Towards a Software Approach to Mitigate Voltage
Emergencies

Meeta S. Gupta, Krishna K. Rangan, Michael D. Smith, Gu-Yeon Wei and David Brooks

School of Engineering and Applied Sciences
~Harvard University
{meeta, kkrangan, smith, guyeon and dbrooks}@eecs.harvard.edu

ABSTRACT

Increases in peak current draw and reductions in the oper-
ating voltages of processors continue to amplify the impor-
tance of dealing with voltage fluctuations in processors. One
approach suggested has been to not only react to these fluc-
tuations but also attempt to eliminate future occurrences of
these fluctuations by dynamically modifying the executing
program. This paper investigates the potential of a very
simple dynamic scheme to appreciably reduce the number
of run-time voltage emergencies. It shows that we can map
many of the voltage emergencies in the execution of the
SPEC benchmarks on an aggressive superscalar design to a
few static loops, categorize the microarchitectural cause of
the emergencies in each important loop through simple ob-
servations and a simple priority function, and finally apply
straightforward software optimization strategies to mitigate
up to 70% of the future voltage swings.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General—Hard-
ware/software interfaces

General Terms
Reliability, Design

Keywords

di/dt, voltage emergencies, dynamic optimization framework,
power-aware computing, hardware-software codesign

1. INTRODUCTION

Inductive noise has been a long-standing problem in pro-
cessor design further exacerbated by low-power design tech-
niques. With increased interest in reduced-power microar-
chitectures, this problem will continue to gain in signifi-
cance, especially as operating voltages decrease and peak
current draws increase [1]. Large swings in current over

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

ISLPED’ 07, August 27—29, 2007, Portland, Oregon, USA.

Copyright 2007 ACM 978-1-59593-709-4/07/0008 ...$5.00.

small time scales cause large swings in voltage due to the
parasitic inductance in the processor’s power-delivery sub-
system. Voltage emergencies are voltage swings of magni-
tudes sufficient to cause transient timing faults or long-term
reliability problems. Such emergencies may be addressed by
larger design margins at the cost of higher power consump-
tion. This paper presents an alternative solution based on
the understanding and categorization of voltage emergen-
cies and presents simple optimization techniques to mitigate
them.

Though it is possible to handle voltage emergencies with
circuit- and architecture-level solutions [2, 3, 4], Hazelwood
and Brooks [5] showed that voltage emergencies are corre-
lated with an application’s dynamic code stream and not
just the underlying architecture and power-delivery subsys-
tem. As such, a holistic hardware/software approach to
handling voltage emergencies has the potential to provide
additional advantages beyond the “fail-safe” capabilities of
hardware-only solutions. In particular, voltage-monitoring
hardware coupled with a dynamic optimization system could
be used to sense voltage emergencies, modify the problem-
atic code sequences, and avoid future voltage emergencies in
those code sequences.

To be worthwhile, a holistic hardware/software approach
should incur a hardware cost that is not much greater than
the “fail-safe” circuitry currently employed and a runtime
cost that is significantly less than the performance gained
from avoiding future emergencies. Historically, dynamic op-
timization systems have been successfully employed when a
small amount of an application’s static code base accounts
for a majority of the application’s execution. We find that
a similar relationship with voltage emergencies: a small
amount of an application’s static code base can account for
a majority of the voltage emergencies encountered.

Being able to focus a dynamic optimizer’s effort, however,
is only part of what is needed. We must also be able to
understand the seemingly complex interaction among the
power-delivery subsystem, the microarchitecture, and the
runtime behavior of applications so that we can effectively
categorize the cause of each voltage emergency and under-
stand what kind of code change will avoid the emergency in
later executions. For results in this paper, we focused our
analysis on the interval around the most frequent of the code
sequences causing emergencies. We examined the detailed
current and voltage fluctuations in these intervals and de-
veloped a simple model for the primary microarchitectural
causes of the emergencies. Understanding the cause and
context for the emergencies led us to a couple of straight-

forward optimizations which we simulated to estimate the
potential benefits of a holistic approach.
The main contributions of this paper are as follows:

1. This paper identifies loops or code sequences in the
SPEC benchmarks that induce voltage emergencies.
We show that only a handful of code sequences are
responsible for nearly all the emergencies in an appli-
cation run.

