
Understanding the Energy Efficiency of Simultaneous
Multithreading

Yingmin Li†, David Brooks‡, Zhigang Hu††, Kevin Skadron †, Pradip Bose††
† Dept. of Computer Science, University of Virginia †† IBM T.J. Watson Research Center

‡ Dept. of Computer Science, Harvard University
{yingmin,skadron}@cs.virginia.edu, dbrooks@eecs.harvard.edu, {zhigangh,pbose}@us.ibm.com

Abstract
Simultaneous multithreading (SMT) has proven to be an effec-

tive method of increasing the performance of microprocessors by

extracting additional instruction-level parallelism from multiple

threads. In current microprocessor designs, power-efficiency is of

critical importance, and we present modeling extensions to an ar-

chitectural simulator to allow us to study the power-performance

efficiency of SMT. After a thorough design space exploration we

find that SMT can provide a performance speedup of nearly 20%

for a wide range of applications with a power overhead of roughly

24%. Thus, SMT can provide a substantial benefit for energy-

efficiency metrics such as ED2. We also explore the underly-

ing reasons for the power uplift, analyze the impact of leakage-

sensitive process technologies, and discuss our model validation

strategy.

Categories and Subject Descriptors
C.1 [Computer Systems Organization]: Processor Ar-
chitectures

General Terms
Design

Keywords
Multithreading

1. INTRODUCTION
Simultaneous multithreading (SMT) [13] is a relatively

new microarchitectural paradigm that has found industrial
application [5, 7]. The promise of SMT is area-efficient
throughput enhancement; however, the significant boost (10-
40%) in instructions per cycle (IPC) is accompanied by an
increase in power consumption. Since the area increase re-
ported for SMT execution is relatively small (less than 5%
per chip) [6], the main concern in next-generation SMT pro-
cessor design is that of worst-case power and temperature
characteristics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

In this paper, we first describe SMT modeling extensions
to Turandot/PowerTimer, a power-performance modeling
toolkit developed around an extensively upgraded cycle
-accurate, microarchitecture-level PowerPC simulator [1, 9].
PowerTimer allows us to understand the fundamental trade-
offs between power and performance in single and multi-
threaded modes of execution. We describe the methods used
for extending the baseline, single-threaded energy models to
an SMT architecture. One of the major requirements in
developing a power-performance simulator is a robust vali-
dation methodology, and we briefly describe the validation
methodology currently in place in the PowerTimer project.
There has been recent related work in understanding area

efficiency and power issues in multithreaded processors. Burns
and Gaudiot [4] consider the scalability of various resources
in an SMT processor and perform a detailed study of the
area overhead of SMT processors. Seng and Tullsen study
several power-aware optimizations in the context of a fixed-
resource multithreaded microprocessor [11]. In this work, we
recognize that increased processor utilization in SMT ma-
chines will impact power, but not area, and we focus on un-
derstanding the fundamental power-performance efficiency
of SMT rather than SMT-specific power optimizations.
This paper provides several major contributions. First,

we present power modeling extensions to a single-threaded
power performance simulator and describe our validation
methodology. Next, we provide a thorough design space ex-
ploration to understand the performance benefits and power
costs of SMT in the context of extensions to an existing
POWER4-like microarchitecture. We conclude that SMT
is a very power-efficient design paradigm in terms of ED2

and can provide a 20% performance improvement for a var-
ied mix of workloads with a power overhead of around 24%.
There are several underlying reasons for power uplift (the
same as power increase) in SMT machines, and we diagnose
the uplift by analyzing the machine at the unit level. We
also analyze the impact of future technologies where static
leakage power is more significant, and we determine that
the power overhead of SMT decreases with leakier process
technologies because the power uplift due to utilization is
marginalized by the larger fraction of leakage power. Fi-
nally, we discuss the sensitivity of our conclusions to our
modeling assumptions.

