
Methods of Inference and Learning for Performance Modeling of
Parallel Applications

Benjamin C. Lee
David M. Brooks
Harvard University

{bclee, dbrooks}@eecs.harvard.edu

Bronis R. de Supinski
Martin Schulz

Lawrence Livermore National
Laboratory

{bronis, schulzm}@llnl.gov

Karan Singh
Sally A. McKee
Cornell University

{karan, sam}@csl.cornell.edu

Abstract
Increasing system and algorithmic complexity combined with a

growing number of tunable application parameters pose significant
challenges for analytical performance modeling. We propose a se-
ries of robust techniques to address these challenges. In particular,
we apply statistical techniques such as clustering, association, and
correlation analysis, to understand the application parameter space
better. We construct and compare two classes of effective predictive
models: piecewise polynomial regression and artifical neural net-
works. We compare these techniques with theoretical analyses and
experimental results. Overall, both regression and neural networks
are accurate with median error rates ranging from 2.2 to 10.5 per-
cent. The comparable accuracy of these models suggest differenti-
ating features will arise from ease of use, transparency, and com-
putational efficiency.

Categories and Subject Descriptors I.6.5 [Model Development]:
Modeling Methodologies

General Terms Experimentation, Measurement, Performance

Keywords Performance Prediction, Numerical Methods, Statis-
tics, Regression, Neural Networks

1. Introduction
Analytical performance models are increasingly difficult to formu-
late as system and algorithmic complexity obscure trends in the ap-
plication performance topology. These challenges are exacerbated
by growing parameter space sizes as tunable parameters are used
to optimize applications for particular platforms. Further, analytical
models often use simplifying assumptions about the target platform
or application input space. As a result, analytical models may cap-
ture high level trends (i.e., performance bounds, scalability trends),
but may not perform accurate predictions of application perfor-
mance for any particular combination of input parameter values.
These accurate predictions are necesary for efficient identification
of optimal algorithmic parameter values for a particular platform.

Given large parameter spaces, statistical analyses reveal trends
between parameters and application performance. Clustering, asso-

Copyright 2007 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by a contractor or affiliate of the U.S.
Government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PPoPP’07 March 14–17, 2007, San Jose, California, USA.
Copyright c© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00

ciation, and correlation analyses reveal significant relationships be-
tween tunable parameters and application performance. These anal-
yses not only yield a better understanding of the parameter space,
they form the basis of techniques in statistical inference and ma-
chine learning that facilitate the construction of more general pre-
dictive models. Such approaches typically require an initial set of
data for model training, obtained via sparse measurements of points
in the larger parameter space. The model responds to predictive
queries by leveraging correlations in the observed data for infer-
ence. We illustrate two techniques, statistically rigorous piecewise
polynomial regression and artificial neural networks, for predicting
the performance of parallel applications. In particular, the follow-
ing summarizes the results of a comparative analysis for two ap-
plications (Semicoarsening Multigrid, High-Performance Linpack)
on three high performance systems (BlueGene/L, ALC, MCR):

1. Statistical Characterization: Given predictors of application
performance, hierarchical clustering identifies redundant pre-
dictors, association analysis qualitatively assesses predictor-
performance relationships, and correlation analysis quantita-
tively assess the strength of these relationships (Section 2).

2. Piecewise Polynomial Regression: We describe the theory
and application of regression using restricted cubic splines.
Domain-specific knowledge and statistical analyses guide the
specification of a functional relationship between predictors and
performance (Section 3.2). These models predict performance
with median errors ranging from 2.2 to 9.4 percent.

3. Artificial Neural Networks: We describe the theory and ap-
plication of multi-layer fully connected feedforward neural net-
works. These networks are constructed automatically. Gradient
descent searches for network edge weights that minimize the
network’s sum of square errors (Section 3.3). These networks
predict performance with median errors ranging from 3.6 to
10.5 percent.

4. Comparison of Techniques: Piecewise polynomial regression
offers greater transparency at the cost of additional statistical
analysis to specify a model’s functional form (Section 3.4).
Neural networks are fully automated but are often treated as a
black box with little intuition regarding the process performing
the predictions. A theoretical comparison suggests regression
is more computationally efficient while an experimental com-
parison demonstrates comparable accuracy for both techniques
(Section 4).

Our techniques are generally applicable. We do not leverage
any particular characteristics of the considered applications and
platforms when constructing our models. Collectively, our results

BlueGene/L ALC/MCR
Processor PowerPC 440 Intel Xeon

Frequency 700MHz 2.4 GHz
L1 ICache 32KB 20KB

L1 DCache 32KB 8KB
L2 Cache 2KB 512KB
L3 Cache 4MB n/a
SDRAM 512MB 4GB
Network 3D Torus + Quadrics QsNet

Global Combine/Broadcast Tree (Elan-3)
Nodes Used 512 64

Table 1. Specifications of Experimental Platforms

demonstrate the effectiveness of statistical analysis, regression
modeling, and neural networks for understanding an application
parameter space and predicting performance metrics in this space.

2. Parameter Space Characterization
We describe the systems used to collect performance measurements
of our parallel applications. This framework is used to obtain sam-
pled observations from application parameter spaces. We perform
basic statistical analyses on these samples to obtain insight into pa-
rameter relationships before building the predictive performance
models described in Section 3.

2.1 Platforms
We present regression models and neural networks for performance
prediction of Semicoarsening Multigrid (SMG2000) and High-
Performance Linpack (HPL). These models are constructed using
sampled measurements on three platforms: BlueGene/L (BG/L),
ALC, and MCR at Lawrence Livermore National Laboratory.
Nodes on BG/L have a single compute ASIC with two embed-
ded Power 440 cores. One core performs the primary computation
while the other is dedicated to networking operations. ALC and
MCR, which are similar platforms from different integrators, have
two Intel Xeon cores of which only one is used to minimize system
noise. Our study reveals differences in ALC and MCR, possibly
due to minor differences in firmware releases. Table 1 shows addi-
tional architectural details about the systems.

