
Tribeca: Design for PVT Variations with Local Recovery and
Fine-grained Adaptation

Meeta S. Gupta, Jude A. Rivers†, Pradip Bose†, Gu-Yeon Wei and David Brooks
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

†IBM T.J Watson Research Center Yorktown Heights, NY 10598
{meeta,guyeon,dbrooks}@eecs.harvard.edu, †{jarivers,pbose}@us.ibm.com

Abstract
With continued advances in CMOS technology, parameter vari-
ations are emerging as a major design challenge. Irregularities
during the fabrication of a microprocessor and variations of volt-
age and temperature during its operation widen worst-case timing
margins of the design—degrading performance significantly. Be-
cause runtime variations like supply voltage droops and tempera-
ture fluctuations depend on the activity signature of the processor’s
workload, there are several opportunities to improve performance
by dynamically adapting margins. This paper explores the power-
performance efficiency gains that result from designing for typical
conditions while dynamically tuning frequency and voltage to ac-
commodate the runtime behavior of workloads. Such a design de-
pends on a fail-safe mechanism that allows it to protect against mar-
gin violations during adaptation; we evaluate several such mecha-
nisms, and we propose a local recovery scheme that exploits spa-
tial variation among the units of the processor. While a processor
designed for worst-case conditions might only be capable of a fre-
quency that is 75% of an ideal processor with no parameter varia-
tions, we show that a fine-grained global frequency tuning mech-
anism improves power-performance efficiency (BIPS3/W) by 40%
while operating at 91% of an ideal processor’s frequency. More-
over, a per-unit voltage tuning mechanism aims to reduce the effect
of within-die spatial variations to provide a 55% increase in power-
performance efficiency. The benefits reported are clearly substan-
tial in light of the <1% area overhead relative to existing global
recovery mechanisms.
Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Reliability,availability and serviceability
General Terms Performance, Reliability

1. Introduction
Continued advancement of CMOS technologies provides the well-
known benefits of device scaling. However, as feature sizes shrink
and chip designers attempt to reduce supply voltage to meet power
targets in large multi-core systems, parameter variations are becom-
ing a serious problem. Parameter variations can be broadly classi-
fied into device variations incurred due to imperfections in the man-
ufacturing process and environmental variations due to fluctuations
in on-die temperature and supply voltage. Collectively, these PVT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright c© 2009 ACM 978-1-60558-798-1/09/12. . . $10.00

variations greatly impact the speed of circuits in a chip; delay paths
may slow down or speed up due to these variations. The traditional
approach to deal with parameter variations has been to over-design
the processor based on the most pessimistic operating conditions to
allow for worst-case variations.

As the gap between nominal and worst-case operating condi-
tions in modern microprocessor designs grow, the performance im-
pact of worst-case design are too large to ignore. Recognizing the
large performance loss in such a design style, researchers have be-
gun to propose architecture-level solutions that address worst-case
conditions. However, almost all proposed solutions to date have fo-
cused on a single source of parameter variations at a time: temper-
ature [28], voltage [10, 15, 22], or process [18, 25, 30]. Implicitly,
many of these studies assume that the costs of individual sources
of parameter variations and the benefits of the proposed schemes
are orthogonal. However, there are many complex interactions be-
tween parameter variations that highly depend on the underlying
microarchitecture, workloads, and operating conditions.

This paper seeks to understand these complex interactions and
to propose new microarchitectural solutions cognizant of the com-
bined characteristics of P, V, and T variations. We observe that sim-
ply adding up the margins from each source of variation can lead to
an excessively conservative design. Moreover, these variations dif-
fer significantly in temporal and spatial scales. Process variations
are static in nature, while voltage and temperature variations are
highly sensitive to workload behavior, albeit at very different time
scales. All sources of variation impact different parts of a micropro-
cessor die in myriad ways with complex interactions. Microarchi-
tectural techniques designed to mitigate parameter variations must
clearly account for these differing characteristics.

This paper introduces a framework called Tribeca which con-
siders the combined interaction of all the three sources of variations
and proposes mechanisms for designing processors for typical op-
erating conditions in the presence of PVT variations. Tribeca makes
three primary contributions to the field of handling variations:

• We provide a detailed analysis of the combined effect of P, V,
and T variations and demonstrate differences from naive ap-
proaches that treat each source in isolation. We further illustrate
the spatial and temporal characteristics of parameter variations
by combining best-known modeling frameworks for P, V, and
T with a POWER6-like microprocessor performance simulator
augmented with circuit-extracted power models.

• We propose a local recovery mechanism that provides low cost
detection and rollback for timing-margin violations. This lo-
cal recovery mechanism exploits spatial variation among units
within the processor, and low cost recovery allows aggressive
setting of design margins.

• We explore fine-grained dynamic adaptation of processor fre-
quency and voltage to exploit both temporal and spatial vari-
ation in delay across the processor. We show that previously
proposed static or coarsely-dynamic mechanisms cannot suf-
ficiently handle variation when including the effects of voltage
variation. We propose adaptation mechanisms that seek to max-
imize power-performance efficiency in the presence of parame-
ter variations.

Our results show solutions combining local recovery with a
fine-resolution dynamic adaptation mechanism can maximize per-
formance with minimal increase in power. A processor designed
for worst-case operating conditions can only operate at 75% of the
frequency of an ideal processor devoid of any variations. Deploy-
ing a fine-grained global frequency tuning mechanism increases the
BIPS3/W metric by 40%, while allowing operation at 91% of the
ideal processor frequency. A per-unit voltage tuning mechanism
takes advantage of spatial variations across the core to provide a
54% increase in BIPS3/W.

This paper is organized as follows. Section 2 motivates why
we must consider all types variations together and highlights the
benefits of designing for typical, rather than worst-case, conditions.
Section 3 then presents a detailed discussion of the characteristics
of the variations, and it describes the proposed Tribeca framework
for dealing with them. Our modeling methodology and simulator
framework are presented in Section 4. A detailed evaluation of the
various mechanisms proposed is presented in Section 5. We discuss
related work in Section 6 and conclude in Section 7.

2. Parameter Variations and

Worst-Case Design
Parameter variations pose many challenges for CPU designers in
technologies beyond 65nm [2]. The most critical sources of pa-
rameter (or PVT) variations are systematic and random variations
in process characteristics across dies, supply voltage droop, and
temperature variation. Parameter variations impact the worst-case
delay of critical paths and, hence, directly affect performance and
power. Variations also introduce spread in path delays across a chip
both spatially (across different units in a chip) and temporally (as
workload behavior causes voltage and temperature to fluctuate).

Designers typically account for parameter variations by impos-
ing conservative margins that guard against worst-case variation
characteristics to guarantee functional correctness of the system
under all operating conditions. The size of these timing margins
depends on how designers account for the impact of variations.
Conservatively, designers may treat each source of variation inde-
pendently and determine worst-case margins by simply summing
the required margin for each source. This conservative approach
ignores important interactions that can exacerbate variation effects.
Hence, it is important to consider PVT variations in combination
and not as independent entities. Section 2.1 evaluates this issue and
motivates the need for design solutions that consider all sources of
variation simultaneously. Section 2.2 motivates the need for solu-
tions that accommodate the large gap between worst-case and nom-
inal operating conditions.

2.1 Overlapping Margins

All sources of parameter variation lead to timing overhead and un-
certainty, but each kind of variation has different characteristics.
Process variations, which result from imperfections in the man-
ufacturing process, are potentially large variations in device-level

Process(P) Voltage(V) Temp(T) PVT stacked PVT combined
0

5

10

15

20

25

30

35

Variations

Ti
m

in
g

M
ar

gi
ns

(%
)

Figure 1: Impact of PVT variations on timing margins. Simple stacking
leads to a larger mean and smaller spread in required timing margins as
compared to the combined effects of all three.

attributes such as the threshold voltage and gate length of transis-
tors, with both systematic and random components. Voltage varia-
tions are closely related to workload-dependent activity and result-
ing current fluctuations on the order of 10s to 100s of cycles. These
fluctuations cause droops in the power supply distribution network
due to interaction with the parasitics of the supply network. Simi-
larly, although at a much coarser time scale, different activity pro-
files also induce temperature differences across the chip.