44

2.4

2. PERFORMANCE AND POWER
MODELING OF SMT

2.1 SMT Extension to the Performance Model
In this section, we describe the extensions that are added

to our performance model for supporting SMT. A distin-
guishing feature of SMT is that execution units (FXU, FPU,
etc) are usually shared among threads, thread-specific re-
sources, such as program counters, are always duplicated,
while the rest of resources (branch predictor, caches, etc) can
either be shared or duplicated depending on design choices.
Since all these resources are already modeled in the single-
threaded base model, the extensions to SMT are straight-
forward. In addition to resource extensions, extra control
logic is needed at various pipeline stages to decide which
threads should go ahead, while others should be stalled on
a given cycle. A simple policy that is commonly used is
“round-robin”, where the choice of the target thread is ro-
tated sequentially (with wrap-around) among the available
threads. This is the default thread selection policy imple-
mented in the new SMT-enabled performance model. In fu-
ture work, more sophisticated thread prioritization policies
will be added and tested.

2.2 SMT Extension to the Power Model
PowerTimer, our power model, differs from existing aca-

demic microarchitectural performance simulators primarily
in energy-model formation. The base energy-models are de-
rived from circuit-level power analysis that has been per-
formed on structures in a current, high-performance Pow-
erPC processor. This analysis has been performed at the
macro-level and in general multiple macros will combine
to form microarchitectural level structures corresponding to
units within our performance model. PowerTimer models
over 60 microarchitectural structures which are defined by
over 400 macro-level power equations.

2.2.1 Impact of Clock Gating Methodology on SMT
PowerTimer uses microarchitectural activity information

from the Turandot model to scale down the unconstrained
dynamic power under a variety of clock gating assumptions.
In this study, we use a realistic form of clock gating which
considers the applicability of clock gating on a per-macro
basis to scale down the dynamic power depending on mi-
croarchitectural event counts. We determine which macros
can be clock gated in a fine-grained manner (per-entry or
per-stage clock gating) and which can be clock gated in
a coarse-grained manner (the entire unit must be idle to
be clock gated). For some macros (in particular control
logic), we do not apply any clock gating; this corresponds
to about 20-25% of the unconstrained dynamic power dis-
sipation. Typically, the overall savings due to clock gating
relative to the unconstrained dynamic power is roughly 40-
50%. SMT machines tend to increase the utilization of the
pipeline and thus the amount of power reduced by clock
gating will decrease.
There are several styles of clock gating that we apply de-

pending on the specific macro. These include valid and stall
gating for latch-based structures and read and write port
gating for array structures. Valid-bit clock gating is com-
monly used in pipeline latches and relatively small memory
structures that are designed using latch-and-mux schemes
(e.g. issue queues, instruction buffers, etc). In this style of

gating, a valid-bit is associated with every bank of latches
and the local clock buffer of the latch bank is gated when
the valid-bit is not set. For array structures such as caches
and large RAM-banks in certain queue structures, the array
structure utilization is proportional to the number of read
and write accesses to the structure.
SMT impacts the resource utilization within a micropro-

cessor. This impact varies depending on the style of clock
gating that exists in the underlying structures. For example,
if a queue uses valid-bit based clock gating, and the occu-
pancy rate of the queue increases, it is likely to see increases
in its dynamic power dissipation. On the other hand, the
impact of SMT on array structures may be small if the total
number of accesses is roughly constant.

2.2.2 Modeling Increased Resource Needs for SMT
The majority of structures in a superscalar pipeline can

be shared when augmenting the microprocessor for SMT.
However, architected state must be duplicated for additional
threads and new performance bottlenecks may arise requir-
ing extension of shared resources. The major anticipated
resource needs for SMT extensions can be categorized into
the following.

• Resource Duplication. Structures such as the program
counter must be duplicated for each thread. In this
case we increase the power dissipation proportionally
to the number of threads in the machine. Since only
a very small portion of the resources need to be du-
plicated for a Power4-like architecture, the impact of
increased power due to resource duplication is insignif-
icant.

• Latch-based Queue Structures. Our analysis of latch-
based queue structures determines that because the
power dissipation is dominated by the latch and clock-
ing circuitry, the power dissipation increases nearly lin-
early with the increase in the number of entries and
bits per entry of these structures. We use the formula

Powernew =
Entriesnew

Entriesbase
∗ Powerbase ∗ PowerFactor

(1)

Our default power model assumes that PowerFactor
is 1.0 (linear scaling) and we consider alternative val-
ues in our sensitivity analysis.

