
Intel®

Technology
Journal

Intel® Centrino™ Mobile Technology

Volume 07 Issue 02 Published, May 21, 2003 ISSN 1535-864X

Intel® Pentium® M Processor
Power Estimation, Budgeting,
Optimization, and Validation

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

http://developer.intel.com/technology/itj/index.htm

Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation 44

Intel® Pentium® M Processor Power Estimation, Budgeting,
Optimization, and Validation

Dani Genossar, Israel Mobile Platforms Group, Intel Corporation
Nachum Shamir, Israel Mobile Platforms Group, Intel Corporation

Index words: power estimation, power budgeting, power reduction, Intel SpeedStep, thermal
throttling.

ABSTRACT
This paper describes the approach taken by the design
team to ensure that the Intel Pentium® M processor will
be a compelling microprocessor for the Intel® Centrino
mobile technology-based platform. We discuss the power
estimation flow and describe the power and thermal driven
architecture and circuit enhancements of this architecture.

The Intel Pentium M processor is Intel’s first CPU to
provide an improved multi-gear low-overhead mechanism
with Intel SpeedStep technology and an advanced
Thermal-Throttling-2 implementation. In normal
conditions, the operating system can dynamically adjust
the processor speed according to the performance
requirements, allowing a power-on-demand operation. To
protect the device from overheating during extreme power
transitions, the Intel Pentium M processor uses a
combined voltage and frequency control that provides
efficient cooling with minimal impact on performance.

Tools and methodologies were developed by the design
team to extract and analyze the power data for each of the
basic functional blocks of the Intel Pentium M processor.
The flow core component, the Stochastic Dynamic Power
Estimator (SDPE), is a novel statistical power estimation
tool. The power estimation activity provided the
following:

Pentium M is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Centrino is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel SpeedStep is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

1. Per block power estimation and break down to
support the setting of the power Plan Of Record
(POR).

2. Data to identify and plan power-reduction strategies.

3. On-going verification to ensure convergence towards
the power POR.

To meet the aggressive POR, the design team used the
data generated from the SDPE tool and invested heavily in
power optimizations. Silicon-based measurements
demonstrate the success of the power reduction work and
show an excellent correlation with the power and thermal
pre-silicon estimations.

The end result is that the Intel Pentium M processor is a
compelling mobile product delivering high performance
and improved battery life within a restricted mobile
thermal envelope. The developed architecture,
methodologies, and knowledge base pave the way for the
design of Intel’s next-generation power-efficient mobile
products.

INTRODUCTION
The design of a mobile processor is guided by the thermal
limitations of the platform. A thin form factor is desired,
affecting the battery size and the efficiency of the cooling
system. Reduction of active and idle power consumption
provides longer battery life and allows operation at higher
frequencies. The Intel Pentium M processor design team
developed and applied pre-silicon analysis utilizing a
statistical approach that enabled early estimation well
before the design was stabilized. As a result we were able
to identify power-saving opportunities and overheating-
prone areas early in the design cycle. The Intel Pentium
M processor power saving amounted to 35% of the
maximal active power of the processor core. A novel
multi-gear low-overhead Intel SpeedStep technology
mechanism was implemented to provide frequency on

Intel Technology Journal, Vol. 7, Issue 2, May 2003

Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation 45

demand, and the advanced Thermal-Throttling-2
significantly improved the utilization of the available
cooling capabilities, contributing to the overall result of
making the Intel Pentium M processor an attractive
mobile processor with high performance and low power
consumption.

To accomplish our reduction goals the design team needed
to first set a POR for every functional unit in the
processor. Once a POR was set, we needed to track
adherence to this POR and provide the designer with the
relevant feedback. The power design work included a
wide range of activities. We started by developing our
tools and methodologies. Analyses of previous-generation
CPUs served as a baseline for determining the power POR
for the Intel Pentium M processor and for identifying
power-saving opportunities. When the processor RTL
model became functional we started developing tests and
power debug techniques and analyzed various high- and
low-power applications. During the design phase we
identified power bugs and additional power-saving
opportunities. When the circuit database was stabilized,
we analyzed the thermal stress and guided the setting of
the temperature control logic.