Figure 1 illustrates the timing margins required when consid-
ering isolated and combined sources of variations. These timing
margins are set by the worst-case delay path within a chip. The
process parameters, gate length, threshold voltage, nominal supply
voltage (Vnom = 1.15V), and nominal temperature (Tnom = 80C)
are based on a 65nm technology node and ITRS specifications [13].
The first three bars (Process, Voltage, and Temperature) represent
the timing margins required for each of the variations when consid-
ered in isolation. Process variation was evaluated across a batch of
100 chips by modeling and simulating both systematic and random
effects. The bar represents the mean timing margin across all 100
chips. The error bars represent the maximum and minimum tim-
ing margins observed across the 100 chips. Voltage variations are
evaluated by running our benchmark suite on a nominal chip with
no process variation at Tnom. The bar represents the mean of the
worst-case timing margin required for the benchmark suite consid-
ered, indicating a 15% timing margin required to accomodate volt-
age variations. Temperature variations are evaluated by determin-
ing the timing margins required for a chip with no process variation
and operating at a temperature of 100C at Vnom. Temperature vari-
ations require 5% margins to ensure correctness due to worst-case
temperature across the core.

Simply stacking the individual margins together (PVT-stacked)
results in a simple, but conservative, approach to setting worst-
case timing margins. In contrast, the figure also shows the resulting
timing margins from simulating all sources of variations together.
When PVT variation effects are combined (PVT-combined), the av-
erage margin required reduces, but the spread between maximum
and minimum margins increases. This larger spread in margins pri-
marily results from the interaction between voltage and process
variations. Faster chips, consisting of transistors with lower thresh-
old voltages, are less sensitive to voltage droops and can operate
with tighter margins. On the other hand, the transistors with higher
threshold voltages in slower chips are more sensitive to voltage
droop and require larger margins. Hence, the spread between maxi-
mum and minimum margins increases. Runtime temperatures, typ-
ically being lower than applying a worst-case 100C penalty, result

Cycles

R
el

at
iv

e
D

el
ay

(a)

0 100 200 300 400 500
1

1.05

Cycles

R
el

at
iv

e
D

el
ay

(b)

0 100 200 300 400 500
1

1.05

Figure 2: Example depicting performance loss incurred by pro-
viding timing margins (bottom) compared to ideal cycle-by-cycle
frequency tracking (top).

0 5 10 15
0

5

10

15

20

25

30

33

%
 P

er
fo

rm
an

ce
 L

os
s

% Timing Margins
(a) V

0 5 10 15 20 25 30
0

5

10

15

20

25

30
33

%
 P

er
fo

rm
an

ce
 L

os
s

% Timing Margins
(b) PVT

Figure 3: Need to design for the typical case. Performance loss at various timing margins
is depicted for (a) voltage variations and (b) process-voltage-temperature variations.

in average margin reduction. The slowest chip, with the highest
threshold voltages across the chip, exhibits lower leakage power
to ameliorate thermal effects and slightly reduce the maximum re-
quired timing margin. Given that simply stacking margins misses
important interactions found by considering PVT variations to-
gether, designers must address all sources of variations in combi-
nation and not as individual, orthogonal components.

2.2 Design for Typical Conditions

Conservative designs operate at the worst-case timing margin, en-
suring robustness, but with performance loss due to lower pro-
cessor frequency. Because worst-case conditions can be severe
but infrequent, operating with conservative worst-case margins is
costly. This section explores the widening gap between nominal
and worst-case conditions assuming that a fail-safe mechanism can
handle the infrequent worst-case scenarios.

Figure 2 shows a snapshot of circuit delay over 500 cycles for
SPEC CPU2006 benchmark h2ref run on a chip with no process or
temperature variations. In other words, voltage droops are solely
responsible for the delay variations. There are infrequent large
droops in voltage causing occasional increases in delay. To estimate
the benefits of designing for the nominal case, we consider an ideal
frequency tracking scenario that adjusts clock frequency according
to cycle-by-cycle delay (akin to an asynchronous design). The
performance loss of such a system corresponds to the area under
the curve in Figure 2(top). We compare such a scenario to one that
assumes a fixed timing margin of 5% and handles violations with a
fail-safe mechanism shown in Figure 2(bottom). Margin violations
incur additional performance penalties.

Figure 3 compares the performance loss of the ideal cycle-by-
cycle tracking scheme (represented by 0% margins) with that of ap-
plying fixed timing margins while simulating the entire benchmark
at the 65nm technology node. Figure 3(a) plots the performance
loss corresponding to different timing margins in the presence of
voltage variations. An ideal asynchronous design incurs 2% perfor-
mance loss due to delay fluctuations. As timing margins increase
up to the worst-case 15% level, performance loss is mostly due to
the fixed margin as delay fluctuations are infrequent. Figure 3(b)
presents a similar plot that considers the impact of PVT variations.
The error bars again correspond to the spread due to process varia-
tions for 100 simulated chips. With 0% timing margins, the fastest
chip exhibits a 4% loss in performance and the slowest chip incurs
a much larger penalty of ∼17%. Applying larger fixed timing mar-

gins penalizes the fastest chips until the fastest and slowest chips
suffer similar losses beyond 20%, where the margins again dictate
performance loss. The plot extends to 33%, which represents a sce-
nario that sets margins with respect to the worst-case delay across
all chips. This analysis shows that the severe but infrequent nature
of worst-case run-time conditions motivates design strategies that
avoid running with timing margins based on worst-case conditions.
Such strategies have the potential to recapture up to 20% of perfor-
mance loss on average.

3. Tribeca: Processor Design for

Typical Operating Conditions
With the growing gap between worst-case and typical-case delay
in processors, it becomes essential to design for the typical case
while ensuring correctness. Typical-case design can lead to timing
violations when the length of a clock cycle is near the delay of
the critical paths in the processor. Correct and reliable execution
requires robust violation detection and a low-cost recovery mech-
anism. However, parameter variations lead to different behavior in
different parts of the processor, suggesting that a global recovery
mechanism may be wasteful. Section 3.1 gives an overview of our
baseline microarchitecture, which includes a global recovery mech-
anism, represented by the recovery unit. Section 3.2 explores the
spatial and temporal characteristics of the circuit delay for different
units in the processor. Along with spatial and temporal variations,
application variability emphasizes the need for adaptive mecha-
nisms for coping with variations. Section 3.3 presents the Tribeca
framework and explores the architectural support required to en-
able a low-cost solution that adapts processor frequency/voltage
both spatially and temporally. The proposed distributed local re-
covery solution replaces the existing recovery unit in the baseline
processor.

3.1 Baseline Microarchitecture

Our baseline microarchitecture resembles the published POWER6
processor core [17] .1 The baseline core is modeled as shown in
Figure 6(a) (excluding the shaded boxes). It consists of an instruc-

1 The results reported in this paper do not claim to represent any real
product. The POWER6 microarchitecture was chosen as it supports an on-
chip recovery mechanism, which was essential to the particular ideas and
attendant analysis reported in this paper.

Chips

R
el

at
iv

e
D

el
ay

10 20 30 40 50 60 70 80 90 100

0.9

1

1.1

1.2

1.3

1.4

V=1.15V,T=80C0.13

V=0.9V,T=100C
0.24

(a) Spatial: Spread of worst-case delay between different units.
Bottom: spread due to process variations alone. Top: increased
spatial spread at worst-case conditions.

0 20 40 60 80 100

0.9

1

1.1

1.2

1.3

1.4

R
el

at
iv

e
D

el
ay

Chips

Worst case Design Margins
Max Runtime Delay
Avg. Runtime Delay
Min Runtime Delay

(b) Temporal: Spread of delay due to run-time behavior. The
maximum, average, and minimum delay over all 16 bench-
marks and 5 units per chip (a total of 80 points/ chip).