2. Microarchitectural reasons for voltage emergencies are
analyzed through detailed simulation.

3. Finally, this paper shows that simple optimization tech-
niques based on the characterization of possible events
leading to emergencies are beneficial in eliminating
them.

The rest of the paper is organized as follows. Section 2
reviews prior research related to inductive noise. We discuss
the characterization framework in Section 3 and present de-
tailed analysis of the various loops in different benchmarks
that cause emergencies. Section 4 details the various mi-
croarchitectural events that can lead to noise-margin viola-
tions and provides a distribution of the different causes for
each benchmark. A collection of optimization techniques
based on the categorization of emergencies is presented in
Section 5. Finally, Section 6 concludes and presents possi-
ble future research.

2. RELATED WORK

Much of the recent research addressing the inductive noise
problem has done so at either the hardware or circuit level.
Joseph et al. [3] present a control-theoretic technique to han-
dle the di/dt emergencies. They also developed a stressmark
that produces emergencies based on alternating periods of
high and low processor activity. Powell and Vijaykumar
handle high-frequency inductive noise using a pipeline muf-
fling mechanism [4] and resonance tuning [6]. Grochowski
et al. [2] describe a voltage simulation capability based on
clock-by-clock activity levels of each functional block and
use the simulation result in a feedback mechanism to handle
di/dt emergencies.

A few studies have considered adjustments to application
code as a mechanism for addressing the problems of induc-
tive noise. For example, Toburen [7] presents static com-
pilation techniques to reduce di/dt emergencies. Yun and
Kim [8] propose a power-aware modulo scheduling to reduce
the step and peak power for VLIW processors. Hazelwood
and Brooks [5] propose a collaborative hardware-software
framework that would optimize applications to eliminate
future di/dt emergencies. They investigate how different
runtime compiler optimization techniques could help reduce
the di/dt emergencies in a synthetic benchmark. Unfortu-
nately, their analysis does not provide an understanding of
the interaction between different events leading to emergen-
cies. El-Essaway and Albonesi [9] study thread management
techniques to reduce inductive noise in SMT processors.

Our work maps voltage emergencies to looping structures
in applications and looks to understand what microarchi-
tectural events are most important in the loops with the
most-frequent voltage emergencies. We use complete appli-
cations (SPEC benchmarks) and find that simple optimiza-
tion strategies, an alternative to expensive packaging solu-

x10"

h(t)

0 50 100 150 200 250 300
Time

Figure 1: Transient Response of the PDS

Clock Rate
Instruction Window
Functional Units

3.0 GHz
256-RUU, 128-LSQ
8 integer ALU, 4 Floating Point ALU,
2 Integer Mul/Div, 2 FP Mul/Div
8 Instructions
8 Instructions

Fetch Width
Decode Width

Branch Penalty 10 cycles
Branch Predictor 64-KB bimodal/gshare/chooser
BTB 1K Entries
RAS 64 Entries
L1 D-Cache 64 KB 2-way
L1 I-Cache 64 KB 2-way

L2 I/D-Cache
Main Memory

2KB 4-way, 16 cycle latency
300 cycle Latency

Table 1: Processor Parameters for SimpleScalar

tions, are effective in mitigating the inductive noise prob-
lem.

3. LOOPBASED CATEGORIZATION OF
VOLTAGE EMERGENCIES

We performed a detailed analysis of the SPEC bench-
marks to understand the behavior of applications that lead
to emergencies. In this section, we illustrate that a few code-
regions in each benchmark are responsible for most of the
emergencies associated with that benchmark.