Intel Pentium M processor silicon-based measurements
show that the extensive power-reduction work was
successful, allowing delivery of higher performance and
higher frequency without increasing the power envelope.
The high power vs. idle ratio was significantly improved,
further reducing the average power consumption and
extending the battery life. A review of the pre-silicon
dynamic power estimates showed an excellent correlation
with overall error rates in the order of 5%, and it also
showed accurate identification of the device hot spots.

In this paper we describe the power design efforts
including the estimation and analysis flows, architecture
enhancements, and the actual reduction work. We
conclude with a few examples demonstrating our thermal
throttling efficiency and the accuracy of our power-
simulation models.

DYNAMIC POWER ESTIMATION FLOW
The dynamic power is dissipated on charging the circuit
parasitic capacitances and is linearly dependent on the
number of signal toggles. To calculate the dynamic power
we define the activity factor as the average number of
zero-to-one transitions during a clock cycle. To extract
the activity factors we performed logic simulation and
counted toggles and state statistics.

For each node we calculated the dynamic power using
2

CCVCfAFP ⋅⋅⋅= where AF is the activity factor,

f is the frequency, C is the lumped capacitance, and

CCV is the supply voltage.

The dynamic power analysis flow is described in Figure 1.
The first stage is the development of the tests. For high-
power tests, we maximize the command execution
throughput, taking into account the processor parallel and
out-of order capabilities. For low-power tests, we utilize
the processor bottlenecks to achieve low execution
throughput. The high-power tests are used for examining
the thermal solution and power delivery efficiency. The
low-power tests help to identify power bugs and savings
opportunities.

We developed low-power tests that are based on execution
bottlenecks. Use of slower commands such as division or
square root cause the system to stall by filling the input
command queue. The other types of idle tests are
characterized by an empty command queue, for example,
due to a second-level cache miss during code fetch. In
high-power tests, we optimize the command flow
according to the internal dependencies, execution ports
configuration, and available dispatch and retire
bandwidth. Some of the high-power tests maximize the
overall power consumption, while others stress target
units.

Logic Simulation based activity
factors and signal probabilities

extraction

SDPE
Power calculation

Circuit
capacitance
data and ckt
directives

Thermal analysis Power analysis and
validation

Design Changes

Power tests coding: High/Low
power, Thermal stressing

Circuit

RTL

Figure 1: The power design cycle of the Intel Pentium
M processor. Logic simulations were performed to

collect activity statistics. The data were used by SDPE
to calculate the power estimates. Analysis of the power
results yielded design changes in the circuit and in the

RTL.

To calculate the dynamic power we first extract the
activity statistics by logic simulation of the various power

Intel Technology Journal, Vol. 7, Issue 2, May 2003

Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation 46

tests. The activity statistics of the Functional Unit Block
(FUB) inputs were used by our power estimation flow, the
Stochastic Dynamic Power Estimator (SDPE,) to generate
vectors and calculate the FUB power. The SDPE
estimates activity factors by transistor-level logic
simulation. The SDPE flow uses the Monte-Carlo
approach to generate the FUB input vectors according to
given activity statistics. The input vectors are injected
into the FUB and propagated by a unit delay transistor-
level simulation [1, 2]. Thanks to the statistical
implementation we estimated the power from the earliest
design stages, even when mismatches between RTL and
schematics existed on the FUB interface pins. The impact
of missing data on accuracy was measured by comparing
various default activity assignments.

The statistical approach drastically reduces the data
storage requirements and saves simulation time. In some
cases, the statistical approach affected the accuracy of the
power estimation. For most FUBs we obtained reasonable
results and successfully identified the main power
consumers and power-saving opportunities. Excellent
correlation was found between the overall pre-silicon
power estimates and the results of the Intel Pentium M
processor power measurements.