Figure 4: Spatial and temporal slack. Differences across processor units and between application phases the designers can exploit.

tion fetch unit (IFU), instruction dispatch unit (IDU), two fixed-
point (FXU), floating-point (FPU) and two load-store (LSU) units.
In addition it has a recovery unit (RU), which performs checkpoint
and recovery. It contains the data representing processor state (pro-
tected by ECC), so that the state of the processor can be restored
when an error condition is detected. Issue in the POWER6 core is
strictly in-order (per thread), and execution pipelines include de-
lay stages designed to relieve some of the potential performance
impact of this in-order issue policy. The FXU pipeline has regis-
ter file access delayed by two cycles, for example, to provide the
proper load-use delay timing for cases where a load hits in the L1
cache, thereby allowing the load and its dependent use to occupy
the same group of issued instructions (i.e., to issue into the execu-
tion pipelines on the same cycle). Instructions are not directly is-
sued into the FPUs, but instead into a simple issue queue, which al-
lows some out-of-order execution of FPU instructions, but also de-
couples the instruction dispatch/issue unit from the longer delays of
the floating-point unit. In a similar way, some execution pipelines
include delay stages after their active execution intervals to prop-
erly balance the pipelines, and to ensure that instruction writeback
occurs in the architected order.

3.2 Characteristics of Variations

Parameter variations lead to different behavior in different parts
of the core. Process variation introduces static differences between
various units, amplified by run-time variations. Delay characteris-
tics vary both temporally and spatially, across the blocks of the pro-
cessor core. Traditionally, the worst-case design point (worst-case
voltage droop, worst-case temperature), based on synthetic activ-
ity patterns that attempt to induce these worst-case events, deter-
mines the timing margins. However, there are substantial amounts
of spatial, temporal, and application-level slack designers can ex-
ploit. This section explores the spatial and runtime characteristics
of circuit delay across a processor along with the variability within
and across applications. Details of the processor and the PVT mod-
eling framework are deferred to Section 4.

Variations delay different units of a processor by different
amounts. We call this spatial slack. Systematic variation in process
parameters like threshold voltage, gate length, and oxide thickness

creates differences across the core. Different software phases load
different functional units to a greater or lesser degree. For example,
the FXU has both high power density and high activity fluctuations,
leading to larger temperature spikes and deeper voltage droops than
those of the FPU.

Figure 4(a) shows the difference between the worst-case circuit
delay for different units under two different operating conditions,
a nominal operating condition of 1.15V at 80C and a worst-case
design point of 0.9V and 100C. A maximum slack of relative delay
of 13 percentage points is available under nominal operating con-
ditions. This slack increases to 24 percentage points when the oper-
ating conditions are based on the worst-case design points (though
for a different chip). Variation in process parameters changes the
voltage-delay or temperature-delay relationships of circuits, widen-
ing the gap between units as conditions worsen. The variation in de-
lay between units suggests using a recovery solution that can take
advantage of the differences in delay behavior across the processor,
rather than a global recovery mechanism.

The runtime behavior of workloads also exposes temporal slack.
Figure 4(b) shows the maximum run-time delay across the bench-
mark suite for 100 simulated chips (generated with process varia-
tions as described in Section 4), along with the delay for worst-case
design margins (V=0.9V, T=100C). For nearly every chip, there is a
slack of 10 percentage points between the worst-case delay and the
maximum runtime delay seen in benchmarks. The average run-time
delay provides an even greater temporal slack of almost 20 percent-
age points. A tuning solution that adapts to the run-time behavior
of the application can exploit this temporal slack.

Our simulations show significant amounts of application vari-
ability. Unlike process variations, voltage and temperature varia-
tions are closely coupled to workload characteristics, which vary
from application to application and from phase to phase within
an application. Figure 5(a) plots the variation of delay across ma-
jor units for different benchmarks. Within a benchmark, the units
have different delay profiles and the relative order of units differs
between benchmarks. Figure 5(b) shows the variation of omne, a
SPEC CPU2006 benchmark, across different chips. The load-store
unit (LSU) has the worst behavior for a majority of the chips, ow-
ing to large swings in activity followed by long stall periods. The

0 5 10 15
1

1.1

1.2

1.3

1.4

Benchmarks

W
or

st
 R

un
tim

e
D

el
ay

IFU IDU FXU FPU LSU

(a) Across Benchmarks

0 20 40 60 80 100
1

1.1

1.2

1.3

1.4

Chips

W
or

st
 R

un
tim

e
D

el
ay

IFU IDU FXU FPU LSU

(b) Across Chips

Figure 5: Worst runtime circuit delay variation for various units with respect to (a) different applications for a single chip and (b) running the SPEC CPU2006
benchmark omne with different chips.

variation in the relative order of units between different chips is pri-
marily the result of within-die process variations. Previously pro-
posed static tuning schemes [18] which primarily focus on dealing
with process variations cannot adapt to the workload characteris-
tics, hence, fail to adapt to both inter- and intra-application vari-
ability. Designing for all the three sources of variations requires
dynamic adaptations mechanisms which can effectively adapt to
the differences within and across applications. The tuning mech-
anisms can differ in the temporal granularity of tuning (coarse vs
fine) and spatial granularity (global vs local). Section 3.3 presents
our proposed tuning solution.

3.3 The Tribeca Framework

This section explores the architectural support required to enable
the performance and power benefits of typical-case design margins.
Our solution has two parts: 1) low-cost and robust mechanisms to
detect and recover from timing violations, to ensure correct and
reliable execution; and 2) spatially and temporally fine-grained
tuning mechanisms that allow the chip to balance design margins
across workloads and blocks.

Existing processors have begun to implement global recovery
(GR) mechanisms to handle errors, such as the recovery unit (RU)
in POWER6 [19]. While these schemes have initially been pro-
posed to handle infrequent radiation-induced soft errors, they can
also be used to handle timing errors. The high frequency of oc-
currence of timing errors requires a low cost recovery solution.
Moreover, spatial differences across the different units require a
mechanism which can exploit the differences in error-rates of dif-
ferent units. GR schemes provide a coarse-grained recovery mech-
anism which over-penalizes parts of the processor that do not ex-
perience timing violations. Hence, we propose a fully distributed
local recovery mechanism (LR) that is cognizant of inter-unit vari-
ability and reduces overall recovery cost in the presence of viola-
tions. A fully distributed local recovery mechanism aims to elimi-
nate the global recovery mechanism. However, a fully distributed
local-recovery mechanism entails overheads, particularly for the
front end of the pipeline. We also propose another flavor of local
recovery: partial local recovery (PLR) which augments global re-
covery with local recovery for the execution units.

As discussed in Section 3.2, workload and unit-level variabil-
ity highlight the need for adaptive solutions that can reduce re-

quired timing margins. Many algorithms have been proposed to
statically or dynamically adjust voltage and/or frequency settings
to address temperature and process variations [25, 30]. However,
all previously proposed mechanisms have been applied at coarse
temporal granularity—either statically, after post-fabrication test,
or dynamically, at the OS scheduling interval (a few milliseconds).
We show that adaptation at finer-resolutions can enhance the per-
formance gains. The remainder of this section discusses details of
the local recovery and fine-grained adaptation mechanisms.

3.3.1 Local Recovery

The recovery unit in POWER6 [19] is an example of a global
checkpoint-recovery mechanism in a shipping microprocessor. The
RU contains ECC-protected data representing the state of the pro-
cessor, allowing recovery of internal processor state when an error
condition is detected. This recovery process is coarse-grained and
hence relatively costly, requiring a full pipeline flush and restart.
We propose to replace the RU’s global checkpoint-recovery mech-
anism with a distributed error detection and recovery mechanism.
Local detection and recovery can better handle spatial variability
across the processor, and it minimizes the recovery cost of viola-
tions. A key requirement of a local recovery mechanism is timely
detection of violations to prevent propagation of corrupted state
across unit boundaries. The shaded logic in Figure 6(a) highlights
the additional hardware required for implementing a local recovery
mechanism, described below.