• Array Based Structures. For array-based structures,
we utilize the empirical macro-level data from Power-
Timer as our base value and scale this base value (for
size and associativity) with estimates based on analyt-
ical models built into Wattch [3].

3. SIMULATION SETUP

3.1 Microarchitecture & Simulator
We use PowerTimer to model an out-of-order, superscalar

processor with resource configuration similar to current gen-
eration microprocessors. The overall processor organization
is shown in Figure 1 and Table 1 describes the configura-
tion of our baseline processor for the single-threaded design
point. As shown in Figure 1, the simulated processor can
be logically divided into six major units: IFU, IDU, ISU,
LSU, FXU, and FPU. The components of these units are
listed below:

45

D-TLB1

D-TLB2

I-TLB2

I-Prefetch

Issue queue

Integer

NFA + Branch

Predictor

I-Buffer

L1-I cache

Decode/Expand

Rename/Dispatch

Issue logic

L2 cache

Main
Memory

Cast-out queue

L1-D cache

I-TLB1

Issue queue

Load/store

Issue logic

Issue queue

FP

Issue logic

FP

units

Issue queue

Branch

Issue logic

Branch

units

Load/store

reorder buffer

store queue

miss queue

Retirement queue

Retirement logic

Reg.read Reg.readReg.read

Integer

units

I
-
F
e
t
c
h

Reg.read

Load/Store

units

IFU

LSU

IDU

ISU

Figure 1: Modeled Processor Organization

Processor Core
Dispatch Rate 5 instructions per cycle
Reservation stations mem/fix queue (2x20), fpq (2x5)
Functional Units 2 FXU, 2 FPU, 2 LSU, 1 BRU
Physical registers 80 GPR, 72 FPR
Branch predictor 16K-entry bimodal, 16K-entry gshare,

16K-entry selector, all with 1-bit entries
Memory Hierarchy

L1 Dcache Size 32KB, 2-way, 128B blocks
L1 Icache Size 64KB, 2-way, 128B blocks
L2 I/D 1MB, 4-way LRU, 128B blocks

9-cycle latency
Memory Latency 77 cycles

Table 1: Configuration of simulated processor

• Instruction Fetch Unit (IFU): IFU includes program
counters, level-one instruction cache, instruction TLBs,
instruction buffer, branch predictor, next fetch address
predictor (NFA), return address stack, etc.

• Instruction Decode Unit (IDU): IDU includes instruc-
tion decoder, microcode ROM, etc.

• Instruction Sequencing Unit (ISU): ISU includes reg-
ister renamers, reservation stations, and retirement
queue, etc.

• Load/Store Unit (LSU): LSU includes effective ad-
dress calculator, level-one data cache, data TLBs, cast-
out queue, load reorder buffer, store queue, load miss
queue, etc.

• Fixed-point Execution Unit (FXU): FXU includes in-
teger ALUs, integer multipliers/dividers, shifters, in-
teger register file, etc.

• Floating-point Execution Unit (FPU): FPU includes
floating-point pipelines, floating-point register file, etc.

3.2 Benchmark Pairs
For this study, we use 10 SPEC2000 integer benchmarks

for our single thread experiments. They are compiled by xlc
compiler with -O3 option. The static trace generation tool
generates the final static traces by skipping the first 1B in-
structions and then tracing for 100M instructions in 50M in-
struction chunks, skipping 100M instructions between chunks.

We use pairs of single-thread benchmarks to form dual-
thread SMT benchmarks. There are many possibilities for
forming the pairs from these 10 benchmarks. We use the
following methodology to form our pairs. First, we let each
single thread benchmark combine with itself to form a pair,
which gives us a total of 10 pairs. We then form several
pairs by combining different benchmarks, after categorizing
the benchmarks into four major categories: high IPC or
low IPC, memory intensive or not memory intensive. We
then form six pairs (gzip+perlbmk, gcc+gap, twolf+mcf,
parser+bzip2, bzip2+twolf, gcc+mcf) of dual-thread bench-
marks by selecting unique combinations of benchmarks with
these categorizing criteria. We do not consider the operating
system scheduling effect on SMT performance in this paper.