Power Analysis and Validation
The results of the RTL simulation and SDPE runs provide
data for a variety of applications. Every few weeks we
calculated the power roll-up and compared each unit to
the POR commitment. The Max power test was chosen as
the roll-up reference due to the wide coverage of the chip
resources. Other high-power tests were used to cover
FUBs that were not operated by the Max power test. Idle
tests were used for power design validation and for
identifying additional power-saving opportunities.

To monitor the clock-gating efficiency we analyzed the
idle tests activity. Unlike the power-down state, during
the idle tests the global clock is active and local logic
gates the clock in the idle units. Observing the FUBs that
are still active is an excellent way to identify gating
candidates and power-design bugs. To implement the
proposed gating one must justify the additional design
effort. SDPE provides “what if” analysis for estimating
the power-saving return on investment (ROI). The
analysis is performed by overriding the clock enable
signals.

We applied several techniques to identify power bugs and
additional gating candidates. Wide vectors that are active
during the idle tests were identified in RTL simulation and
SDPE data. The root cause was mapped in most cases to
one of the following categories: domino-driven gates,
wide latches with a non-gated clock, or bugs in the clock-
gating control logic.

Using schematics analysis we identified all gated clocks
and compared the activity in various tests. We identified
clocks that operated during idle tests more than during
high-power tests and clocks that operated at all times.

During the power debug we encountered power-related
bugs that did not have a functional impact, hence they
were not detected by traditional validation methods. To
detect such bugs, tests were modified to step between
power modes. We verified that the power consumed was
not affected by the history of the machine prior to the
tested time window.

The estimation and automated analysis flows were
developed and regularly run by a small group of three
engineers. The total simulation run time is 13 hours for
the core FUBs and an additional 30 hours for all the Level
2 cache arrays. Power analysis runs were performed every
few weeks during the design phase of the Intel Pentium M
processor.

Logic Optimizations
The most effective power-saving opportunities are to be
found at the logic level. First priority was given to clock
gating in order to prevent circuits from running when not
used. The hierarchy in which this gating is to be
implemented must be chosen carefully. Choosing a too
high level hierarchy can significantly reduce the gating
opportunities while a too low level hierarchy can end up
with a control logic that consumes more power than is
saved by the gated logic. By carefully structuring the
microarchitecture, the machine is optimized to focus on
the required activities and minimize the redundant ones.

New control logic was added to the first-level instruction
cache and data cache units to detect and eliminate cases
where accesses are being requested within the same
page/line, thereby eliminating the tag lookup and
minimizing the number of accessed banks. The power
saved by eliminating these cycles outweighs the power
consumed by the additional control logic, yielding a net
savings for the overall design.

In the RAT (register renaming) unit, the register files were
partitioned according to the data types (MMX , Integer,
Floating Point) instead of creating a worst-case combined
data width, and accesses are performed based on the
required data type. Thus the access of redundant data was
eliminated up front, reducing the active power consumed
by these circuits.

In the Branch Prediction Unit (BPU), which was designed
from scratch for the Intel Pentium M processor, many

 MMX is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 2, May 2003

Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation 47

power optimizations were made: Target Lookups take
place only when needed, and Predictions are prevented for
Unconditional Branches.

CIRCUIT OPTIMIZATIONS
Circuit techniques have a wide impact on the power
budget required for implementing a given functionality.
In the Intel Pentium M processor design, many domino-
based circuits were replaced with static CMOS circuits
eliminating the strong power effect domino circuits have
on the input data polarity. Furthermore, by simplifying
the timing restrictions on the domino inputs we were able
to reach a favorable solution for both power and speed.

All arrays and register files were reviewed to ensure
optimal banks partitioning such that the capacitive load
that was toggled per access was minimized.