Error detection unit (EDU): To maintain correct semantics and
ensure that a corrupt instruction does not propagate from the unit
in violation to the rest of the pipeline, error detection is performed
before the transition boundaries between units. Many server-class
microprocessors (including the POWER6) now provide error detec-
tion mechanisms distributed throughout the pipeline, often in the
form of parity check, ECC, and residue codes [19], and we rely
on these for local error detection. Additional circuit-level schemes
such as Razor latches can provide supplemental error detection [7,
32, 33], and it is likely that due to rising error rates these schemes
will become more pervasive in future microprocessors.

When the EDU detects a violation, it triggers a recovery mech-
anism that simultaneously flushes the local pipeline and initiates
a replay mechanism described below. For each execution pipeline
in the processor, the detection unit follows the execution stage and

Decode
Pipeline

Fetch
Pipeline

Instruction
Fetch

Address
Buffer (IFAB)

Replay
Instruction

Buffers
(RIB)

IFU IDU

D
S

D
S

E
D
U

Replay
Buffer

R
M

Replay signal
Kill signal

Replay + EDU

Replay + EDU

D
S

D
S

FPU

FXU

LSU

R
F

E
X

D
S

D
S

W
B

D
S

D
S

W
B

W
B

R
U

EDU EDU

(a) Baseline microarchitecture with support for local recovery mechanism.

IDU

FPU

FXU

LSU
IFU

Tuning Algorithm

Estimated Recovery Cost

VT
VddH

VddL

Vifu
Vidu

Vfpu Vfxu Vlsu

Per-unit
Voltage
Settings

Fi
Fj
Fk

Global Frequency Setting

(b) Support for fine-grained frequency/voltage tuning

Figure 6: Proposed local recovery and fine-grained tuning mechanisms. (a) depicts the Baseline microarchitecture with architectural support for local recovery
mechanism . Additional hardware is shown by the shaded boxes. Details of the recovery mechanism for the execution units are presented for the fixed-point
unit (FXU), and remaining units have the same logic represented as Replay + EDU logic. (DS: delay stages; RF: register file access; EX: execute; EDU: Error
detection unit; RM: replay mux.). The recovery unit is replaced by our distributed recovery mechanism. (b) highlights the additional support required for a
fine-grained frequency (voltage) tuning mechanism.

precedes the delay and writeback stages. In the POWER6 pipeline,
all units except the FPU have several delay buffering stages follow-
ing execution completion to ensure in-order writeback. EDU can
take advantage of these stages and perform error detection off the
critical path, in most cases with multiple stages before writeback.
Writebacks for the FPU pipeline may be delayed depending on
the timing of the EDU for FPU operations. Inter-pipeline commu-
nication (e.g., Load-to-FXU dependencies) requires flushing both
pipelines if the forwarding unit reports a violation, although this
is not required for inter-pipeline dependencies through the regis-
ter file. When an error is detected, the EDU sends a replay signal
to the replay logic and a kill signal to the writeback stages of the
execution pipeline. This prevents propagation of corrupted state,
hence protecting the architected state of the processor (the regis-
ter files and memory units). The architected register file must be
ECC-protected.

Replay buffer for the execution units: Error detection must
trigger a recovery mechanism. The unit in error needs to replay all
operations performed on the internal, temporary state correspond-
ing to the in-flight instructions in the unit’s pipeline. Replay buffers,
often used in processors to provide speculative execution of long la-
tency or load instructions [20], provide recovery for each execution
pipeline. Recovery, in the presence of timing-margin violations, can
use a similar replay mechanism. The replay buffer stores the source
and destination registers and the operation field for each instruction
in the execution pipeline. The EDU sends a replay signal to the re-
play mux, which then feeds instructions into the execution pipeline
from the replay buffer. A stop signal is sent to the scheduler, which
halts scheduling of instructions to the recovering execution units;
however, it is possible to continue scheduling non-dependent in-
structions in the remaining execution pipelines. Normal scheduling
resumes after all instructions are replayed. Figure 6(a) depicts the
details of the replay logic coupled with the EDU for the FXU; other
units have similar logic, shown as a composite box (Replay+EDU).

Violations detected in the processor trigger a global throttling
mechanism, which operates the processor in a low-frequency mode
(at half the frequency of the processor). This throttling mechanism
ensures that local restart will make forward progress by providing
timing slack in the logic. Our simulations show that a slow-restart
period of ten cycles is sufficient to guarantee forward progress.

Recovering the front end: Unlike the execution units, the front-
end units of the processor (fetch and decode) do not require replay
buffers. Instead the front end needs to maintain the instruction
stream fed into the back end to enable recovery, the required state
being proportional to the depth of the front-end. First, the fetch
unit must save the instruction address buffer (PC-chain) to recover
the fetched instruction sequence. This is saved in the instruction
fetch address buffers (IFAB). The size of IFAB is proportional to
the pipeline depth of the IFU. Second, the IDU maintains a copy of
the instruction buffers (replay instruction buffers (RIB)) to enable
recovery of the fetched instructions written into the instruction
buffers. The instruction buffers can receive eight instructions per
thread every cycle. The RIB size is 8 times the number of stages
in the IDU. It is important to note that all recovery state buffers (in
both the front end and back end) require ECC protection since for
functional correctness these buffers must not be corrupted.

Implementation overhead: The baseline processor is designed
with conservative margins and operates at 75% of ideal frequency.
Global recovery adds error detection mechanisms and centralized
recovery state. For a POWER6-style design, the total overhead for
detection supported by global recovery is estimated to be at least
15% (based on designer input and publicly available papers).

Our proposed local recovery mechanism requires additional
ECC-protected replay state, but can reuse much from an existing
global recovery design, e.g. existing recovery state is distributed
across local pipelines. For the LSU, much of the local replay logic
and state may already exist in most processors to enable speculative
execution for load instructions. The FXU pipeline requires a two-
stage replay buffer (RF and EX stages), while the FPU pipeline re-

quires an 8-stage replay buffer due to the longer execution pipeline.
In contrast to the back end, front-end units have higher replay state
overhead since the IFU and IDU units deal with a wide stream of
instruction and decode bits. We estimate that the RIB requires 8 in-
structions per pipeline stage in the IDU, leading to a 48-entry buffer
per thread. The additional state required for LR is less than 0.5KB
(<1% of the core), and the front end accounts for 75% of the imple-
mentation overhead. We estimated added latch bits conservatively,
using actual low-level design data for the POWER6 core.
Partial local recovery: As discussed above, much of the addi-
tional state overhead exists in the front end of the pipeline, with
wide and relatively long stages. This motivates us to explore a
scheme we call partial local recovery in which we provide global
recovery for the front-end units and local recovery for the back-
end units (FXU, FPU and LSU). In this scheme, violations in the
front end initiate global recovery using the RU. However, violations
in the execution units initiate local recovery using the local replay
logic as explained above. This partial local recovery mechanism
exploits the spatial variations of the execution units only, although
based on our unit-level analysis, we find that the back-end units are
noisier and hence more susceptible to timing violations.

3.3.2 Dynamic Adaptation Mechanism

The activity profile of an application varies with the program phase,
directly impacting the voltage and temperature variation across
the core. Previous work has considered frequency and/or voltage
adaptation, but with a focus on static, post-fabrication test-time
tuning to target process variation [18], or coarse-grained tuning
to target process and thermal parameters [25, 30]. The smaller
time constants associated with voltage variations, coupled with
the observation that voltage noise heavily depends on application
characteristics [23], imply that solutions will need finer temporal
resolution to target the combined effect of PVT-variations. We do
not seek to adapt at the granularity of actual voltage noise, with
periods on the on the order of 10s to 100s of cycles. Rather, we find
that an adaptation interval of a few thousand cycles strikes the right
balance between sensitivity to workload phases and acceptable
recovery overhead.