3.3 SMT Speedup Metric
Comparison of different SMT configurations, or compari-

son of an SMT configuration against a single-threaded con-
figuration, is difficult. As Sazeides and Juan [10] have shown,
IPC can be misleading unless exactly the same instruction
count for each thread is used in all experiments. Otherwise,
a high IPC may be achieved with a skewed load balance.
Snavely et al. [12] also argue that SMT simulations should
not be stopped when the first thread completes to perform
comparison only on the portion of a workload that experi-
ences multithreaded execution. This unfairly benefits SMT
configurations by not accounting for periods of less than
maximum throughput. When performing energy-efficiency
studies, it also overlooks the impact of SMT energy over-
heads that are present even when only one thread is execut-
ing. Both groups propose similar metrics for computing an
“SMT speedup”. The goal is to distinguish between config-
urations that achieve high throughput at the expense of a
single thread from those that do so with balanced through-
put from both threads.
Sazeides and Juan propose that

SMT speedup =

P
LnonSMT [i]

LSMT
(2)

where Li is the execution latency of the i’th thread on a
single-threaded system, and L is the execution latency of the
workload on an SMT system. A drawback to this mechanism
is that LSMT is determined by the thread that finishes last,
and it cannot distinguish between different execution rates
for other threads.
Snavely et al. propose that

SMT speedup =
X IPCSMT [i]

IPCnonSMT [i]
(3)

where IPCSMT [i] is the IPC of just the i’th thread dur-
ing an SMT execution and IPCnonSMT [i] is its IPC during
single-threaded execution. This considers how each thread
performs under SMT relative to its non-SMT performance,
so we choose this metric for our speedup computations. All
speedups are computed relative to the IPC of each workload
on the baseline, non-SMT machine.
In contrast to evaluating performance, evaluating energy

efficiency should use traditional, simple unweighted met-
rics. Total energy consumed during an experiment is the
appropriate value to use for energy metrics, and simple end-
to-end execution latency is the appropriate value to use
for delay with energy-efficiency metrics like energy-delay2.
There are two reasons for this. First, unlike the tradeoff

46

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Resource Scaling factor

P
er

fo
rm

an
ce

 g
ai

n
co

m
pa

re
d

to
 S

T

Ideal case

Extra front-end stage

Extra register file latency

Extra front-end stage +
extra register file latency

Figure 2: Performance of SMT vs. ST

between energy and execution speed, it is not clear how to
trade off energy and load balance. Second, using weighted
SMT speedup in an energy-efficiency metric could yield the
counter-intuitive result that, among two SMT configura-
tions with equal end-to-end execution latencies, a result with
higher energy consumption is preferred.

4. RESULTS
In this section, we discuss the relative power-performance

efficiency of SMT, analyze the relative impact of SMT power
uplift factors, and discuss sensitivities to resource sizes, leak-
age power, and our power modeling methodology.

4.1 Power-performance Efficiency of SMT
To provide a balanced approach to support the increased

number of inflight instructions provided by SMT, we per-
form a “ganged” scaling of all instruction buffers/queues,
including instruction buffer, retirement queue, reservation
stations, and physical registers. We use resource scaling
factor to indicate the magnitude increase of queues, buffers,
and physical register files compared to the base case shown
in Table 1. A resource scaling factor of 1.0 corresponds to
the case where these structures are sized the same as the
base case, while a resource scaling factor of 2.0 means all
the structures mentioned are double-sized. We do not scale
the memory hierarchy and memory-related queues (includ-
ing load reorder queue, store reorder queue, and load miss
queue), because our sensitivity study indicates that their
current sizes, as in the base case, do not constitute a perfor-
mance bottleneck for the benchmarks we studied. Since only
part of the resources are upscaled, we estimate the overall
core area increase (excluding L2 cache) to be around 10%
with a resource scaling factor of 1.5.
Figure 2 summarizes the performance benefit for SMT

over the baseline single-threaded (ST) microprocessor, when
varying the resource scaling factor. The numbers shown are
the average performance for all the SMT pairs we simulated.
The four curves correspond to different assumptions about
the extra latencies SMT will incur, including the ideal SMT
machine, where no extra latencies are added, a machine with
an added pipestage in the front-end to account for thread
selection logic, a machine with an added pipestage in the
register file access to account for the larger register file, and
finally, a machine that incurs both of the above latencies.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Resource Scaling Factor