In the 1M second-level cache, leakage current becomes a
significant factor hence the required performance (i.e.,
access latency) was balanced with the power constraints,
yielding a design that reduced the second-level cache
leakage by a factor of two, by using non-minimal channel
lengths for almost the entire array.

To meet the Intel Pentium M processor speed goal we
used a high-performance-Low-Vt (LVT) device that has a
lower threshold voltage (Vt) at the expense of higher
leakage. The need to carefully balance the utilization of
LVT devices to improve the speed of circuits with the
increase in leakage, led to the setting of an explicit LVT
usage POR for every block in the design. The synthesis
flow we used assigned the LVT devices at the cell level;
therefore, the synthesis blocks had very high initial
insertion levels. To reduce this insertion level, a device-
level flow was utilized leaving LVT devices only on
critical paths. This flow saved more than two-thirds of the
original assignments. A similar flow was used on data
path designs to identify redundant assignments. When a
block exceeded the allocated budget, a review was held to
ensure the design was optimal.

I/O Optimizations
The I/O power supply was separated from the core power
supply to allow independent optimization of each of the
power supply’s voltage levels, as is evident from the Intel
Pentium M processor data sheet. A special Dynamic On
Die Termination (ODT) circuit was added to the output
buffer design that enables disconnecting the on die
termination when the CPU drives the bus low, thereby
reducing by half the power consumed by the I/O. Data
inversion support (first implemented in the Pentium 4

processor) between the Intel® 855PM chipset and the Intel
Pentium M processor further reduces the power
dissipation, due to the line termination, by minimizing the
number of bits driven low on the Gunning Transceiver
Logic (GTL) bus. To minimize the time during which the
bias current is on in the input buffers of the Processor Side
Bus (PSB), a new signal (DPWR#) was added to the
interface to indicate to the processor when to operate the
input buffers. The overall impact of all these
optimizations reduced the active power of the PSB
interface by a factor of 2 and the average power by a
factor of 10.

Power Management Optimization
The dynamic power component increases linearly with the
frequency of the processor clock and by the square of the
voltage, hence being able to dynamically adjust the
voltage and frequency to the workload has an enormous
impact on the average power. The Multi-gear Intel
SpeedStep technology that was implemented in the Intel
Pentium M processor allows the operating system to
provide frequency on demand stepping through pre-
defined voltage-frequency pairs, spanning a range of
about 8x in the power and almost 3x in performance
between the lowest and highest power-performance points
[3].

Models generated from study of real applications usage in
a mobile environment indicate that high performance is
typically needed only for short bursts of time. Average
power optimization therefore relies on the ability to switch
the operating point frequently and in an efficient manner.
To satisfy user interactive demands, the system response
time must be kept low. Optimization of the Intel
SpeedStep transition process implemented in the Pentium
M processor reduced the switching time and allowed
efficient use of the Multi-Gear Intel SpeedStep technology
mechanism with minimal latency and performance
degradation.

Pentium 4 is a trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

Intel Technology Journal, Vol. 7, Issue 2, May 2003

Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation 48

Previous generations of Intel CPUs integrated a linear
throttle mechanism, stopping the CPU for short periods of
time and allowing it to cool. The power impact of
controlling both core voltage and frequency is
significantly higher than the linear yield of the standard
frequency adaptation. The Pentium M processor is Intel’s
first CPU designed specifically for the mobile market
implementing improved Thermal Throttle 2. Thermal
Throttle 2 uses frequency and voltage scaling to control
maximum and average CPU power. The use of combined
voltage and frequency scaling results in a lower
performance degradation compared to standard clock-
throttling techniques within any given cooling solution.

THERMAL THROTTLING VALIDATION
The cooling intensity of mobile CPUs is adjusted by the
system according to the processor temperature. Control is
achieved by using variable fan speeds. The fan is
activated only at high core temperatures to save the
battery and reduce acoustic noise. The response of the
cooling system is significantly slower than the processor
self-heating process. As a result, the system cannot react
on time to prevent rapid temperature increases affecting
the device reliability, degrading maximal operating speed,
and possibly even causing accidental shut-down due to
temporary overheating.