We evaluate two fine-grained tuning mechanisms to deal with
parameter variations: global, core-wide frequency tuning and lo-
cal, per-unit voltage tuning. The global frequency tuning mecha-
nism aims to increase performance at some cost in power. Per-unit
voltage tuning aims to maximize the collective power-performance
metric (BIPS3/W) [4].
Frequency tuning algorithm: A processor designed for a fixed
frequency of operation misses opportunities to run at higher fre-
quency with little or no penalty. Recent work has demonstrated
fine-grained frequency adaptation using muxes in the clock tree
network to select different clock frequencies at fine granular-
ity [31]. We evaluate a similar frequency adaptation mechanism
at a resolution of 10K cycles. Our frequency tuning algorithm se-
lects a frequency, fi, that maximizes BIPS, as defined

BIPS(fi) =
fi

CPIoriginal + CPIrecovery(fi)
(1)

CPIoriginal is the number of cycles per instruction in normal ex-
ecution without timing violations and CPIrecovery is the number
of extra cycles per instruction incurred to recover from timing vio-
lations.

Ideally, a frequency tuning mechanism should be able to adapt
to any frequency required; however, that is not a feasible imple-
mentation. Instead we consider frequency steps of 1% of the base-
line frequency. Responding to changes at fine resolution requires a

method for changing frequency quickly without waiting for a PLL
to re-lock. We assume multiple PLLs running at independent fre-
quencies and a multiplexer that chooses among them in a single
cycle [31]. Our analysis shows that the maximum frequency jump
between consecutive windows is ±3% of the current frequency
choice. This suggests using 7 PLLs for frequency adaptation, which
is costly to implement. Our analysis shows very little sensitivity to
the frequency steps, a 3% frequency step can achieve gains similar
to those of a 1% frequency step, and three PLLs are sufficient.

Figure 6(b) highlights the required support for enabling fine-
grained global frequency tuning2 . We assume a single clock and
frequency domain. The tuning algorithm determines the optimal
frequency (that maximizes BIPS) from the three available fre-
quency choices. Fast frequency switching is enabled by the three
PLLs locked at different frequencies muxed onto one clock net-
work (similar to the implementation presented in [31]).
Voltage tuning algorithm: Device tuning techniques seek to op-
timize delay by modifying the threshold voltage or supply volt-
age. For example, adaptive body biasing adjusts the threshold volt-
age for individual blocks of transistors compensate for fluctuations
in threshold voltages arising from the manufacturing process [30].
Another recently proposed scheme, voltage interpolation, provides
the ability for different groups of logic gates within a block to select
between two static supply voltages (high and low) to accommodate
gates that deviate from nominal delays [18]. In both of these ap-
proaches, devices are partitioned into groups or blocks at design
time, but the block-level tuning occurs after fabrication and during
test. We envision extending these approaches for run-time tuning
that can occur every 10K cycles.

The choice of voltage affects both the dynamic power consump-
tion (quadratic relationship) and leakage power (linearly related to
supply voltage), so it affects total power consumption. Our volt-
age tuning mechanism chooses the voltage for each unit to max-
imize the overall BIPS3/W of the core, where BIPS is calculated
using Equation 1. Again, since an exhaustive search for the appro-
priate voltage setting is not practical, we limit our search space to
±1% of the current voltage setting, which translates to three pos-
sible choices for each of the units. At every decision interval, a
voltage setting for each unit (five units in our framework) is chosen
from three possible settings for each unit, requiring an evaluation
of a total of 35 settings. We apply a hill-climbing [24] heuristic to
reduce overhead associated with converging to an optimal setting.

Figure 6(b) also highlights the support required for a fine-
grained voltage tuning mechanism2. The tuning algorithm deter-
mines the voltage setting for each of the five units using the algo-
rithm described above. Using two static voltage supplies (VddH
and VddL), our voltage tuning mechanism can provide different
per-unit voltages, similar to the static voltage interpolation scheme
described in [18]. Similar to the frequency tuning mechanism, we
assume a single clock/frequency domain, however, we do not tune
the frequency but only the per-unit voltage.
Monitoring delay: Both tuning mechanisms (frequency and
voltage) need to estimate possible violations for different voltage
or frequency settings being evaluated. We assume the presence of
delay-skitter circuits for each unit of the processor to estimate ex-
pected timing violations at different voltage and frequency settings.
Whenever the delay of a critical path exceeds the clock period being
evaluated, a violation is flagged. Delay-skitter circuits are “canary”
circuits that can capture local voltage and temperature conditions.

2 The assumed mechanisms are not reflective of what is available or possible
in the real POWER6 family products.

Parameter Equation Parameter Equation

Delay of a Gate delay ∝ Leff V

μ(V − Vth)α
Voltage V = Vdd − Vdrop

where Vdrop = Z

„
Ptotal

Vdd

«

Leakage Power Pleakage ∝ V T 2e−qVth/kT Threshold Voltage Vth = Vth0 + k1(T − T0)

Dynamic Power Pdynamic ∝ CV 2f Mobility μ ∝ T−1.5

Total Power Ptotal = Pdynamic + Pleakage

Package Resistance or In-
ductance

R(L)unit = R(L)l
Acore

Aunit
Package Capacitance Cunit = Cl

Aunit

Acore

Table 1: Equations used in modeling variations

They are used in the POWER6 core for diagnostic measurement of
timing uncertainties due to various sources of variation (PLL jit-
ter, clock distribution skew, supply noise, or device variation) [8].
Their resolution is limited to one FO1 inverter delay, a resolution of
5-8 ps [8]. Our baseline core has a frequency of 4.7GHz, or a clock
period of 212 ps. Thus we can use the existing delay-skitter circuits
to estimate the impact of 3-4% tuning steps. Our analysis shows
less than 1% loss in performance gain when operating at steps of
3% or 4% as opposed to 1% frequency steps. An alternative delay
monitoring circuit could rely on time-to-digital converters rather
than skitter circuits if finer resolution is needed [11].
Predicting voltage or frequency settings: In the above discus-
sion, we assume complete knowledge of the delay behavior of ap-
plications (which determines the violation profile at any given set-
ting) across different voltage and frequency settings for a given
decision window. However, this is an upper-bound approach, with
complete oracle knowledge of the present window. Operating at
fine resolutions of 10K cycles does not provide room for explo-
ration phases [25]. Keeping this in mind, we use a simple predictor
approach based on the values monitored for the previous window.
We deploy a simple last-value predictor (LVP), which chooses the
settings of the current window based on information about timing
violations, throughput, and power dissipation gathered in previous
windows for the different settings being considered. We compared
our light-weight predictor with an oracle predictor, which has com-
plete information for each decision window. Our results show very
good prediction accuracy; the LVP predictor yields gains that are
within 2% of those obtained with the oracle predictor.
Choice of resolution: Previous work on processor tuning either
tuned statically at design time or used coarse tuning intervals on
the order of 100 million cycles. Such coarse resolutions work
well when considering either process variations alone, or those
plus temperature, but they are not sufficient when adapting for a
combination of all parameter variations (PVT). A coarse resolution
(e.g, a resolution of 10M cycles) has the effect of filtering out high-
frequency variations, leading to conservative choices and missing
out opportunities to run at higher frequencies.

4. Experimental Framework
This section presents the overall experimental framework, which
consists of the models used to understand the effects of different
parameter variations and the power and performance simulator.

4.1 Modeling Variations

An accurate model of parameter variations is a key aspect of this
paper. We model the three main sources of variations (PVT) to eval-
uate their effects on processor power and performance. The delay
of a gate is a function of process variation plus runtime variations
(voltage and temperature). Process variation affects threshold volt-
age and effective gate length of a gate; voltage variation affects sup-

ply voltage; and temperature variation affects leakage power and
threshold voltage.
Modeling process variations: Process variation mainly affects
the threshold voltage (Vth) and effective gate length (Leff) of the
transistors. These two parameters in turn affect the delay of the gate
(Table 1) and the leakage power of the gate (Pleakage). In this work,
we capture the effect of within-die variations using the VARIUS
model [26] which generates different Vth and Leff values for each
unit shown in Figure 6(a). Each individual experiment uses a batch
of 100 chips that have different Vth (and Leff) maps generated
with the same σ (standard deviation), μ (mean), and φ (correlation
range). We assume that the random and systematic components
have equal variances. Gate length has a correlation range close to
half of the chip’s width. Since the systematic component of Vth

variation directly depends on the gate length variation, we assume
φ = 0.5 for Vth.
Modeling voltage variations: Sudden current swings due to ac-
tivity fluctuations in processors, when coupled with parasitic resis-
tances and inductances in the power delivery subsystem, give rise
to large voltage swings. A decrease in supply voltage leads to an
increase in the delay of the gates. Voltage also impacts both the
dynamic power and leakage power of the system.