P
ow

er
 C

ha
ng

e
C

om
pa

re
d

to
 S

T

Total Power Uplift
Active power uplift due to resource scaling
Leakage power uplift due to resource scaling
Active power uplift due to utilization

Figure 3: Power Dissipation of SMT vs. ST

We see from the figure that, at resource scaling factor of
1.0, thread contention is a serious problem, and even the
ideal SMT machine suffers a 5% performance loss. The per-
formance increases significantly when extra resources are
added. At 1.5x scaling, the SMT performance benefit in-
creases to around 21% for the ideal machine and 19% for
the machine with both additional latencies. The curves be-
gin to saturate with resource scaling factor of about 1.5,
after which point increasing resources sees only diminish-
ing performance gains. An interesting observation from the
figures is that the four curves have very similar trends, indi-
cating that the different latency assumptions do not change
the SMT performance trend while varying resource scaling
factor.
Now we look into the power dissipation of SMT. There

are two major factors that cause SMT power uplift – the
uplift due to resource duplication and resource sizing and
the power uplift due to increased utilization (leading to
reduced clock gating potential). PowerTimer allows us to
measure the contributions of these two major components
by providing power statistics with and without the power
uplift applied by resource scaling. Figure 3 details the ad-
ditional power dissipation that SMT incurs over the single-
threaded machine and breaks down the two components of
SMT power uplift. At the 1.5x scaling point the total core
power has increased by 24% relative to the single-thread
machine. The increase in processor utilization accounts for
about 8% of this power increase and the remainder is due to
the increased resource sizings. The power uplift due to pro-
cessor utilization exhibits an interesting trend – with very
small (1x) and very large (2x) values of resource scaling fac-
tor the power uplift is relatively small (5-6%). We explore
this trend in more detail in Section 4.2 when we discuss the
per-unit power uplift breakdown.
Figure 3 also breaks down the power uplift due to in-

creased leakage power as we increase the size of resources.
In our model, we estimate leakage power as a fraction of un-
constrained active power and we do not scale leakage power
with utilization. For our baseline model, we assume that this
fraction is 0.1 and we call this variable leakage factor. We
see that for the power uplift due to resource scaling, leakage
power and active power track very closely. However, be-
cause the leakage power does not incur the additional power
overhead due to increased utilization in the SMT machine,
leakage power does not grow as quickly as active power. In

47

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Resource Scaling factor

E
ne

rg
y-

de
la

y2 c
ha

ng
e

co
m

pa
re

d
to

 S
T

Ideal case

Extra front-end stage

Extra register file latency

Extra front-end stage +
extra register file latency

Figure 4: Energy-Delay2 of SMT vs. ST

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Resource Scaling factor

U
ni

t p
ow

er
 c

ha
ng

e
co

m
pa

re
d

to
 S

T IFU
IDU
ISU
FXU
LSU

Figure 5: Power Dissipation Breakdown by Units

Section 4.3 we consider the sensitivity of our results to leak-
age factor.
For high-performance processors power-efficiency can best

be quantified by the Energy-Delay2 metric. Improvements
in ED2 correspond to power-performance efficiency benefits
that exceed the cubic benefit derived by simply tuning the
full-chip clock frequency and supply voltage [2]. Figure 4
provides the results for ED2 and we can see that SMT is
indeed very power-efficient and ED2 is minimized with the
SMT processor with 1.6x resource scaling. This is not sur-
prising, given that SMT performance gain starts to saturate
at around 1.5x, while power dissipation increases continue
with larger values of resource scaling factor.