To study the system dynamic thermal response, a special
power-stepping test was written, providing repeated high-
power pulses with a programmable duration.

To achieve extreme abnormal conditions the device was
operated without a heat sink! The test alternates between
high and low power segments at a duty cycle of 1 to 10
causing significant power and temperature transitions.

Thermal Throttle 2 provided excellent results, and the
successful temperature clamping is shown in Figure 2. It
demonstrates that the Intel Pentium M processor can
modify working conditions to ensure that the thermal
envelope limit is not exceeded.

Time

Te
m

pe
ra

tu
re

Steady state

Initial warm-up

Throttling set-point

Figure 2: Bare die thermal throttling experiment
demonstrating successful temperature clamping

PRE-SILICON ESTIMATES VALIDATION
A correlation study was performed using silicon-based
Infra-Red Emission Microscopy (IREM) measurements of
selected power tests. A simulated power density map and
the corresponding IREM image are presented in Figure 3
and Figure 4. The color-coding represents the average
power and local emission densities. The levels are black
(lowest), red, orange, yellow and white (highest).
Although the simulation results are presented as average
power density per FUB, and the infrared emission is
mainly obtained from non-stacked n-type devices, the
correlation can clearly be seen.

Multiple measurements under various test modes enable
us to measure and confirm the impact of the major power-
saving features. The results confirm our pre-silicon
estimates and sum up to 35% of the total active power.

Figure 3: Simulated power density

Figure 4: IREM measurement

Intel Technology Journal, Vol. 7, Issue 2, May 2003

Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation 49

SUMMARY
We described the dynamic power estimation work and its
impact on the design of the Intel Pentium M processor.
Low-power tests and various analysis techniques were
used for identifying power-saving opportunities and for
validating the power design. Most of the identified
opportunities were implemented in the design.

The paper also described the architecture enhancements
and various circuit, logic, and I/O optimizations that were
implemented during the design of the Intel Pentium M
processor.

Silicon measurements of the Intel Pentium M processor
yielded excellent correlation to our pre-silicon estimates
for a wide range of tests that are all within +/- 5% of our
estimates. Furthermore, measurements also confirmed
that the features implemented for the sole purpose of
saving power account for a reduction of over 35% of the
active power consumed.

CONCLUSION
The Intel Pentium M processor is a compelling mobile
product delivering high performance within a restricted
mobile thermal envelope with improved battery life. It
provides significant advantages to the Intel Centrino
mobile technology-based platform.

The developed architecture, methodologies, and
knowledge base pave the way for the design of Intel’s
next-generation power-efficient mobile products.

ACKNOWLEDGMENTS
We thank the entire Intel Pentium M processor design
team for being power aware, for supporting the power-
estimation efforts, and for producing a power-conscious
design. We also acknowledge the contribution of the Intel
Strategic CAD Labs (SCL) for providing and supporting
the logic simulation tools that are embedded in the
Stochastic Dynamic Power Estimator (SDPE) power-
estimation flow.

REFERENCES
[1] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Formal

verification using parametric representations of Boolean
constraints,” in Proceedings of the 1999 IEEE Design
Automation Conference, pp. 402-7, 1999.

[2] J. Yang and C.-J. H. Seger, “Introduction to generalized
symbolic trajectory evaluation,” in Proceedings of the
2001 IEEE International Conference on Computer
Design: VLSI in Computers and Processors. pp. 360-5,
2001.

[3] E. Rotem, A. Naveh, N. Shamir, O. Nathan, Internal
publication, 2003.