2.2 Applications
2.2.1 Semicoarsening Multigrid
Multigrid algorithms solve linear systems that result from hierar-
chically discretizing differential equations on logically rectangular
grids [2, 6]. Instead of recursively discretizing in every dimension,
semicoarsening methods discretize 2D and 3D problems in one and
two dimensions, respectively. Specifically, the 3D algorithm semi-
coarsens in the z-dimension followed by plane relaxation. Plane
solves invoke one V-cycle of the 2D algorithm that semicoarsens in
the y-dimension and followed by line relaxation.

SMG2000 is a 3D semicoarsening multigrid solver based on
hypre [6]. Table 2 shows the six-dimensional parameter space for
our SMG2000 experiments. Nx, Ny, Nz describe the per processor
working set size (1K ≤ Nx×Ny×Nz ≤ 343K for BG/L and
≤ 1B on ALC, MCR). The total problem size is constrained to
fit in memory. Px, Py, Pz describe the processor topology in three
dimensions (Px×Py×Pz = 512 on BG/L and 64 on ALC, MCR).

The total size of these parameter spaces is very large. For BG/L
the space consists of nearly 200 million points. On ALC and MCR,
the increased memory size more than compensates for the reduced
processor count and the total parameter space has over 300 mil-
lion points. Exhaustively testing the space would clearly be pro-
hibitively expensive. Analytic models are not easily derived: a

Parameter Range
Nx 10-509
Ny 10-509
Nz 10-509
Px 2n, 0 ≤ n ≤ 9 (BG/L)/ 6 (ALC and MCR)
Py 2n, 0 ≤ n ≤ 9 (BG/L)/ 6 (ALC and MCR)
Pz 2n, 0 ≤ n ≤ 9 (BG/L)/ 6 (ALC and MCR)

Table 2. SMG2000 Parameter Space

Parameter Range
N (problem size) 10000
NB (block size) 10-80 (BG/L); 10-100 (ALC and MCR)

P 2n, 0 ≤ n ≤ 9 (BG/L)/ 6 (ALC and MCR)
Q 2n, 0 ≤ n ≤ 9 (BG/L)/ 6 (ALC and MCR)

BCAST 1rg, 1rM, 2rg, 2rM, Lng, LnM
PFACT R, L, C
RFACT R, L, C
NBMIN 1-8
NDIV 2-4

Table 3. HPL Parameter Space

model of the communication cost for cubic domains is complex
and the implementers of hypre have remarked that it would be un-
manageably complicated for non-cubic domains. Further, Figure 1
indicates these parameters significantly impact performance: exe-
cution time varies by up to a factor of five under varying processor
topologies for a fixed problem size.

2.2.2 High-Performance Linpack
HPL solves dense linear systems by performing an iterative LU
decomposition followed by backward substitution [1]. The panel
decomposition occurs recursively in a given iteration. A cyclic
scheme distributes blocked data onto a two-dimensional grid of
processors to ensure load balance and scalability.

Table 3 shows the eight-dimensional input parameter space of
our HPL experiments in which we hold the total matrix size (de-
fined by N) constant. NB is the matrix block size, which we vary
between ten and eighty on BG/L and ten and a hundred on ALC
and MCR. P and Q describe the processor topology in two dimen-
sions (P×Q = 512 on BG/L and 64 on ALC and MCR). BCAST
specifies variants of broadcast algorithms with the first two parame-
ters specifying increasing one ring virtual and modified topologies,
the next two specifying corresponding two ring topologies, and the
last two specifying long message variants. The panel and recursive
factorization (PFACT , RFACT) may each employ three vari-
ants: right-looking, left-looking, and Crout’s method. The number
of sub-panels (NDIV) and number of columns in the recursive base
case (NBMIN) are also tunable.

Our HPL parameter space is large with over 900,000 points on
BG/L. Figure 1 demonstrates HPL execution time varies signif-
icantly with data organization and processor topology. Although
some guidance is available for parameter choices, it is generally in
terms of probable impact and sampling is recommended. By using
modeling, we can improve the value of that sampling.

2.3 Software Packages
We use R, a free software environment for statistical computing, to
script and automate the statistical analyses described in Section 2.4
and Section 3.2. Within this environment, we use the Hmisc and
Design packages implemented by Harrell [7]. We use the Stuttgart

0

10

20

30

40

50

60

70

80

0 100000 200000 300000

E
xe

cu
tio

n
tim

e
(s

)

Working set size (Nx*Ny*Nz)
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

E
xe

cu
tio

n
tim

e
(s

)

Experiments ordered by P, NB

Figure 1. 512-node BG/L performance of SMG2000 for varying workloads, processor topologies (L) and HPL for varying block sizes,
processor topologies (R).

Neural Network Simulator (SNNS) to construct the networks de-
scribed in Section 3.3. SNNS performs operations for learning and
prediction for various network architectures [20].

2.4 Statistics
We illustrate statistical analyses for SMG2000 on BG/L based on
data collected sparsely, uniformly at random from the parameter
space. Similar techniques are applied to other applications and
platforms. These techniques provide insight into the parameter
space, revealing significant relationships between variables and
characterizing observed trends.

2.4.1 Hierarchical Clustering
Clustering is a common statistical technique that classifies data ele-
ments based on a measure of similarity. A symmetric N×N matrix
S describes the similarity of N elements: S(i, j) quantifies the sim-
ilarity between elements i and j. Hierarchical clustering iteratively
identifies similar elements through the following algorithm:

• Initialize: Create N unique single-element clusters.
• Merge: Combine most similar pair of clusters into one cluster.
• Iterate: Repeat merge until one N -element cluster is obtained.