Since voltage variations are strongly coupled to the character-
istics of the underlying power delivery subsystem, it is important
to have good models for processor activity, power consumption,
and the power delivery subsystem. Most of the earlier work that
seeks to address voltage noise at the architectural level uses a sim-
plified second-order lumped model [12], which captures the mid-
frequency response of the system. However, such a model fails
to capture within-die spatial variation of voltage. While detailed
grid models have also been proposed and used, the large number
of nodes leads to prohibitively high simulation times. As a com-
promise, we replace the simplified lumped model with a per-unit
distributed power grid to capture block-level voltage fluctuations
and spatial interactions. By appropriately scaling R, L, and C of
each unit’s power grid with respect to area, this model enables rela-
tively fast simulations while maintaining high accuracy that closely
matches a detailed grid model. For example, the R, L, and C for
any unit will scale as given in Table 1, where Aunit represents the
area of the unit and Acore represents the area of the core. Rl, Ll,
and Cl correspond to values found in a lumped model.

Lastly, it is important to note that voltage-dependent delay vari-
ations differ between memory-dominated units (IFU and LSU) and
logic-dominated units (IDU, FXU and FPU). Large wire capaci-
tance and weak devices in memory delay paths lead to steeper de-
lay vs. voltage curves compared to logic gates. This is consistent
with the trends presented for a 45nm Intel process [21].
Modeling temperature variations: Temperature affects the de-
lay of gates via its impact on mobility (μ) and threshold voltage.
As temperature increases, carrier mobility degrades (Table 1) and

Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BRU, 1 CRU
Branch predictor 16K-entry BHT, 2 bits/entry
Instruction buffer 64 entries for each thread

Decode width 8
Dispatch/complete width 7

L1 D cache 64 KB, 8-way, line size is 128 bytes
L1 I cache 64 KB, 4-way, line size is 128 bytes
L2 cache 4 MB, 8-way, line size is 128 bytes
L3 cache 16 MB, 16-way, line size is 128 bytes

(a) Simulator parameters.

Tech: 65nm ; Frequency (worst-variations): 4.7GHz ; Core Size: 7x7 mm2

Process Parameters

Number of Chips per experiment: 100
Vth : 150mV, at Vdd=1.15V, T=80C ; φ: 1cm ; α: 1.3
Vth’s σ/μ: 0.09 (σran/μ = σsys/μ = 0.064)
Leff ’s σ/μ: 0.045 (σran/μ = σsys/μ = 0.032)
Voltage and Temperature Modeling

VDD: 1.15V
Resonance Frequency: 100MHz; Peak Impedance: 12mΩ
Pleakage (at 80C): 19.6W; Thermal Samples: 10K cycles

(b) Process, Voltage and Temperature Parameters

Figure 7: Simulated processor and variation parameters.

circuitry slows down [16]. While threshold voltage decreases with
increasing temperature, mobility degradation dominates at nominal
supply voltages with sufficiently high gate overdrive. Variation in
temperature has a slower time constant (on the order of a few tens
of thousands of cycles) as compared to changes in voltage (on the
order of a few cycles). To model temperature effects, we rely on
HotSpot models [28] and focus on temperature transients to accu-
rately capture workload dependencies. Operating temperature from
HotSpot feeds back into the power and delay models to accurately
account for its runtime effects. Across the limited operating tem-
perature range we assume (80C to 100C), temperature fluctuations
have smaller impact on delay than voltage droops.

4.2 Performance and Power Simulator

Power density plays an important role in understanding the behav-
ior of different units in the context of voltage and temperature vari-
ations. We use a detailed cycle-accurate PowerPC simulator frame-
work to model a microarchitecture that resembles the published
POWER6 processor core [17]. The simulator supports both single-
and multi-threaded (SMT) execution modes, and supports a multi-
level private cache hierarchy (with a memory model). However, it
is primarily a uniprocessor simulator and thus does not model other
chip-level elements; nor does it support a multi-core simulation en-
vironment. The high-level microarchitecture parameters are listed
in the table shown in Figure 7(a). The simulator was coupled with
an activity-based power model to obtain cycle-by-cycle per-unit
power consumption. The power model is based on circuit-extracted
power estimates and accurately models both dynamic and leakage
power. We assume 15% of the latches cannot be clock-gated. The
simulated workloads are a subset of the SPEC CPU2006 bench-
mark suite along with one TPC-C benchmark. The traces used in
this study were sampled from the full reference input set to obtain
100 million instructions per benchmark [14]. Systematic validation
was performed to compare the sampled traces against the full traces
to ensure accurate representation.

5. Evaluation

The “better than worst-case” strategy strives to improve power-
performance efficiency of the system. We present results for the
BIPS3/W metric, which is a voltage-invariant power-performance
efficiency metric for processors [4]. Our results are presented with
respect to either an ideal processor with no parameter variations or
a baseline processor with worst-case margins (operating voltage of
0.9V and temperature of 100C). The baseline processor operates
at 75% frequency of the ideal processor. When summary results
are presented, they include the average across all 100 chips simu-
lated to model process variations and the entire benchmark suite.
We evaluate different combinations of recovery (global, local, and

partial local), frequency tuning (coarse and fine resolution), and
voltage tuning schemes(fine and static). We present all results with
the last value predictor described in Section 3.3.2, and discuss over-
head relative to an oracle predictor.

5.1 Evaluation of Static Schemes

Designing a system for typical conditions requires a low cost recov-
ery mechanism to guarantee correctness in the presence of viola-
tions. Figure 8(a) presents the resulting relative BIPS3/W obtained
by deploying different flavors of recovery mechanisms while oper-
ating at frequencies greater than the frequency of a baseline proces-
sor. The plot shows a linear increase in BIPS3/W for the recovery-
only schemes (GR, PLR, LR) until benefits start decreasing with
further increases in frequency. This drop in performance occurs due
to rapid increases in the cost of recovering from violations, nullify-
ing the gains obtained by running at a higher frequency.

Recovery mechanisms enable the processor to operate at ag-
gressive frequencies by guaranteeing correctness in the presence
of violations, but they should not overwhelm the gains of operat-
ing with reduced margins. Providing a global recovery mechanism
(GR) enables the processor to maximize BIPS3/W while running
at 86% of the ideal processor, with a 12% frequency increase over
a baseline processor. However, the global mechanism fails to ex-
ploit the spatial variations between various units. The local recov-
ery mechanism (LR) can take advantage of the spatial variation in
delay characteristics of various units leading to a further increase
in the BIPS3/W obtainable at a frequency 87% of an ideal proces-
sor. There are slight differences between the LR and partial local
recovery (PLR) mechanisms up to 90% relative frequency. This is
a result of execution units being predominantly in error at frequen-
cies lower than 90% leading to similar recovery costs for LR and
PLR schemes. However, as frequency increases beyond 90% all of
the units start experiencing larger numbers of violations, resulting
in penalties similar to a global recovery mechanism for the PLR
scheme. An LR scheme is able to achieve a BIPS3/W increase of
29% over a baseline processor. This is because an LR scheme has
the benefit of a lower recovery penalty even in the worst-case sce-
nario of all units in error, as the local penalty is determined by the
maximum penalty of any unit at any given instance of recovery.
Moreover, an LR scheme is able to exploit the spatial differences
in the error-rates across different units.