AUTHORS’ BIOGRAPHIES
Dani Genossar has been with Intel since he graduated
with a B.Sc. in Electrical Engineering Cum Laude from
the Technion, Israel Institute of Technology, in 1988. As
a manager within the Mobile Platform Group Design
Team he is also responsible for the power-estimation and
optimization efforts. His e-mail is
dani.genossar@intel.com

Nachum Shamir is the owner of iMPG power-estimation,
analysis, and validation flows and leads the silicon power
and thermal characterization efforts. He joined Intel in
1999. Nachum received a B.Sc. degree in Electrical
Engineering from the Technion, Israel Institute of
Technology, in 1988, an M.Sc. degree in Electrical
Engineering from Tel Aviv University in 1994, and a
Ph.D. degree in Electrical Engineering from the Technion
in 1999. Nachum served as adjunct lecturer at the
Technion Electrical Engineering faculty from 1998 to
2000. His e-mail is nachum.shamir@intel.com

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

mailto:dani.genossar@intel.com
mailto:nachum.shamir@intel.com
http://developer.intel.com/.
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2003, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information vistit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

Paper1cover.qxd 1/31/03 9:11 AM Page 2

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	vol7iss2_art03.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org
	1_HighPerformanceMRTEWeb3.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org

	MICROA~1_cha2.pdf
	A
	INTRODUCTION
	POWER-AWARENESS PHILOSOPHY AND STRATEGY
	Higher Performance vs. Longer Battery Life
	Trading Performance For Power
	Maximizing Performance at Given Thermal Constraints
	Minimizing Energy Per Task
	Reducing the Number of Instructions Per Task
	Reducing the Number of Micro-ops Per Instruction
	Reducing the Number of Transistor Switches Per Micro-op
	Reducing the Amount of Energy Per Transistor Switch
	Static Power

	POWER-AWARE FEATURES
	ADVANCED BRANCH PREDICTION
	MICRO-OPS FUSION
	DEDICATED STACK ENGINE
	THE INTEL PENTIUM M PROCESSOR BUS
	LOWER-LEVEL POWER OPTIMIZATIONS
	ENHANCED INTEL SPEEDSTEP TECHNOLOGY
	PERFORMANCE
	Always On Mode
	Portable/Laptop Mode
	Maximum Battery Mode
	
	
	
	
	
	Platform

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	MICROA~1_cha4_newflow.pdf
	A
	INTRODUCTION
	POWER-AWARENESS PHILOSOPHY AND STRATEGY
	Higher Performance vs. Longer Battery Life
	Trading Performance For Power
	Maximizing Performance at Given Thermal Constraints
	Minimizing Energy Per Task
	Reducing the Number of Instructions Per Task
	Reducing the Number of Micro-ops Per Instruction
	Reducing the Number of Transistor Switches Per Micro-op
	Reducing the Amount of Energy Per Transistor Switch
	Static Power

	POWER-AWARE FEATURES
	ADVANCED BRANCH PREDICTION
	MICRO-OPS FUSION
	DEDICATED STACK ENGINE
	THE INTEL PENTIUM M PROCESSOR BUS
	LOWER-LEVEL POWER OPTIMIZATIONS
	ENHANCED INTEL SPEEDSTEP TECHNOLOGY
	PERFORMANCE
	Always On Mode
	Portable/Laptop Mode
	Maximum Battery Mode
	
	
	
	
	
	Platform

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	MICROA~1_cha4_newflow.pdf
	A
	INTRODUCTION
	POWER-AWARENESS PHILOSOPHY AND STRATEGY
	Higher Performance vs. Longer Battery Life
	Trading Performance For Power
	Maximizing Performance at Given Thermal Constraints
	Minimizing Energy Per Task
	Reducing the Number of Instructions Per Task
	Reducing the Number of Micro-ops Per Instruction
	Reducing the Number of Transistor Switches Per Micro-op
	Reducing the Amount of Energy Per Transistor Switch
	Static Power