The similarity between two clusters A and B is the maximum simi-
larity between elements of each cluster: S(A, B) = max{S(x, y) :
x∈A, y∈B}. Correlation is our measure of similarity between two
parameters. Thus, hierarchical clustering provides insight into the
relationships between parameters through their correlations.

Figure 2 plots the clustered predictors and responses for SMG2000.
The correlation between the processor counts in three dimensions
is an artifact of our constraint: Px × Py × Pz = 512. The corre-
lation between working set sizes in three dimensions results from
constraining the total problem size to fit in memory. Lastly, the
correlation between components of execution time are significant;
solve time is highly correlated with initialization and setup time.

Hierarchical clustering can also guide regression modeling to
ensure redundant predictors are not included in the model when
there are many potential predictors. If multiple predictors are highly
correlated and classified into the same cluster, a single represen-
tative predictor can often capture its cluster’s impact on the re-
sponse. Similarly, if multiple responses are highly correlated, a sin-
gle model may be constructed for a representative response since
correlated responses will likely trend with the modeled response.

ts
et

tin
it

ts
ol

ve

px py pz

ny

nx nz

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
 ρρ

2

Figure 2. Hierarchical clustering for SMG2000 on BG/L.

For SMG2000, the correlation between execution time components
leads us to a model that only predicts solve time since it should also
be representative of the other smaller execution time components.

Pruning the number of predictors is important as it controls the
size of the model, not only by controlling the number of predictors
but also controlling the number of potential interactions between
predictors. A number of studies in which models are validated
on independent data sets have shown a fitted regression model is
likely reliable (no over-fitting) when the number of samples n is
20 times the number of predictors [7]. Thus, smaller models reduce
the number of samples required to mitigate over-fitting risk.

2.4.2 Association Analysis
We can also examine each predictor’s association with the re-
sponse to gain further insight into their importance. Scatterplots
qualitatively illustrate the association between predictors and the
response, revealing potential non-monotonicity or non-linearity.
These plots may quickly reveal significant predictors by demon-
strating, for example, a clear monotonic relationship with the re-
sponse. Conversely, plots exhibiting low response variation despite
a changing predictor value might suggest predictor insignificance.
Thus, scatterplots allow the modeler to quickly understand the pa-
rameter space at a high level.

Figure 4. Correlation analysis for SMG2000 on BG/L.

Figure 3 plots predictor-response associations dividing the pre-
dictor domain into intervals. The average response of each inter-
val’s samples are plotted. For example, Nz has a value between
102 and 506 for 248 of 1,000 samples. The average solve time for
these samples is 35.0 seconds. These plots illustrate monotonic re-
lationships for the working set sizes in the y- and z-dimensions, but
non-monotonic relationships for the processor counts in three di-
mensions. The plot for Nz suggests a particularly strong relation-
ship between Nz and the execution time. This is consistent with
our domain-specific understanding of the semicoarsening multi-
grid algorithm. SMG2000 coarsens only in the z-dimension and
the costly iterative relaxation in this dimension depends on Nz , re-
quiring communication between x-y planes.

2.4.3 Correlation Analysis
Although we qualitatively observe marginal relationships between
each predictor and the response in the previous scatterplots, we
have not quantified the strength of these relationships. The rela-
tive strength of scatterplot relationships is quantified by the corre-
lation between variables. Pearson’s correlation coefficient for ran-
dom variables X ,Y is a function of expectations µx,µy and stan-
dard deviations σx,σy for n observations. Non-parametric statistics
are more robust if the distribution of X, Y are unknown. We pre-
fer the Spearman Rank correlation coefficient of Equation (1) that
can quantify association independently of variable distribution. The
computationally efficient approximation only requires di, the dif-
ference in ordinal rank of Xi in X and Yi in Y .

ρsp =

Pn
i=1 XiYi“Pn

i=1 X2
i

Pn
j=1 Y 2

j

”1/2
≈ 1− 6

nX
i=1

d2
i

n(n2 − 1)
(1)

Figure 4 ranks predictors by their correlation coefficients to
support assessments of their relative significance. Predictors with
higher rankings will require more flexible non-linear transforma-
tions than those with lower rankings since any lack of fit for these
highly ranked predictors will negatively impact overall model ac-
curacy more significantly. As in the association analysis, we find
Nz and Ny most highly correlated with solve time, observing cor-
relation coefficients of 0.145 and 0.031, respectively. All other pre-
dictors are less strongly correlated, if at all, with performance.

3. Modeling Techniques
Given a set of sparsely collected performance measurements, we
construct predictive models using two techniques in generalized
non-linear regression: piecewise polynomial regression and neural
networks. Piecewise polynomial regression emphasizes domain-
specific knowledge and statistical analysis in model construction
while neural networks emphasize usability and automation.

3.1 Configuration Sampling
The prohibitively high costs of exhaustive performance measure-
ments for each point in our parameter space motivate a sparse sam-
pling from the space. The performance of these samples, represent-
ing a particular application input set, is collected to produce obser-
vations. The approach to sampling for observations significantly
impacts the accuracy of predictive models as exhaustive measure-
ment becomes inefficient and impractical. Piecewise polynomial
regression and artificial neural networks each utilize particular sam-
pling techniques to improve accuracy.

Sampling Uniform at Random: We propose sampling points
uniformly at random (UAR) from the parameter space. This ap-
proach provides observations from the full range of parameter val-
ues and enables identification of trends and trade-offs between pa-
rameters. We may consider an arbitrarily large number of possible
values for any given parameter since we decouple the number of
measurements from the parameter space size via random sampling.
Furthermore, samples obtained uniformly provide unbiased obser-
vations such that the parameter space is well represented in data
used to construct regression models or neural networks.