3.1 Experimental Setup

A 8-way superscalar, out-of-order processor was config-
ured with the parameters shown in Table 1, which is identi-
cal to the configuration used in earlier studies [3, 5]. Voltage
emergencies are closely linked to the power delivery subsys-
tem (PDS) of the chip. Figure 1 shows the impulse response
of the second-order lumped model used in this paper. Our
package model is based on the characteristics of the Pentium
IV package [10]. In this model, the dominant resonant fre-
quency of the PDS occurs at 100MHz with a peak impedance
of 5mQ2. Finally, we assume peak current swings of 16-50A
and noise-margin violations at +4% of a 1V supply. A mod-
ified version of Wattch [11] was used to estimate cycle-level
current consumption and the voltage variation was calcu-
lated by performing a convolution of the current estimates
with the impulse response of the PDS, as detailed in [3].

3.2 ldentifying acoderegion with voltage emer-
gencies
The first step towards understanding the relationship be-
tween application runtime behavior and voltage emergencies
is to uniquely identify the signature of the emergencies, to

o o
N
I I

o o
u o
T T

o
~
T

% Contribution to total emergencies
o
w
I

o
N
T

o
[
T

[JastLoop
I 2nd Loop
- 3rd Loop
[4th Loop
[5th Loop
l:l Remaining

applu apsi art bzip crafty equake

gzip mcf mesa mgrid swim twolf wupwise

Benchmarks

Figure 2: Contribution of top 5 loops to the emergencies for various SPEC benchmarks

understand whether the same signature of emergencies oc-
curs repeatedly, and determine the frequency at which they
occur. This code-region identification is required to provide
the compiler with hints in order to eliminate the problematic
region. Previous work by Hazelwood and Brooks [5] used the
last executed branch (LEB) as a starting point for the com-
piler for identifying the candidate region for optimization.
An earlier study by Joseph et al. [3] showed that periodic
occurrences of high and low activity in the stressmark loop
can lead to emergencies. Periodic behavior is generally asso-
ciated with loops within applications. This observation was
used as the starting point for our analysis.

Loops can be uniquely identified based on the sequence
of instructions in the pipeline at any given instance. Loops
are flagged with a specific type of emergency based on the
sequence of instructions active at the time of the emergen-
cies. These emergency loops represent the information which
would be required by the compiler to optimize them, and
hence, represent the number of times a compiler needs to
be invoked. Our loop detection algorithm fails to perform
procedural analysis and, hence, certain instructions are not
classified with loops, which we call procedural emergencies.

Table II summarizes a few key statistics about the static
loops present in the SPEC2000 benchmarks. Loops that
are active at the time of emergencies are the loops that
we are interested in. The third column of Table II tab-
ulates the number of emergency loops identified, i.e. the
number of static loops in which a voltage emergency occurs.
Though the total number of loops ranges from 310 to 1806,
the total number of emergency loops for each application is
a small fraction of this total. This suggests that the runtime
overhead of voltage-specific dynamic optimizations would be
small. Most benchmarks have a small number of procedural
emergencies and more than 90% of the emergencies can be
associated with unique loops. The benchmarks crafty and
twolf are the only two that do not follow this trend, with
33% and 25% of the voltage emergencies classified as proce-
dural emergencies, respectively.

Since we are interested in the loops that incur the most
number of voltage emergencies, we plot in Figure 2 the per-
centage of the total number of voltage emergencies occurring
in the top five emergency loops for each SPEC benchmark.
For each benchmark, around 2-5 loops account for more than
75% of the emergencies and, hence, we classify these loops
as hot loops. Optimizing these hot loops can significantly
reduce the overall number of emergencies. We further ana-

Benchmark | Total Loops | Total Emergencies | Total Emergency Loops | Procedural Emergencies

applu 479 380807 13 0

apsi 718 21056 25 537

art. 293 120885 13 0

bzip 383 403798 35 6181

crafty 1406 623977 302 190181

equake 423 174293 9 6942

gap 1806 243259 48 2115

gzdp 310 67324 40 17

mcf 338 88828 23 620

mesa 536 279904 41 41

mgrid 411 1111152 32 5

swim 425 2332 4 0

twolf 1271 514970 81 138241

wupwise 425 42598 14 81

Table 2: Loops associated with emergencies
lyze the loops and code regions that cause the most voltage
emergencies for each benchmark.