	POWER-AWARE FEATURES
	ADVANCED BRANCH PREDICTION
	MICRO-OPS FUSION
	DEDICATED STACK ENGINE
	THE INTEL PENTIUM M PROCESSOR BUS
	LOWER-LEVEL POWER OPTIMIZATIONS
	ENHANCED INTEL SPEEDSTEP TECHNOLOGY
	PERFORMANCE
	Always On Mode
	Portable/Laptop Mode
	Maximum Battery Mode
	
	
	
	
	
	Platform

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	MICROA~1_cha4_newflow.pdf
	A
	INTRODUCTION
	POWER-AWARENESS PHILOSOPHY AND STRATEGY
	Higher Performance vs. Longer Battery Life
	Trading Performance For Power
	Maximizing Performance at Given Thermal Constraints
	Minimizing Energy Per Task
	Reducing the Number of Instructions Per Task
	Reducing the Number of Micro-ops Per Instruction
	Reducing the Number of Transistor Switches Per Micro-op
	Reducing the Amount of Energy Per Transistor Switch
	Static Power

	POWER-AWARE FEATURES
	ADVANCED BRANCH PREDICTION
	MICRO-OPS FUSION
	DEDICATED STACK ENGINE
	THE INTEL PENTIUM M PROCESSOR BUS
	LOWER-LEVEL POWER OPTIMIZATIONS
	ENHANCED INTEL SPEEDSTEP TECHNOLOGY
	PERFORMANCE
	Always On Mode
	Portable/Laptop Mode
	Maximum Battery Mode
	
	
	
	
	
	Platform

	CONCLUSION
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol7iss2_art02.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org
	1_HighPerformanceMRTEWeb3.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org

	LOWPOW~2_Change.pdf
	INTRODUCTION
	POWER MANAGEMENT FEATURES
	Main Memory Power Management
	GMCH Dynamic IO/DLL Power Management
	Validation Methodology
	
	Modeling Components For Logic Simulations
	Reviewing Circuit-Level Components
	Testing Methodology
	Hardware Emulation

	BIOS Validation

	SILICON RESULTS
	FUTURE CHALLENGES
	CONCLUSION
	AUTHORS’ BIOGRAPHIES

	LOWPOW~2_Change.pdf
	INTRODUCTION
	POWER MANAGEMENT FEATURES
	Main Memory Power Management
	GMCH Dynamic IO/DLL Power Management
	Validation Methodology
	
	Modeling Components For Logic Simulations
	Reviewing Circuit-Level Components
	Testing Methodology
	Hardware Emulation

	BIOS Validation

	SILICON RESULTS
	FUTURE CHALLENGES
	CONCLUSION
	AUTHORS’ BIOGRAPHIES

	vol7iss2_art01.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org
	1_HighPerformanceMRTEWeb3.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org

	MobilePC_PlatformsPDFready2.pdf
	A
	INTRODUCTION
	WIRELESS TECHNOLOGIES
	Radio Frequency Challenges in Mobile Notebook PCs
	Antenna Isolation
	Intel Wireless Coexistence System
	Bluetooth Enabling

	EXTENDED BATTERY LIFE TECHNIQUES
	LCD Power Plane Partitioning
	
	Table 1: CCFL power specification

	Asynchronous Voltage Regulator Control with PSI#
	Optimized Intel Mobile Voltage Positioning
	Intel Mobile Voltage Positioning Design Implementation

	RESULTS
	CPU Intel Mobile Voltage Positioning Feature Results
	LCD Power Plane Partitioning Results
	Non-Synchronous Voltage Regulator with PSI# Results

	THERMAL DESIGN
	PLATFORM-LEVEL VALIDATION
	Intel Wireless Verification Program

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	csr.com
	Welcome to CSR - World leaders in Bluetooth silicon
	Welcome to CSR - World leaders in Bluetooth silicon

	siliconwave.com
	Silicon Wave — Solutions for Bluetooth Wireless Technology

	MobilePC_PlatformsPDFready6.pdf
	A
	INTRODUCTION
	WIRELESS TECHNOLOGIES
	Radio Frequency Challenges in Mobile Notebook PCs
	Intel Wireless Coexistence System
	Bluetooth Enabling

