
power-stepping test was written, providing repeated high-
power pulses with a programmable duration. 

To achieve extreme abnormal conditions the device was 
operated without a heat sink!  The test alternates between 
high and low power segments at a duty cycle of 1 to 10 
causing significant power and temperature transitions. 

Thermal Throttle 2 provided excellent results, and the 
successful temperature clamping is shown in Figure 2.  It 
demonstrates that the Intel Pentium M processor can 
modify working conditions to ensure that the thermal 
envelope limit is not exceeded. 
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Initial warm-up
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Figure 2: Bare die thermal throttling experiment 
demonstrating successful temperature clamping 

PRE-SILICON ESTIMATES VALIDATION   
A correlation study was performed using silicon-based 
Infra-Red Emission Microscopy (IREM) measurements of 
selected power tests.  A simulated power density map and 
the corresponding IREM image are presented in Figure 3 
and Figure 4.  The color-coding represents the average 
power and local emission densities.  The levels are black 
(lowest), red, orange, yellow and white (highest).  
Although the simulation results are presented as average 
power density per FUB, and the infrared emission is 
mainly obtained from non-stacked n-type devices, the 
correlation can clearly be seen. 

Multiple  measurements under various test modes enable 
us to measure and confirm the impact of the major power-
saving features.  The results confirm our pre-silicon 
estimates and sum up to 35% of the total active power.  

 
Figure 3: Simulated power density 

 
Figure 4: IREM measurement 
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SUMMARY   
We described the dynamic power estimation work and its 
impact on the design of the Intel Pentium M processor. 
Low-power tests and various analysis techniques were 
used for identifying power-saving opportunities and for 
validating the power design.  Most of the identified 
opportunities were implemented in the design. 

The paper also described the architecture enhancements 
and various circuit, logic, and I/O optimizations that were 
implemented during the design of the Intel Pentium M 
processor. 

Silicon measurements of the Intel Pentium M processor 
yielded excellent correlation to our pre-silicon estimates 
for a wide range of tests that are all within +/- 5% of our 
estimates.  Furthermore, measurements also confirmed 
that the features implemented for the sole purpose of 
saving power account for a reduction of over 35% of the 
active power consumed. 

CONCLUSION 
The Intel Pentium M processor is a compelling mobile 
product delivering high performance within a restricted 
mobile thermal envelope with improved battery life.  It 
provides significant advantages to the Intel Centrino 
mobile technology-based platform. 

The developed architecture, methodologies, and 
knowledge base pave the way for the design of Intel’s 
next-generation power-efficient mobile products. 
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