Identifying such problematic loops, understanding the char-
acteristics of these loops, and investigating their interaction
with other loops can provide insights into the sequences of
events that lead to emergencies. This understanding is crit-
ical to find the appropriate perturbations to the code that
can eliminate the emergencies.

4. MICROARCHITECTURAL EVENT-BASED

CATEGORIZATION OF EMERGENCIES

To employ a dynamic optimizer to mitigate future voltage
emergencies in an emergency loop, we must categorize the
types of emergencies encountered at runtime and use this
categorization to determine the optimization to apply. We
developed one such categorization algorithm and used it to
analyze the emergencies occurring in the SPEC benchmarks.
The microarchitectural events we consider are L1/L2/TLB
misses, branch mispredicts and long latency operations. Our
algorithm is based on a moving window containing the his-
tory of all events occurring within a certain time period be-
fore each emergency. The window size is dependent on the
longest latency event: an L2 miss with a simulated latency of
300 cycles. Whenever an emergency occurs, a search of the
event window is performed for the various events in a fixed
priority order. The highest priority is given to L2 misses that
stall the pipeline, as they are most likely to cause the longest

>
3
&
& 260 T T T "
3 250 Y '
o 240F ; ; ; ; ; ; ;
2,747
=)
31 : : : : : : :
@2 7 .
£l h@
NO \U hj‘l TN T VI
£ 1F T ‘
E o N
2] Y
2 -1k N
ZaF N
2} A
ER
i Y
,l‘b—l* RN i i i i i 5
g 10— —— | | ; ; 3
= Y
g 51 “ ~ a
E o |
8 50— —— i i i
2 h]
3 20k ; : — 1
» 105 | 3
& 1
s 1
> 096¢ ‘\} U&S ‘ ‘ VYl

=}
[
T

o

T

current commit rateFlush TLB missL2 miss L1 fR6¥ occupa
o
OO U1 OO U1 RO U1 RO U1 RO U1
’
7’
rs
L

: R lgejo |
AY
19E : — : :
N
s : : — :
a0t N J
Y
30 N —
ZOM ; ; \MW 1
1.04F T T T T T |
[}
g1
2

i i i 7 i i
100 200 300 400 500 600 700 800 900
cvcles

Figure 3: A snapshot of loop in procedure:smvp of
equake

stalls in the pipeline. We believe that a priority-based cate-
gorization is simple to implement and can directly point to
the relevant optimization strategy (Section 5).

Figure 3 shows a snapshot of pipeline activity for the top-
most loop in equake. Pipeline statistics such as occupancy
of reorder buffer and commit rate are depicted along with
microarchitectural events: L1/L2/TLB misses and pipeline
flushes. We considered several other microarchitectural pa-
rameters, such as number of entries in the ROB, Instruc-
tion Fetch Queue, and Load/Store Queue, but none of these
helped us to better characterize the analyzed emergencies.
The current and voltage profile of the benchmark is also de-
picted by the lower two plots. In the figure, a presence of a
long stall due to a L2 cache miss can be observed (shown by
ref point 1). During the time it takes to service the L2 miss,
pipeline activity ramps down as seen in the current pro-
file. However, after the L2 miss data is available, functional
units become busy and there is a sudden increase in activity
(shown by ref point 2). This steep increase in current leads
to a significant voltage drop (shown by ref point 3). Other
events like TLB misses, L1 misses or flushes are not present
in the pipeline during this window, which clearly suggests
that the L2 miss in this code region caused the voltage fluc-
tuation in equake. We now categorize such events into four
distinct categories:

Memory Miss Event: Stalls can occur in the pipeline
due to loads missing the L1 cache, and larger stalls occur
when the loads miss the L2 caches. Large miss penalty as-
sociated with L2 or higher cache misses can drain the active
instructions in the pipeline and can result in long periods of
inactivity. It is important to note that a L2 miss that results
in a pipeline stall may lead to an emergency, while a L2 miss
that does not stall the pipeline will likely not. This period
of inactivity following a miss is characterized by low current
draw (as shown in Figure 3). A sudden increase in activity
happens when the L2 miss returns, leading to execution of
all dependent instructions. These bursts of activity follow-
ing long period of inactivity must be avoided. Pre-fetching
the loads associated with these emergencies can help remove
the long stalls and hence avoid the voltage emergencies.