4.2 Breakdown of SMT power overheads by
unit

We can obtain a better understanding of the power over-
heads associated with SMT by breaking down the power up-
lift by unit. Figure 5 shows the power increase under SMT
for five major units within the microprocessor. The instruc-
tion sequencing unit (ISU) clearly stands out as experiencing
the largest power changes, primarily because almost all of
its subunits, such as reservation stations, register renamers,
and retirement queue, are scaled to support SMT. The fixed-
point execution unit (FXU) exhibits similar behavior, albeit
milder, because the integer register file, which is also scaled
under SMT, is in this unit. On the other hand, the power
dissipation increase in the instruction fetch unit (IFU) and

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
M

T
P

ow
er

 C
ha

ng
e

C
om

pa
re

d
to

 S
T

LeakageFactor=0.1
LeakageFactor=0.3
LeakageFactor=0.5

Figure 6: Impact of Leakage on Power Dissipation of

SMT vs. ST

load/store unit (LSU) is primarily a result of increased uti-
lization, as most of their components stay unchanged from
ST to SMT. With more load/stores executed under SMT,
at 1.5x resource scaling the LSU dissipates 10% additional
power. The utilization uplift of both of these structures sat-
urates when the larger instruction buffers and register files
become large enough to support the ILP in both simultane-
ous threads.
The instruction decoding unit (IDU) displays behavior

that is quite different than the other units. At the 1x scaling
ratio, the power increase with SMT is roughly 10%, but this
power delta gradually reduces as the resources increase. Our
investigation reveals that at 1x scaling, the small instruction
queues and physical register files are a severe performance
bottleneck. This causes congestion within the IDU since
the IDU decouples the IFU and ISU. Since the IDU uti-
lizes valid-bit based clock-gating, the increased occupancy
leads to higher power dissipation compared to the single-
thread base case. As we upscale the resources in the ISU,
the performance bottleneck at the ISU is gradually removed,
reducing IDU power.

4.3 Sensitivity to Leakage Power
As process technologies migrate to smaller channel lengths

and lower threshold voltages, static leakage currents become
a major concern in the design of microprocessors. In this
section, we consider the power overheads of SMT compared
to single-thread architectures in technologies where leakage
is a significant fraction of total power dissipation.
Figure 6 shows the total power increase (including active

and leakage) of SMT compared to our single-thread baseline
machine. We represent the future technologies by varying
the leakage factor (LF) of our design from 0.1 (our baseline)
to 0.5. As described in Section 4.1, we define leakage factor
to be the fraction of the total unconstrained chip power that
is leakage power.
Figure 6 shows that the total power uplift decreases slightly

with leakier process technologies. At the 1.5x scaling point,
the total power uplift is 24% with LF = 0.1, but reduces
to 20% with LF = 0.5. This result is intuitive – as active
power becomes a smaller fraction of the total power dissi-
pation, the SMT machine’s increase in utilization, and the
corresponding reduction in clock gating potential, has less of
an impact because clock gating only reduces active power.

48

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Resource scaling factorE
ne

rg
y

de
la

y2 c
ha

ng
e

co
m

pa
re

d
to

 S
T

PowerFactor=1.0
PowerFactor=1.1
PowerFactor=1.2
PowerFactor=1.3
PowerFactor=1.4

Figure 7: Impact of PowerFactor on Energy-Delay2 of

SMT vs. ST

4.4 Sensitivity to Resource Power Scaling
In this section we consider the impact of our scaling as-

sumptions on our estimates for ED2. For many of the struc-
tures, as we perform resource scaling, we assume that an
increase in the number of entries has a linear increase in the
unconstrained power dissipation, i.e. PowerFactor = 1.0 in
Equation 1.
However, there may be cases where this assumption is

too conservative. For example, the input and output (de)-
multiplexors may become a more significant portion of power
dissipation for large queue structures, and this could cause
the power to grow super-linearly. Figure 7 shows the impact
of varying the PowerFactor variable in Equation 1 from 1x
(linear scaling) to 1.4x. It is apparent that while the overall
ED2 savings will decrease considerably, the optimal design
point is around 1.6x for all the PowerFactor we considered.
This indicates that a power model with a slightly inaccurate
PowerFactor can still have a meaningful projections for the
trend for ED2 of the SMT processor. This is encourag-
ing, since for many architectural studies, relative accuracy
is sufficient because early-stage architectural studies are pri-
marily intended to narrow the focus of design choices. Later
studies after design implementation begins can provide more
detailed models that improve absolute accuracy.