Stratification: Regression and neural networks optimize coef-
ficients or edge weights to minimize sum of square errors. How-
ever, this objective may give undue emphasis to samples with larger
performance measurements since their modeled absolute errors are
likely larger. Conversely, samples with small performance values
may be less influential in model construction due to their small ab-
solute errors. Stratification mitigates this bias by giving additional
weight to samples with small performance values, replicating each
sample by a factor proportional to the inverse of its observed re-
sponse. Targeting samples with small performance values that have
large relative but small absolute errors, this technique reduces the
divergence in relative error across the parameter space.

Regional Sampling: A variant on UAR sampling, regional
sampling formulates per-query regression models using only points
most similar to the query. We quantify similarity by the Euclidean
distance between vectors of normalized and weighted parameter
values. Specifically, values are normalized by subtracting the mean
and dividing by the standard deviation. They are also weighted
according to their correlation with performance. This weighting
emphasizes parameters that significantly impact performance in the
distance calculation. Regional sampling incurs additional modeling
costs as Euclidean distances are computed and regression models
are formulated for each query. This technique is combined with
regression for all data sets except those for HPL data collected on
BG/L and MCR. In these two sets, sampling uniformly at random
and stratification are sufficient to formulate effective models.

3.2 Regression
3.2.1 Formulation
We consider a general class of regression models in which a re-
sponse is modeled as a weighted sum of predictor variables plus
random noise. For a space of interest, suppose we have a subset
of n observations for which values of the response and predictor
variables are known. Let y = y1, . . . , yn denote the vector of
observed responses. For a particular point i in this space, let yi

denote its response and xi = xi,1, . . . , xi,p denote its p predic-

tsolve

25 30 35

●

●

●

●

●

●

●

●

●

●

●

●

●

 250
 252
 248
 250

 254
 250
 250
 246

 257
 243
 252
 248

1000

N

[10, 24)
[24, 51)

[51,127)
[127,501]

[10, 24)
[24, 51)

[51,118)
[118,505]

[10, 23)
[23, 45)

[45,102)
[102,506]

nx

ny

nz

Overall

Working Set Size

N=1000
tsolve

24 25 26 27 28 29

●

●

●

●

●

●

●

●

●

●

●

●

●

 339
 270
 201
 190

 348
 159
 337
 156

 329
 268
 222
 181

1000

N

2

[0,2)
[2,4)
[4,6)
[6,9]

[0,2)

[3,6)
[6,9]

[0,2)
[2,4)
[4,6)
[6,9]

px

py

pz

Overall

Processor Distribution

N=1000

Figure 3. Association plots for SMG2000 on BG/L.

tors. These variables are constant for a given point in the space.
Let β = β0, . . . , βp denote the corresponding set of regression co-
efficients used in describing the response as a linear function of
predictors plus a random error ei as in Equation (2). The ei are as-
sumed independent random variables with zero mean and constant
variance: E(ei) = 0 and V ar(ei) = σ2.

f(yi) = β·g(xi) + ei = β0 +

pX
j=1

βjgj(xij) + ei (2)

Transformations f and g = g1, . . . , gp may be applied to the re-
sponse and predictors, respectively, to improve model fit by stabi-
lizing a non-constant error variance or accounting for non-linear
predictor-response relationships.

3.2.2 Interaction and Non-Linearity
In some cases, the effect of two predictors xi,1 and xi,2 on the
response cannot be separated; the effect of xi,1 on yi depends
on the value of xi,2 and vice versa. The interaction between two
predictors may be modeled by constructing a third predictor xi,3 =
xi,1xi,2 to obtain yi = β0 + β1xi,1 + β2xi,2 + β3xi,1xi,2 + ei

An assumption of linearity is often too restrictive and several
techniques for capturing non-linearity may be applied. The most
simple of these techniques is a polynomial transformation on pre-
dictors suspected of having a non-linear correlation with the re-
sponse. However, polynomials have undesirable peaks and valleys.
Furthermore, a good fit in one region of the predictor’s values may
unduly impact the fit in another region of values. For these reasons,
splines are a more effective technique for modeling non-linearity.

Spline functions are piecewise polynomials. The predictor do-
main is divided into intervals divided by knots with different con-
tinuous polynomials fit to each interval. The number of knots can
vary but more knots generally leads to better fits. Cubic splines are
particularly effective as they may be smoothed at the knots by forc-

ing first and second derivatives to agree [7]. We perform regression
on restricted cubic splines, constructing models with linear tails
and interior piecewise cubic polynomials.

The choice and position of knots are variable parameters when
specifying non-linearity with splines. Placing knots at fixed quan-
tiles of a predictor’s distribution is a good approach in most
datasets, ensuring a sufficient number of points in each interval
[17]. In practice, five knots or fewer are generally sufficient for re-
stricted cubic splines. Fewer knots may be required for small data
sets. As the number of knots increases, flexibility improves at the
risk of over-fitting the data. In many cases, four knots offer an ade-
quate fit of the model and is a good compromise between flexibility
and loss of precision from over-fitting [7].

For example, regression models for SMG2000 predict solve
time from processor topology and working set size. Predictor in-
teractions are specified with domain-specific knowledge. We ex-
pect interaction between Pz and Nz because processor count in the
z-dimension may impact solve time differently for different work-
ing set sizes in the z-dimension. Similarly, we specify interactions
between predictors in different dimensions (e.g., Py and Pz) to cap-
ture inter-dimensional trade-offs necessary to meet constraints on
the total processor count and the total problem size. Restricted cu-
bic splines are specified using four knots for all predictors except
Nz , which uses five knots due to its significance observed in pre-
liminary statistical analyses.