Pipeline Flush Event: Misprediction of branches leads
to flushing the entire pipeline when the branch is resolved.
This leads to sudden decrease in activity following a flush

i
0 100 200 300 400 500 600
cycles

Figure 4: A snapshot of loop in procedure:match of
art

NN
Q9

O U1 OO U1 PF O RO 1 PO U1 RO O O
T T — T

o

=}

o

-

current commit ratéFlush TLB misd-2 miss L1 rfR& occupant

NwW s g
o O oo
T

voltage
N

= o
R

| 1 | H) i
f t * f t t t t

0.96 WMA/\/\MM/\/\M

0 100 200 300 400 500 600 700 800 900

cycles

Figure 5: A snapshot of loop
dure:longest match of gzip

in proce-

event; however, a few cycles later, activity ramps up be-
cause of non-control instructions at the branch target. If
the period of low and high current draw coincides with the
periodicity of the package characteristics, resonance build
up of voltage occurs. Figure 4 shows one such example in
a snapshot of art. The L2 miss (shown by ref point 1) is
responsible for the initial inactivity and subsequent increase
in activity when it returns leading to a drop in voltage but
the subsequent pipeline flushes (shown by reference points
2, 3, 4) occur periodically leading to further voltage drops.
This snapshot also shows the presence of L1 misses but our
detailed analysis showed that these were not responsible
for these emergencies. For emergency loops with branch
mis-predicts, improved static or hardware prediction could
smooth out the impact of this noise.

Long Latency Event: A long chain of dependent floating-
point operations, such as divides, can lead to long wait pe-
riod for dependent instructions leading to pipeline stalls.
Such events were detected in benchmarks like applu. One
possible way to optimize these long latency events is to
reschedule the code to schedule non-dependent instructions
to avoid the long stalls. This can be achieved by loop un-
rolling.

-

o o o
N ® ©
T

o
o

o o o
Noow N
T T

% Contribution to the emergencies in the loop
o
o

o
P
T

[Jcache Misses
Il 7.8 Misses =
[Pipetine Flush

[tong Latency Operation

[Jothers e |

art bzip crafty gap gzip mcf

mesa

twolf equake swim wupwise mgrid apsi applu

Benchmarks

Figure 6: Distribution of various microarchitectural events to voltage emergencies for the top most loop

Mixed Events: Certain applications display a complex
interplay of events, and it is difficult to identify a single cause
for the emergencies. We observed periods of high activity
in the loops leads to high-frequency noise in the voltage.
Figure 5 shows one such example with high frequency noise
occurring around the nominal voltage. In such cases, it is
difficult to identify a single dominant cause for the emer-
gency and a specific optimization to eliminate emergencies
in the loop.

Figure 6 provides the distribution of microarchitectural
reasons for emergencies in the top loop in each of the bench-
marks. Other loops in the application showed similar emer-
gency breakdowns and we focus on the top loop for brevity.
As seen from the figure, the two primary reasons associated
are the L2 misses and the pipeline flushes caused by branch
mispredicts. apsi, equake, gap, swim and wupwise are exam-
ples of benchmarks with memory misses, .2 or TLB misses.
Benchmark applu shows the presence of some emergencies
attributed to long latency operations. We also note that
some emergencies are attributed to multiple events. Finally,
some emergencies are not easily characterized with these mi-
croarchitectural events and are placed in the other category:
mgrid and gzip fall into this category.