5.2 Evaluation of Tuning Mechanisms

The delay characteristics of cores can change temporally accord-
ing to workload characteristics. The temporal characteristics affect
the spatial characteristics of circuit delay, since activity patterns
cause both spatial and temporal variation of circuit delay across the
core. Previous schemes that adapt for variations have focused on
dealing with process and temperature variation by adapting the fre-

1 0.95 0.9 0.85 0.8 0.75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e
B

IP
S3 /W

Relative Frequency

Ideal
Frequency
Scaling
GR
PLR
LR
Coarse FT GR
Static VI

Baseline
Processor

(a) Recovery Schemes

0.95 0.94 0.93 0.92 0.91 0.9 0.89 0.88 0.87 0.86 0.85
0.65

0.7

0.75

0.8

0.85

0.9

R
el

at
iv

e
B

IP
S3 /W

Relative Frequency

VT LR
VT PLR
VT GR
FT GR
FT PLR
FT LR

(b) Tuning Schemes

Figure 8: Recovery and tuning schemes. (a) BIPS3/W (relative to an ideal processor) vs. operating frequency. Ideal frequency scaling represents a frequency
scaling scheme with no recovery cost. (b) Relative BIPS3/W metric for fine-grained tuning. The frequency tuning mechanisms are depicted at the mean of the
frequencies chosen by the tuning algorithm.

0.95 0.93 0.91 0.89 0.87 0.85

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

at
iv

e
B

IP
S3 /W

Relative Frequency

libq gems

gamess

(a) Variation of BIPS3/W across benchmarks.

0.8

0.85

0.9

0.95

R
el

at
iv

e
B

IP
S3 /W

bw
av

es

ca
ctu

s

ca
lcu

lix
de

al

ga
mes

s
ge

ms

gro
mac

s
bz

ip

go
bm

k
h2

ref lib
q

mcf
om

ne pe
rl

tpc
c

gc
c

R
elative Frequency

0.85

0.95

(b) Optimal BIPS3/W and frequency per benchmark.

Figure 9: Application sensitivity for VT-LR scheme.

quency, supply voltage, or body-bias settings at a very coarse gran-
ularities [25], on the order of a few milliseconds, or statically tune
the parameters per chip at test time [18]. Figure 8(a) also shows
the gains in BIPS3/W obtained through two previously proposed
schemes: tuning the frequency at coarse granularity (Coarse-FT-
GR [25]) and tuning the voltage statically (Static-VI, representative
of a voltage-interpolation mechanism [18]). A coarse frequency
tuning technique enables a slight increase (1%) in BIPS3/W over a
global recovery mechanism, but the tuning benefits of this scheme
are limited by voltage noise. In contrast, the static voltage tun-
ing mechanism aims to choose voltage settings for individual units
based on a static profile of the processor across several benchmarks,
which leads a 20% increase in BIPS3/W over a baseline proces-
sor. However, the static voltage tuning mechanism does not assume
the presence of a recovery mechanism and hence must conserva-
tively choose its voltage settings to guarantee correctness across the
benchmark suite. This leads to a significant increase in the overall

power of the core, and hence a flattened BIPS3/W metric with in-
creasing frequency.

Figure 8(b) presents the results for fine-grained tuning mech-
anisms that we propose in this work. The fine-grained frequency
tuning mechanism (FT) effectively adapts the frequency of the pro-
cessor based on workload behavior leading to an effective increase
of attainable processor frequency to 91% of an ideal processor for a
local recovery mechanism and 89% for the global recovery mech-
anism, with a slight difference in the BIPS3/W metric. The fine-
grained voltage tuning mechanism equipped with global recovery
(VT-GR) is able to achieve a further 6% increase over the FT-LR
scheme. Similarly, applying the voltage tuning mechanism with dif-
ferent flavors of local recovery leads to a 9% (8% for VT-PLR)
increase in the BIPS3/W over the FT-LR mechanism. The local re-
covery mechanism gives the best voltage tuning results, achieving
a 55% increase in BIPS3/W over the baseline processor. The last
value predictor results are within 2% of that of an oracle predictor

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.5

1

1.5

2

2.5

Normalized 1/BIPS

N
or

m
al

iz
ed

 W
at

ts

Baseline
GR
FT LR
VT LRIdeal DVFS

Ideal DVFS

(a) Power-BIPS Efficiency

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0.5

0.6

0.7

0.8

0.9

1

1.1

Normalized 1/BIPS

N
or

m
al

iz
ed

 W
at

ts
/B

IP
S3

Baseline
GR
FT LR
VT LR

(b) BIPS3/W Efficiency

Figure 10: Tightening the power-performance spread. This figure presents the evaluation of Power Efficiency and BIPS3/W metric across all chips, normalized
to the worst-chip from the baseline cluster.

indicating reasonable prediction estimates. Voltage tuning presents
a per-unit tuning knob as compared to the global frequency tuning
of frequency adaptation, and hence is able to adapt both spatially
and temporally. Coupled with a local recovery mechanism, voltage
tuning can provide the best power-performance gains.

We further explore the sensitivity of voltage tuning with local
recovery (VT-LR) to different applications in Figure 9. Figure 9(a)
shows that most of the benchmarks exhibit similar BIPS3/W-to-
frequency behavior. Notable outliers are libq, gems and gamess.
Low-IPC applications libq and gems incur long stall periods, and
the low-activity periods provide greater opportunity to reduce volt-
age without impacting performance. On the other hand, gamess
is a high-IPC benchmark with high activity and many violations
due to large swings, which provides fewer opportunities to adapt
the voltage. Figure 9(b) depicts the optimal relative BIPS3/W met-
ric for each benchmark and also the frequency that maximizes the
BIPS3/W metric. This can be viewed as the best achievable gains in
the presence of a per-unit voltage tuning mechanism, coupled with
an application-level global frequency tuning mechanism. We ob-
serve 58% gains on an average for a global frequency, local voltage
tuning mechanism.

Our proposed local recovery coupled with fine-grained tun-
ing approaches allows designers to tighten the power-performance
spread, enabling more efficient speed-binning. Figure 10(a) com-
pares the power-BIPS efficiency of three of the solutions to that of
a chip designed with worst-case margins (represented by the base-
line cluster). The power and BIPS are both normalized to a chip
with the minimum frequency when designed for worst-case condi-
tions. The ideal dynamic-voltage and frequency scaling curve has
been plotted for a median chip with no tuning mechanism and for
the same chip assuming a local voltage-tuning mechanism. An in-
crease in BIPS (or decrease in 1/BIPS) can be observed as recovery
mechanisms and tuning mechanisms are applied. A 25% increase
in power translates to a 23% decrease in the 1/BIPS metric (a 30%
increase in performance) for a system equipped with local voltage
tuning, versus a 13-to-7% decrease in 1/BIPS (7-to-14% increase
in performance) for the baseline cluster of 100 chips simulated.
Importantly, we also find that the spread of chips significantly de-
creases after applying voltage tuning. The baseline chips have a
spread of 16% of BIPS and 50% of power. The tuned chips have a
lower spread in both performance and power, with a 7% spread in
BIPS and 40% in power.

Figure 10(b) presents another view of the data, evaluating the
normalized W/BIPS3 metric with respect to a normalized 1/BIPS
metric (normalized relative to the worst of the chips designed for
worst-case margins). Since the baseline cluster is designed for
worst-case operating conditions, without any tuning mechanism, a
large spread in the cluster across both W/BIPS3 and 1/BIPS can be
observed. However, a shift in the cluster is observed for the system
augmented with a global recovery mechanism to enable typical-
case design. A frequency tuning mechanism with local recovery
causes a further shift in the cluster to the left, indicating a potential
to increase overall performance with minimal increase in power.
Finally, the per-unit voltage tuning (VT-LR) mechanism is able
to adapt each chip in the presence of variations and tightens the
cluster, indicating a run-time customizable design to maximize
performance with minimal power overhead.