3.2.3 Construction
The method of least squares identifies coefficients that minimize
the sum of squared deviations in Equation (3) for a given specifica-
tion of predictors, interaction, and non-linearity and a given set of
observations. This minimization requires solving a system of p + 1
partial derivatives of E with respect to βj , j ∈ [0, p]. Least squares
often marks the midpoint in the model design process. Additional
analysis of the new formulated model may examine fit to the ob-

Figure 5. Feedforward neural network with one hidden layer (p=3
and H=4).

served data and statistical significance of predictors and terms com-
prising the model [12].

E(β0, . . . , βp) =

nX
i=1

yi − β0 −

pX
j=1

βjxij

!2

(3)

3.2.4 Prediction
Once regression coefficients are determined by least squares, eval-
uating Equation (2) for a given xi will give the expectation of yi

and, equivalently, the estimate ŷi for yi in Equation (4). This result
follows from the additive property of expectations, the constant ex-
pectation of a constant and the zero mean of random errors.

ŷi = E
ˆ
yi

˜
= E

"
β0 +

pX
j=1

βjxij

#
+ E

ˆ
ei

˜
= β0 +

pX
j=1

βjxij (4)

3.3 Artificial Neural Networks
3.3.1 Formulation
Artificial Neural Networks (ANNs) are a class of machine learning
models that map predictors to a response using a network of neu-
rons, simple processing elements, connected by weighted edges.
As in regression, consider an observed sample with known predic-
tor and response vectors x and y. For a particular neuron j in the
network, let bj denote its output and a = a1, . . . , ap denote its p
potentially transformed versions of x. If the inputs arrive via edges
with weights vj = vj,1, . . . , vj,p, the neuron computes its output
as a weighted sum of inputs in Equation (5). An activation function
f may transform the weighted sum to increase the set of mappings
the network is able to represent.

bj = f(vj ·a) = f

pX

k=1

vj,kak

!
(5)

Multi-layered neural networks increase this framework’s repre-
sentational power and can approximate any function to arbitrary
precision [15]. Neurons in the input layer implement the identity
activation function, passing predictor values to the hidden layers.
These layers pass inputs through successive linear combinations,
transformations before computing the final network output.

Consider the three-layer network illustrated in Figure 5 that im-
plements a fully connected feedforward architecture in which every
neuron in a layer is connected to all neurons in the previous layer.
Suppose the input layer contains p neurons corresponding to the p
predictors and the hidden layer contains H neurons where H is a

Figure 6. Sigmoid function.

tunable parameter in network construction. Let w = w1, . . . , wH

denote edge weights communicating outputs from the hidden layer
b = b1, . . . , bH into the output layer. Furthermore, assume all
non-input neurons implement the same activation function f . For a
three-layer network, the final output ŷ is computed by Equation (6)
where bj is expanded with Equation (5) that computes hidden layer
output from network inputs x.

ŷ = f(w·b) = f

HX

j=1

wjbj

!
= f

HX

j=1

wjf

pX

k=1

vj,kxk

!!
(6)

3.3.2 Interaction and Non-Linearity
Predictor impact on the response is determined by the edge weights
connecting the nodes. Since Equation (6) does not consider prod-
ucts of terms, the network does not provide a mechanism for au-
tomatically identifying predictor interaction in which the effect of
two or more predictors on the response cannot be separated. Al-
though such interactions may be captured by specifying inputs as
products of predictors (e.g. x3 = x1x2 in Figure 5), our results sug-
gest the sigmoid function sufficiently captures interactions, elimi-
nating the need for domain-specific knowledge.

Non-linearity is modeled by activation functions f at each neu-
ron. For our automated approach to neural network construction,
we assume input neurons implement the identify function f(x) =
x and non-input neurons implement the sigmoid function f(x) =
1/(1+e−x) of Figure 6. More generally, non-input activation func-
tions should be non-linear, monotonic, and differentiable [15].

3.3.3 Construction
The edge weights of neural networks must be updated to capture
trends in observed samples. Edge weights are initialized near zero
and backpropagation updates weights by gradient descent to min-
imize squared error E between the n network predictions and ob-
served sample responses. In particular, the set of weights W for
network edges are iteratively updated by Equation (8) where η
specifies learning rate. A momentum term may help backpropa-
gation avoid local minima by adding a fraction α of the weight
changes from the previous iteration ∆W(t−1). Momentum accel-
erates gradient descent in low-gradient regions and damps oscilla-
tions in highly non-linear regions.

This work uses a three-layer neural network with a 16-neuron
hidden layer, initial weights drawn uniformly from [-0.01,+0.01].
Values for the learning rate and momentum term are determined
automatically with an adaptive variant of backpropagation, resilient
backpropagation [16]. These values work well in practice for a few
different parameter space studies and tuning the network design
was unnecessary.

E(W) =

nX
i=1

(yi − ŷi)
2 (7)

W(t) = W(t−1) −

η∇E(W(t−1)) + α∆W(t−1)

!
(8)

Artificial neural networks may mitigate over-fitting risk by halt-
ing gradient descent before it converges to edge weights that mini-
mize error on the training samples [5, 15]. In particular, a portion of
the training samples is designated the early stopping set and gradi-
ent descent for the remaining samples is halted when the network’s
squared error converges for the early stopping set. Early stopping
reduces risk of over-fitting to observed data since the halting crite-
rion does not utilize the full set of sampled observations.

Since the early stopping set is used only for the halting criterion
and not used in gradient descent, this technique reduces the num-
ber of samples available for network training. Cross validation mit-
igates the impact of fewer samples by constructing multiple neural
networks trained on different subsets of the data. This technique
divides the training samples into multiple, equally sized subsets.
Consider cross validation with 10 subsets each containing 10% of
the samples. A network is trained on subsets 1-8 using subset 9 for
early stopping and subset 10 for validation. A second network is
trained on subsets 2-9 using subset 10 for early stopping and subset
1 for validation. Repeating this process, cross validation will thus
create ten networks. The ten corresponding outputs are averaged to
produce the ensemble network output.