5. FUTURE WORK AND CONCLUSIONS
Our future work seeks to further validate our performance

and power extensions for SMT. The baseline single-threaded
performance model has been extensively validated against a
pre-RTL, latch-accurate processor model for a current gen-
eration microprocessor [8]. For the SMT extension, we will
focus on validating the two major perturbations caused by
SMT: increased utilization and resource scaling. Our strat-
egy to validate utilization is as follows: we will construct
simple microbenchmarks, which are mainly loop-like ker-
nels, whose resource utilization can easily be deduced un-
der single-thread or SMT environment. We run such mi-
crobenchmarks, collect the utilization, and compare them
with our offline calculation to make sure they match each
other. In our next step, we plan to validate the SMT per-
formance model against the product-level processor model
for the most recent IBM processor.
We also seek to further understand the power-performance

impact of exploiting on-chip thread-level parallelism includ-

ing tradeoffs for exploiting this parallelism with multiple
cores. We also plan to analyze the worst-case tempera-
ture behavior of key structures within the microprocessor,
in particular within the ISU, which incurs a sharp increase
in power dissipation with SMT.
This paper describes the modeling extension and vali-

dation strategy to study the power-performance impact of
SMT. We have also performed a detailed design space study
of the impact of augmenting an existing POWER4-like mi-
croarchitecture with SMT. Overall, we conclude that SMT
is a power-efficient design paradigm for modern, superscalar
microarchitectures. After careful resource size tuning within
the processor core, designers can expect performance gains
of nearly 20% with a power uplift of roughly 24% leading to
significant reduction in ED2.

6. REFERENCES
[1] D. Brooks, P. Bose, V. Srinivasan, M. Gschwind, P. G.

Emma, and M. G. Rosenfield. New methodology for
early-stage, microarchitecture-level power-performance
analysis of microprocessors. IBM Journal of R&D, 47(5/6),
2003.

[2] D. Brooks et al. Power-aware microarchitecture: Design
and modeling challenges for next-generation
microprocessors. IEEE Micro, 20(6):26–44, 2000.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In 27th International Symposium on
Computer Architecture (ISCA), 2000.

[4] J. Burns and J.-L. Gaudiot. SMT layout overhead and
scalability. IEEE Trans. Parallel Distrib. Syst.,
13(2):142–155, 2002.

[5] R. Kalla, B. Sinharoy, and J. Tendler. POWER5: IBM’s
next generation power microprocessor. In Proc. 15th Hot
Chips Symp, pages 292–303, August 2003.

[6] D. Koufaty and D. T. Marr. Hyperthreading technology in
the netburst microarchitecture. IEEE Micro, 23(2):56–65,
2003.

[7] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-threading technology
architecture and microarchitecture. Intel Technology
Journal, 6(1):4–15, Feb. 2002.

[8] M. Moudgill, P. Bose, and J. H. Moreno. Validation of
Turandot, a fast processor model for microarchitecture
exploration. In Proceedings of IEEE Internatioanl
Performance, Computing and Communications
Conference, pages 451–457, February 1999.

[9] M. Moudgill, J.-D. Wellman, and J. H. Moreno.
Environment for PowerPC microarchitecture exploration.
IEEE Micro, 19(3):15–25, 1999.

[10] Y. Sazeides and T. Juan. How to compare the performance
of two SMT microarchitectures. In IEEE International
Symposium on Performance Analysis of Systems and
Software, November 2001.

[11] J. Seng, D. Tullsen, and G. Cai. Power-sensitive
multithreaded architecture. In Proceedings of the 2000
International Conference on Computer Design, pages
199–208, 2000.

[12] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
a simultaneous multithreaded processor. In Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
234–244, November 2000.

[13] D. M. Tullsen, S. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In 22nd
Annual International Symposium on Computer
Architecture, 1995.

49