6. Related Work

Designers have started analyzing ways of dealing with designing
for the typical conditions. Several techniques have been proposed
for detection and mitigation of timing errors. In Razor [7], the au-
thors propose a circuit-level mechanism to dynamically detect and
correct timing failures by augmenting critical flip-flops in the mi-
croprocessor pipeline with shadow latches. These shadow latches
rely on a delayed clock to provide additional timing margins and
enable detection of speed-path failures. A recent work by Bow-
man et al [3] presents an implementation of timing-error detection
and correction circuits which help in eliminating Vdd and temper-
ature guardbands as well as maximize throughput. DIVA also pro-
vides a method to dynamically detect and recover from transient
errors [1,5,34]. This scheme relies on a checker processor that runs
in parallel with the main out-of-order core, checking results prior
to committing the instructions. DIVA requires duplicate functional
units (e.g., INT/FPU/SSE units) that consume additional power and
area resources. This paper also relies on these error-detection tech-
niques to detect timing-violations. However, these error-detection
techniques trigger a global recovery mechanism [6, 9, 10, 27]. We
are tackling the high frequency nature of temporal variations cou-
pled with spatial variation across the processor, so we need a lo-
cal recovery scheme. Micro-rollback [29] presents an approach to
buffering state at various stages/logic in the pipeline to offload
error-detection and correction from the critical path. However, the

recovery scheme is global in nature. On the contrary this paper
presents a distributed local recovery mechanism.

Post-fabrication test-time [18] tuning of voltages using a volt-
age interpolation scheme has been proposed, mainly targeting vari-
ability due to process variations. Researchers are also exploring the
opportunities of dynamically adapting processor parameters by ex-
ploiting workload variability. Tschanz et al [31] explore schemes
to dynamically adapt various combinations of frequency, Vdd and
body bias to changes in temperature, supply noises, and transis-
tor aging, to maximize average performance or improve energy
efficiency. A prototype containing a TCP offload accelerator core
is implemented. EVAL [25] presents a high-dimensional dynamic
adaptation technique using a machine learning algorithm for max-
imizing performance and minimizing power in the presence of pa-
rameter variations. The adaptation mechanism mainly addresses
process+temperature variations, and does not account for high-
frequency voltage changes. Hence, the adaptation scheme is at a
coarse-granularity of 120ms.

7. Conclusion
Parameter variations threaten to significantly degrade performance
benefits offered by technology scaling. Previous solutions for deal-
ing with variations treat each source of variation (process, voltage,
and temperature) independently, ignoring potential interactions be-
tween them. This paper presents a novel framework, Tribeca, which
aims to better understand the complex interactions between the dif-
ferent sources of variations to enable design of efficient microar-
chitectural solutions for dealing with them. We make three notable
contributions. First, we present a detailed characterization of spa-
tial and temporal properties of all three variations combined to-
gether. Second, we propose a distributed local recovery mechanism
that exploits the spatial characteristics of variations to provide low-
cost recovery from timing violations. Third, we show how to de-
sign effectively for typical-case operating conditions. To achieve
this we explore fine-grained voltage or frequency tuning to adapt
to workload behavior. A fine-grained, per-unit voltage tuning tech-
nique provides the best power-performance efficiency, achieving a
55% increase in power-performance efficiency along with a 21%
increase in processor frequency, compared to a processor designed
for worst-case timing margins.

8. Acknowledgments
We are thankful to John-David Wellman for making the POWER6-
like simulator available for instrumentation and Hans Jacobson
for his help in embedding the power model. We are also grateful
to Glenn Holloway and the anonymous reviewers for their com-
ments and suggestions. This work is supported by National Sci-
ence Foundation grants CSR-0720566, CCF-0702344 and CCF-
0448313 and DARPA agreement HR0011-07-9-002. Any opinions,
findings, conclusions, or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views
of the NSF or DARPA.

References
[1] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design. In MICRO 32, 1999.
[2] S. Borkar et al. Parameter variations and impact on circuits and

microarchitecture. In DAC, June 2003.
[3] K. A. Bowman et al. Energy-efficient and metastability-immune

timing-error detection and instruction replay-based recovery circuits
for dynamic variation tolerance. In ISSCC, 2008.

[4] D. Brooks et al. Poweraware microarchitecture: Design and modeling
challenges for nextgeneration microprocessors. IEEE Micro, 2000.

[5] S. Chatterjee, C. Weaver, and T. Austin. Efficient Checker Processor
Design. In MICRO, 2000.

[6] K. Constantinides et al. Bulletproof: A defect-tolerant CMP switch
architecture. In HPCA, 2006.

[7] D. Ernst et al. Razor: A Low-Power Pipeline Based on Circuit-Level
Timing Speculation. In MICRO, 2003.

[8] R. Franch et al. On-chip timing uncertainty measurements on IBM
microprocessors. In IEEE International Test Conference, Oct. 2007.

[9] B. Greskamp and J. Torrellas. Paceline: Improving single-thread
performance in nanoscale CMPs through core overclocking. In PACT,
2007.

[10] M. S. Gupta et al. DeCoR: A Delayed Commit and Rollback Mecha-
nism for Handling Inductive Noise in Processors. In HPCA, 2008.

[11] V. Gutnik and A. Chandrakasan. On-chip picosecond time measure-
ment. In Symposium on VLSI Circuits, 2000.

[12] D. Herell and B. Becker. Modelling of Power Distribution Systems for
High-Performance Microprocessors. In IEEE TAP, 1999.

[13] International Technology Roadmap for Semiconductors. Process inte-
gration, devices and structures, 2007.

[14] V. Iyengar, L. Trevillyan, and P. Bose. Representative Traces for
Processor Models with Infinite Cache. In HPCA, 1996.

[15] R. Joseph et al. Control Techniques to Eliminate Voltage Emergencies
in High Performance Processors. In HPCA, 2003.

[16] K. Kanda et al. Design impact of positive temperature dependence on
drain current in sub- 1-V CMOS VLSIs. JSSC, 36.

[17] H. Q. Le et al. IBM POWER6 microarchitecture. IBM Journal of
Research and Development, 51(6), 2007.

[18] X. Liang et al. ReVIVaL: Variation Tolerant Architecture Using
Voltage Interpolation and Variable Latency. In ISCA, 2008.

[19] M. Mack, W. Sauer, S. Swaney, and B. Mealy. IBM POWER6 relia-
bility. IBM Journal of Research and Development, 51(6), 2007.

[20] A. A. Merchant, D. J. Sagger, and D. D. Boggs. Computer processor
with a replay system. United States Patent 6,163,838, Dec. 2000.

[21] K. Mistry et al. A 45nm logic technology with high-k+metal gate
transistors, strained silicon, 9 Cu interconnect layers, 193nm dry pat-
terning, and 100% pb-free packaging. In IEDM, 2007.

[22] M. D. Powell and T. N. Vijaykumar. Pipeline muffling and a priori
current ramping: architectural techniques to reduce high-frequency
inductive noise. In ISLPED, 2003.

[23] V. J. Reddi et al. Voltage Emergency Prediction: A Signature-Based
Approach To Reducing Voltage Emergencies. In HPCA, 2009.

[24] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, second edition, 2003.

[25] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. EVAL: Utilizing
Processors with Variation-Induced Timing Errors. In MICRO, 2008.

[26] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas. VARIUS: A Model of Process Variation and Resulting
Timing Errors for Microarchitects. IEEE TSM, February 2008.

[27] S. Shyam et al. Ultra Low-Cost Defect Protection for Microprocessor
Pipelines. In ASPLOS, 2006.

[28] K. Skadron et al. Temperature-aware microarchitecture. In ISCA,
2003.

[29] Y. Tamir and M. Tremblay. High-performance fault tolerant vlsi
systems using micro rollback. IEEE TOC, 39(4), 1990.

[30] R. Teodorescu et al. Mitigating Parameter Variation with Dynamic
Fine-Grain Body Biasing. In MICRO, 2007.

[31] J. Tschanz et al. Adaptive frequency and biasing techniques for
tolerance to dynamic temperature-voltage variations and aging. In
ISSCC, 2007.

[32] A. Uht. Achieving typical delays in synchronous systems via timing
error toleration. Electrical and Computer Engineering Tech Report
032000-0100, University of Rhode Island, March 2000.

[33] X. Vera, O. Unsal, and A. Gonzalez. X-Pipe: An Adaptive Resilient
Microarchitecture for Parameter Variations. In ASGI, 2006.

[34] C. Weaver and T. M. Austin. A Fault Tolerant Approach to Micropro-
cessor Design. In DSN, 2001.