Although only 80% of samples are used to train any one model,
all samples are used to train eight of ten models in the ensemble.
Thus, the ensemble performs similarly to a model using the full
samples, yet reserves samples for the early stopping set. In practice,
an average of multiple models may mitigate the risk of particularly
high error variance in any one model. The mean and deviations of
the ten model errors observed for the validation subsets are used
to estimate ensemble error. Cross validation reduces error variance
and improves estimates of ensemble accuracy at the expense of
additional computation to train multiple models.

3.3.4 Prediction
Once backpropagation by gradient descent has converged, the net-
work performs predictions by applying inputs to the network, eval-
uating Equation (6) for each prediction. Thus, a multi-layer neu-
ral network models the predictor-response relationship with nested
non-linear weighted sums. Additional hidden layers can further in-
crease the representational power by increasing the nesting depth.

3.4 Theoretical Comparison
Piecewise polynomial regression and neural networks both model
a response as non-linear weighted sums of predictors. In both tech-
niques, the weights are determined to minimize model error based
on sampled observations of predictor-response tuples. However, the
techniques differ in their approaches to specifying model form and
optimizing model weights, illustrating more general differences be-
tween statistical inference and machine learning. Model formu-
lation for statistical inference is often guided by domain-specific
knowledge and statistical analyses of incompletely observed data.
In contrast, machine learning use the same observed data to con-
struct a model, minimizing criteria of fit by heuristic search in at-
tempts to automate steps in model formulation. A theoretical com-
parison between piecewise polynomial regression and neural net-
works illustrates trade-offs between statistical understanding and
automation while revealing differences in computational efficiency.

3.4.1 Statistics and Automation
Piecewise polynomial regression relies on clustering, association,
and correlation analyses to identify relevant predictors and inter-
esting predictor-response relationships. These statistical techniques
are combined with domain-specific knowledge to guide the specifi-
cation of predictor interactions and non-linearities. Additional sta-
tistical tests may be necessary after model construction to ensure
model fit and a lack of systematic bias. Although these analyses
require a modest background in statistics, they lead to a better un-
derstanding of the parameter space. In contrast, neural networks
offer an automated approach by providing a flexible model spec-
ification (i.e., nested weighted sums on sigmoid activation func-
tions). This framework assumes all predictors are relevant prior to
network construction, relying on machine learning to assign appro-
priate weights to predictors based on their contributions to the sum
of square errors. An untrained network has the potential to specify
many functional forms of predictor-response relationships and the
ultimate form is obtained automatically given training data. Thus,
neural networks offer greater usability at the expense of greater sta-
tistical understanding of the parameter space.

Regression is a relatively transparent technique, exposing pre-
dictor interaction and non-linearity to the user. The functional form
of the predictor-response relationship is based on statistical analy-
sis and domain-specific knowledge, ensuring consistency between
the model and user intuition. Neural networks are often treated as
an automated black box consuming predictor values to generate
response predictions. The underlying mechanism generating these
predictions is less open to interpretation since it incorporates no do-
main knowledge and predictor-response relationships may be ob-
scured by the nesting of non-linear sums. Thus, regression offers
greater transparency at the cost of greater statistical analysis while
neural networks offer greater automation with some cost in statisti-
cal insight.

3.4.2 Computational Efficiency
Both piecewise polynomial regression and neural networks deter-
mine weights to minimize sum of square errors. After linearizing
transformations, regression expresses this optimization as linear
least squares that explicitly solves a linear system using a QR or
Cholesky decomposition. In contrast, neural network edge weights
are iteratively refined to reduce error, evaluating the network in ev-
ery iteration of gradient descent to approximate a solution to least
squares. The time to convergence in learning is usually larger than
that required to solve least squares in regression numerically, espe-
cially if the predictor count is small.

Given transformed predictors, regression computes the response
as the weighted sum in Equation (4). Neural networks compute a
nested weighted sum of predictors with multiple transformations.
Specifically, Equation (6) expresses the output of a network with
one hidden layer as a non-linear function (sigmoid at output layer)
of a weighted sum (input to output layer) of non-linear functions
(sigmoid at hidden layer) of a weighted sum of inputs (input to
hidden layer). Thus, piecewise polynomial regression is more com-
putationally efficient at the cost of additional statistical analysis
before and after model formulation. Neural networks are less ef-
ficient, but rely less on domain knowledge and intuition. Assuming
equally accurate predictions, the two techniques represent a choice
between statistical effort and automation.

4. Model Evaluation
4.1 Prediction Accuracy
Figure 7 presents boxplots of the error distributions for perfor-
mance predictions of 100 validation points sampled UAR from the
parameter space. The error is expressed as |obs−pred|/pred. Box-

plots are graphical displays of data that measure location (median)
and dispersion (interquartile range), identify possible outliers, and
indicate the symmetry or skewness of the distribution. Boxplots are
constructed by

1. horizontal lines at the median and at the upper, lower quartiles

2. vertical lines drawn up/down from the upper/lower quartile to
the most extreme data point within 1.5 IQR of the upper/lower
quartile with horizontal lines at the end of the vertical lines 1

3. circles beyond the ends of vertical lines to denote outliers

Figure 7(L) indicates piecewise polynomial regression achieves
median errors between 2.2 percent (hpl-mcr) and 9.4 percent (smg-
mcr). 75 percent of predictions achieve error rates of 16 percent
or less. HPL predictions (median errors of 2.2 to 5.2 percent) are
more accurate than SMG predictions on the same platform (median
errors of 6.3 to 9.4 percent) as regression leverages additional al-
gorithmic predictors. Outlier error not shown includes three predic-
tions for SMG on ALC with errors of 56.7, 62.6, and 98.0 percent.