5. OPTIMIZATION

The previous section categorizes emergency-causing events
and links them to possible optimization techniques. Before
developing a dynamic optimizer to apply these optimiza-
tions, we must understand whether the elimination of the
identified microarchitectural events will actually reduce the
number of voltage emergencies incurred during execution.
As such, the results in this section are based on our cat-
egorization algorithm forcing changes in our machine sim-
ulator to remove the identified microarchitectural event in
the targeted emergency loop. For example, if categorization
indicates that an L2 miss is the cause of an emergency in
a code region, then removing that L2 miss should result in
that emergency disappearing. Our results support this ba-
sic premise, but the effect of the “optimization” is not that
simple and localized, as we will describe.

Based on the analysis in Section 3, we applied appro-
priate optimization techniques and studied their effect on
the emergencies within each emergency loop and across the
whole application. For experiments following optimization,
we chose the same top loops in each benchmark, which we
categorized in Section 3. For loops with L2/TLB misses as
the cause for emergencies, we prefetched the loads/stores

which are causing misses. The top loop in apsi had 32% of
its emergencies attributed to TLB misses, and we prefetched
the address translations causing those misses. For loops with
branch mispredicts leading to emergencies, we provided per-
fect prediction that replaced the mispredicts.

The top loop in twolf is a very small loop nested inside
an outer, larger loop. The emergencies are linked to the
mispredicts in the outer loop and we applied the branch
optimization to this loop. For loops with long latency oper-
ations, we reduced the latency of the long instructions. This
method, done as a replacement to compiler driven code re-
ordering, is sufficient to validate that these instructions in
the code region cause the emergencies. For loops with sev-
eral interesting events, we chose the most recurring event
and performed the optimization related to that event. We
do this in the interest of keeping our scheme simple, so that
a runtime solution can be employed.

Table 3 shows the effect of different optimization tech-
niques based on the distribution shown in Figure 6. The
third column shows the effectiveness of the optimization in
reducing the emergencies in that loop for each benchmark
and the fourth column represents the overall effect of the
optimization in the loop on the total emergencies across the
entire benchmark. This table shows that any optimization
can either have an isolated effect on the loop (self-contained
optimization) or have secondary effects on loops close to the
optimizing loop region (spilling-over optimization). The sec-
ondary effects can be further divided into positive spill-over,
in which the optimization for that particular loop altered the
current signature of the application so as to remove emergen-
cies from other loops, or negative spill-over in which the op-
timization removed emergencies from that loop but caused
more emergencies elsewhere.

As can be seen from the Table 3, the optimizations were
successful in removing the emergencies in the code region.
The extent of success with an optimizing event appears pro-
portional to the extent that event was responsible for caus-
ing the emergency in the loop. For example, in equake, L2
misses are the primary cause of emergency. Hence, prefetch-
ing loads causing L2 misses removed most of the emergen-
cies in the loop. On the other hand, in apsi, a variety
of microarchitectural events contributed to emergencies in
the top loop. Hence, prefetching the TLB misses helped,
but resulted in less than optimal reduction in emergencies.
Removing the long latency operation in applu was a self-
contained optimization that did not have any effect outside
of the loop. In bzip, change in the current signature of the
application as a result of removing mispredicts had a sig-

Benchmark Contribution of the Reduction of Emergencies | Overall Reduction | Spillover
loop to application’s emergencies(%) in the given loop (%) (%) (%)
Optimization: Branch Prediction
twolf 14.9 99.9 20.9 6.0
mesa 20.9 98.8 24.3 3.6
bzip 22.1 94.9 41.4 20.4
art 80.6 79.1 68.9 5.1
mef 31.8 77.1 68.1 43.6
gap 10.8 52.7 6.1 0.41
crafty 9.7 22.1 1.9 -0.24
gzip 61.5 19 5.4 -6.3
Optimization: Prefetching Loads
equake 47.9 97.75 52.8 5.9
swim 71.1 80.2 57.0 -0.02
wupwise 48.2 66.6 16.0 -16
applu 23.8 32.3 7.7 0.01
gap 10.7 7.52 0.7 -0.11
Optimization: Long Latency Operations
applu [23.8 [23.4 [5.6 [003
Optimization: Prefetching TLB misses
apsi [65.9 [26.4 [17.7 [031

Table 3: Effectiveness of various optimization schemes

nificant positive spill-over(20%) effect and resulted in other
emergencies disappearing as well. In contrast, gzip shows
a negative spill-over, in which emergencies in the loop re-
duced but more emergencies appeared elsewhere in the code
region.