	EXTENDED BATTERY LIFE TECHNIQUES
	LCD Power Plane Partitioning
	
	Table 1: CCFL power specification

	Asynchronous Voltage Regulator Control with PSI#
	Optimized Intel Mobile Voltage Positioning
	Intel Mobile Voltage Positioning Design Implementation

	RESULTS
	CPU Intel Mobile Voltage Positioning Feature Results
	LCD Power Plane Partitioning Results
	Non-Synchronous Voltage Regulator with PSI# Results

	THERMAL DESIGN
	PLATFORM-LEVEL VALIDATION
	Intel Wireless Verification Program

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	MobilePC_Platfo…kr_modified.pdf
	A
	INTRODUCTION
	WIRELESS TECHNOLOGIES
	Radio Frequency Challenges in Mobile Notebook PCs
	Intel Wireless Coexistence System
	Bluetooth Enabling

	EXTENDED BATTERY LIFE TECHNIQUES
	Asynchronous Voltage Regulator Control with PSI#
	Optimized Intel Mobile Voltage Positioning
	Intel Mobile Voltage Positioning Design Implementation

	RESULTS
	CPU Intel Mobile Voltage Positioning Feature Results
	Non-Synchronous Voltage Regulator with PSI# Results

	THERMAL DESIGN
	PLATFORM-LEVEL VALIDATION
	Intel Wireless Verification Program

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

	vol7iss2_art04.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org
	1_HighPerformanceMRTEWeb3.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org

	SYSTEM~1.PDF
	A
	INTRODUCTION
	THE INTEL PENTIUM M PROCESSOR SYSTEM VALIDATION
	Intel Pentium M Processor System Validation Platform
	“Golan”: Intel Pentium M processor/Intel(855PM chipset SV Platform
	Fork Transactions Generator: SV Processor System Bus (PSB) Agent

	Random Instruction Testing: Pentium M processor System Validation Methodology
	Periodic SMI (PSMI) Failures Reproduction Methodology

	PROCESSOR SYSTEM BUS MARGINALITY VALIDATION
	Erez Interposer: Early Enabling Program

	RESULTS SUMMARY
	DISCUSSION
	AUTHORS’ BIOGRAPHIES

	vol7iss2_art05.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org
	1_HighPerformanceMRTEWeb3.pdf
	A
	ABSTRACT
	INTRODUCTION
	MANAGED RUNTIME ENVIRONMENTS
	Key Features
	Optimization Challenges

	OVERVIEW OF THE OPEN RUNTIME PLATFORM
	Basic Structure
	Common Support for Java and CLI

	THE CORE VIRTUAL MACHINE
	THE JUST-IN-TIME COMPILER INTERFACE
	Compilation Overview
	Interface Description
	Support for Multiple JITs
	Core VM Support for JITs and Managed Code
	Optimizations
	Native-Method Support
	Flexibility Versus Performance

	THE GARBAGE COLLECTION INTERFACE
	Overview of Garbage Collection
	Overview of the Interface
	Data Layout Assumptions
	Initialization
	Allocation
	Root-Set Enumeration
	Flexibility Versus Performance

	PERFORMANCE OF THE OPEN RUNTIME PLATFORM
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	[1]	GNU Classpath, http://www.classpath.org

	PENTIU~1.PDF
	A
	INTRODUCTION
	DYNAMIC POWER ESTIMATION FLOW
	Power Analysis and Validation
	Logic Optimizations

	CIRCUIT OPTIMIZATIONS
	I/O Optimizations
	Power Management Optimization

	THERMAL THROTTLING VALIDATION
	PRE-SILICON ESTIMATES VALIDATION
	SUMMARY
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHORS’ BIOGRAPHIES