Figure 7(R) considers neural networks for the same predictions.
Median error rates range from 3.6 (smg-alc) to 10.5 (hpl-alc) per-
cent. Predictions are equally accurate for both applications with at
most a 1 percent difference in median error between SMG and HPL
predictions on the same platform. 75 percent of predictions achieve
median error rates of 16.2 percent or less. Outlier error not shown
includes two predictions for HPL with errors of 68.5 and 82.3 per-
cent.

Overall, regression and neural networks predict with similar
median and outlier error rates. Examining the interquartile range,
however, we observe a greater spread in SMG regression error
relative to the spread in SMG network error. In particular, the
difference between the 1st and 3rd quartile varies from 10.0 to 11.7
percent in SMG regression compared to a spread of 4.6 to 11.1
percent for SMG networks. Similarly, regression predictions tend to
extend further from the 3rd quartile as illustrated by longer vertical
lines above the boxes. We observe the opposite interquartile trends
for HPL. The HPL regression is 4.5 to 12.0 percent compared
to a spread of 9.6 to 11.7 percent in networks. This reversal for
HPL regression is attributed to particularly low spread in regression
error on ALC and MCR. These platforms are notable for their high
system noise relative to the effectively noise-less BG/L.

4.2 Sampling Sensitivity
In addition to considering prediction accuracy with 600 samples,
we assess median error sensitivity to varying sample sizes. The
BG/L HPL data of Figure 8(L) demonstrates accuracy benefits from
additional samples with median errors falling from 7.6 to 6.5 per-
cent and from 8.4 to 4.8 for regression and neural networks, re-
spectively. Similar trends are observed for SMG2000 on MCR. In
contrast, BG/L SMG2000 data of Figure 8(R) illustrates significant
improvements for regression (from 11.9 to 7.5 percent) and rela-
tively flat trends for neural networks (from 5.9 to 5.5 percent).

To further illustrate the difficulty of identifying an optimal sam-
ple size, we observe flat trends for HPL on MCR in Figure 9(L) and
non-monotonic trends for SMG2000 on MCR in Figure 9(R). In the
latter case, we observe improving regression accuracy (from 9.6 to
8.0 percent) and network accuracy (from 8.5 to 7.3 percent) as ad-
ditional samples are used in model construction. However, we also
observe spikes in error rates at 400 samples for regression and 700
samples for both techniques as we approach the lower error rates of
1,000 samples. These trends illustrate the difficulty of identifying,
a priori, an optimal sample size. Better selection of sample sizes is
potentially future work.

1 IQR: interquartile range is the difference between first and third quartile.

5. Related Work
Although regression and neural networks have been separately ap-
plied to predict application and microarchitecture performance, we
present a comparison of these techniques and highlight their rel-
ative strengths and weaknesses. These techniques apply inference
and learning for empirical performance modeling. We contrast our
approaches with previous work in parameter space analysis and
performance modeling.

5.1 Regression and Neural Networks
Lee and Brooks apply piecewise polynomial regression to a large
uniprocessor design space of nearly one billion points to perform
accurate predictions of performance and power [13, 12]. Ipek, et
al., predict performance of memory, core, and CMP design spaces
with artificial neural networks [9]. While Ipek, et al. also apply
neural networks to predict the performance of SMG2000 [8], they
do not consider statistical techniques for preliminary data analysis
and do not consider piecewise polynomial regression. In contrast,
we analyze regression and neural networks in both theoretical and
experimental comparisons.

5.2 Statistical Significance Ranking
Joseph, et al., derive performance models using stepwise regres-
sion, an automatic iterative approach for adding and dropping pre-
dictors from a model depending on measures of significance [10].
Although commonly used, stepwise regression has several signifi-
cant biases cited by Harrell [7]. In contrast, we use domain-specific
knowledge of microarchitectural design to specify non-linear ef-
fects and interaction between predictors. Furthermore, the authors
consider only two values for each predictor and do not predict per-
formance, using the models only for significance testing.

Yi, et al., identify statistically significant processor parameters
using Plackett-Burman design matrices [19]. Given these critical
parameters, they suggest fixing all non-critical parameters to rea-
sonable constants and gathering more extensive observations by
sweeping a range of values for the critical parameters. We use var-
ious statistical techniques to identify significant parameters, but in-
stead of gathering further observations, we rely on regression mod-
els based on these parameters to explore the parameter space. Fur-
thermore, Placket-Burman specifies only bounds on parameter val-
ues while the techniques we present are applicable to measurements
at finer parameter resolutions.

5.3 Models for Parallel Applications
Marin and Mellor-Crummey semi-automatically measure and
model program characteristics, using properties of the architecture,
properties of the binary, and application inputs to predict applica-
tion behavior [14] . Their toolkit predefines a set of functions and
the user may add customized functions to this library if needed.
In contrast to our work, the authors vary the input size in only
dimension and their models cannot account for some important
architectural parameters (e.g., cache associativity in their memory
reuse modeling).

Carrington, et al., develop a framework for predicting scientific
computing performance and demonstrate its application for HPL
and an ocean modeling simulation [3]. Their automated approach
relies on a convolution method that maps an application signature
onto a machine profile. Simple benchmark probes create machine
profiles and a separate tool generates application signatures. Ex-
tending the convolution method enables models of full-scale HPC
applications [4]. They must gather a trace for each point in the pa-
rameter space. Depending on trace sampling rates, their predictions
achieve error rates between 4.6 percent and 8.4 percent. Full traces
obviously perform best, but such trace generation can slow appli-
cation execution by almost three orders of magnitude.

Figure 7. Boxplots of the performance error distributions obtained via regression (L) and neural networks (R).