In summary, our results show that directed optimization
is overall successful. A side effect of this successful optimiza-
tion also points out to the correctness of our categorization
of the voltage emergencies. However, the presence of nega-
tive spill-over suggests that the process of optimization has
to be continuously carried out, perhaps throughout the run-
time of the application. The simplicity of the optimization
mechanisms and the narrow code region that need to be
altered (for example, inserting prefetch instructions before
particular load instructions) make it suitable for a dynamic
compiler to perform them in real time without much over-
head.

6. CONCLUSIONSAND FUTURE WORK

This paper presents a categorization of the various loops
detected at the time of emergencies for SPEC benchmarks.
This is a step towards understanding the required solution
at the microarchitectural or software level to handle noise-
margin violations. This study highlights that only a few
loops (the order of 2-5) are responsible for more than 80%
of the emergencies across most of the applications.

Further characterization of code regions that experience
voltage emergencies shows that certain microarchitectural
events like cache misses and branch mispredicts lead to in-
crease/decrease in activity of the pipeline leading to voltage
fluctuations. Occurrence of such events at the resonant fre-
quency of the system can worsen the voltage drop (as shown
in art). We developed a simple but effective categorization
scheme to highlight the prominent cause for emergencies
in the code region contributing most of the emergencies.
To validate our characterization we applied simple solutions
like prefetching loads, branch prediction or TLB prefetching,
which were generally effective in decreasing the occurrence
of voltage violations across our applications.

7. REFERENCES

[1] Semiconductor Industry Association, “International
Technology Roadmap for Semiconductors,” 2005.

[2] E. Grochowski, D. Ayers, and V. Tiwari,
“Microarchitectural Simulation and Control of
di/dt-induced Power Supply Voltage Variation,” in
Int’l Symposium on High-Performance Computer
Architecture, 2002.

[3] R. Joseph, D. Brooks, and M. Martonosi, “Control
Techniques to Eliminate Voltage Emergencies in High
Performance Processors,” in Int’l Symposium on
High-Performance Computer Architecture, 2003.

[4] M. D. Powell and T. N. Vijaykumar, “Pipeline
muffling and a priori current ramping: architectural
techniques to reduce high-frequency inductive noise,”
in Int’l Symposium on Low Power Electronics and
Design, 2003.

[5] K. Hazelwood and D. Brooks, “Eliminating Voltage
Emergencies via Microarchitectural Voltage Control
Feedback and Dynamic Optimization,” in
International Symposium on Low-Power Electronics
and Design, August 2004.

[6] M. Powell and T. N. Vijaykumar, “Exploiting
Resonant Behavior to Reduce Inductive Noise,” in
Int’l Symp. on Computer Architecture, Jun 2004.

[7] M. Toburen, “Power Analysis and Instruction
Scheduling for Reduced di/dt in the Execution Core of
High-Performance Microprocessors,” Master’s thesis,
NC State University, USA, 1999.

[8] H.-S. Yun and J. Kim, “Power-aware Modulo
Scheduling for High-Performance VLIW Processors,”
in ISLPED °01: Proceedings of the 2001 International
Symposium on Low Power FElectronics and Design,
2001, pp. 40-45.

[9] W. El-Essawy and D. Albonesi, “ Mitigating Inductive
Noise in SMT Processors,” in International Symposium
on Low Power Electronics and Design, August 2004.

[10] K. Aygun, M. J. Hill, K. Eilert, R. Radhakrishnan,
and A. Levin, “Power Delivery for High-Performance
Microprocessors,” Intel Technology Journal, vol. 9,
no. 4, Nov. 2005.

[11] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a
Framework for Architectural-level Power Analysis and
Optimizations,” in 27th Annual International
Symposium on Computer Architecture, 2000.