Figure 8. Sensitivity to sample size for BlueGene/L

Figure 9. Sensitivity to sample size for MCR

Kerbyson, et al., present an accurate, predictive analytical
model that encompasses the performance and scaling character-
istics of SAGE, a multidimensional hydrodynamics code with
adaptive mesh refinement [11]. Inputs to their parametric model
come from machine performance information, such as latency and
bandwidth, along with application characteristics, such as problem
size and decomposition. They validate model predictive accuracy
against measurements on two large-scale ASCI systems. In addi-
tion to predicting performance, their model can yield insight into
performance bottlenecks, but the application-centric approach re-
quires static code analysis and a separate, detailed model must be
developed for each target application.

Yang, et al., develop cross-platform performance translation
based on relative performance between target platforms with-
out program modeling, code analysis, or architectural simulation
[18]. As in our work, their method targets performance prediction
for resource usage estimation. They observe relative performance
through partial execution of two ASCI Purple applications. The
approach works well for iterative parallel codes that behave pre-
dictably (achieving prediction errors of 2 percent or lower) and
enjoys low overhead costs. Prediction error varies from 5 to 37
percent for applications with variable overhead per time step. Like-
wise, reusing partial execution results for different problem sizes
and degrees of parallelization renders their model less accurate.

6. Conclusion
We present a series of robust techniques for understanding large

application parameter spaces and constructing predictive models
for these spaces. In particular, we illustrate the application of statis-
tical techniques, including clustering, association, and correlation
analysis, for identifying significant contributions to application per-
formance. We construct effective piecewise polynomial regression
models and artificial neural networks that predict application per-
formance as a function of its input parameters. Median error rates
range from 2.2 to 10.5 percent across both techniques.

A comparative analysis of regression and neural networks illus-
trate trade-offs between techniques. Regression offers greater trans-
parency and statistical understanding while neural networks offer
greater usability and automation. As both techniques offer compa-
rable accuracy, the appropriate technique depends on the needs of
the modeler. Regression and neural networks represent two extrema
in a continuum that trades statistical rigor with automation. Future
work may explore intermediate techniques such as automating the
statistical techniques required for regression with heuristics. Simi-
larly neural networks may leverage statistical analyses to customize
activation functions or neural network weights.

Acknowledgements
Part of this work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence Liv-
ermore National Laboratory under contract No. W-7405-Eng-48
(UCRL-CONF-227097). This work is also supported by NSF
grants CCF-0048313 and CCF-0444413 in addition to support from
Intel and IBM. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the U.S. Department of En-
ergy, University of California, National Science Foundation, Intel
or IBM.

References
[1] A.Petitet, R.Whaley, J.Dongarra, and A.Cleary. HPL - A portable

implementation of the high-performance LINPACK benchmark for
distributed-memory computers. www.netlib.org/benchmark/hpl.

[2] P. N. Brown, R. D. Falgout, and J. E. Jones. Semicoarsening multigrid
on distributed memory machines. SIAM Journal on Scientific
Computing, 21(5), 2000.

[3] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A performance
prediction framework for scientific applications. In International
Conference on Computational Science Workshop on Performance
Modeling and Analysis (PMA03), June 2003.

[4] L. Carrington, N. Wolter, A. Snavely, and C. Lee. Applying
an automatic framework to produce accurate blind performance
predictions of full-scale hpc applications. In Department of Defense
Users Group Conference, June 2004.

[5] R. Caruana, S. Lawrence, and C. Giles. Overfitting in neural nets:
backpropagation, conjugate gradient, and early stopping. In Neural
Information Processing Systems (NIPS), November 2002.

[6] R. Falgout and U. Yang. Hypre: A library of high performance
preconditioners. Springer LNCS, 2331, 2002.

[7] F. Harrell. Regression modeling strategies. Springer, 2001.

[8] E. Ìpek, B. de Supinski, M. Schulz, and S. McKee. An approach to
performance prediction for parallel applications. Euro-Par, Springer
LNCS, 3648, 2005.

[9] E. Ìpek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana.
Efficiently exploring architectural design spaces via predictive
modeling. In Architectural Support for Programming Languages
and Operating Systems (ASPLOS XII), October 2006.

[10] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction
and use of linear regression models for processor performance
analysis. In International Symposium on High Performance Computer
Architecture (HPCA-12), February 2006.

[11] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and
M. Gittings. Predictive performance and scalability modeling of a
large-scale application. In IEEE/ACM Supercomputing, November
2001.

[12] B. Lee and D. Brooks. Accurate and efficient regression modeling
for microarchitectural performance and power prediction. In
Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII), October 2006.

[13] B. Lee and D. Brooks. Illustrative design space studies with
microarchitectural regression models. In International Symposium
on High-Performance Computer Architecture (HPCA-13), February
2007.

[14] G. Marin and J. Mellor-Crummey. Cross-architecture performance
predictions for scientific applications using parameterized models. In
International Conference on Measurement and Modeling of Computer
Systems (Sigmetrics), June 2004.

[15] T. Mitchell. Machine Learning. WCB/McGraw Hill, 1997.

[16] M. Riedmiller and H. Braun. A direct adaptive method for
faster backpropagation learning: The RPROP algorithm. In IEEE
International Conference on Neural Networks, May 1993.

[17] C. Stone. Comment: Generalized additive models. Statistical Science,
1, 1986.

[18] T. Yang, X. Ma, and F. Mueller. Cross-platform performance
prediction of parallel applications using partial execution. In
IEEE/ACM Supercomputing, November 2005.

[19] J. Yi, D. Lilja, and D. Hawkins. Improving computer architecture
simulation methodology by adding statistical rigor. IEEE Computer,
54(11), 2005.

[20] A. Zell and et. al. Snns: Stuttgart neural network simulator, user
manual, version 4.2. In User Manual, Version 4.2, University of
Stuttgart.

