Applied Inference:
Case Studies in Microarchitectural Design

BENJAMIN C. LEE
Stanford University
DAVID BROOKS
Harvard University

We propose and apply a new simulation paradigm for microarchitectural design evaluation and
optimization. This paradigm enables more comprehensive design studies by combining spatial
sampling and statistical inference. Specifically, this paradigm (1) defines a large, comprehensive
design space, (2) samples points from the space for simulation, and (3) constructs regression
models based on sparse simulations. This approach greatly improves the computational efficiency
of microarchitectural simulation and enables new capabilities in design space exploration.

We illustrate new capabilities in three case studies for a large design space of approximately
260,000 points: (1) Pareto frontier, (2) pipeline depth, and (3) multiprocessor heterogeneity analy-
ses. In particular, regression models are exhaustively evaluated to identify Pareto optimal designs
that maximize performance for given power budgets. These models enable pipeline depth studies
in which all parameters vary simultaneously with depth, thereby more effectively revealing interac-
tions with non-depth parameters. Heterogeneity analysis combines regression based optimization
with clustering heuristics to identify efficient design compromises between similar optimal archi-
tectures. These compromises are potential core designs in a heterogeneous multicore architecture.
Increasing heterogeneity can improve bips3 /w efficiency by as much as 2.4x, a theoretical up-
per bound on heterogeneity benefits that neglects contention between shared resources as well
as design complexity. Collectively these studies demonstrate regression models’ ability to expose
trends and identify optima in diverse design regions, motivating the application of such models in
statistical inference for more effective use of modern simulator infrastructure.

Categories and Subject Descriptors: B.8.2 [Performance Analysis and Design Aids]: ; 1.6.5
[Model Development]: Modeling Methodologies

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Microarchitecture, Simulation, Statistics, Regression

1. INTRODUCTION

Microarchitectural design space exploration is a computationally expensive combi-
natorial problem, requiring a large number of detailed simulations for performance
and power estimation. Furthermore, recent industry trends suggest a number of
new challenges as designers consider the multiprocessor domain. Designers are
increasingly targeting differentiated market segments each with particular metric
emphases. For example, designs might implement different compromises between
latency, throughput, power, and temperature depending on application and oper-
ating cost factors specific to each market segment. Thus, increasing market differ-
entiation implies increasing metric diversity, which further implies more interesting
optimization objectives and constraints.

Increasing metric diversity will also lead to non-intuitive design optima that po-
tentially occupy very different regions of the design space. Design diversity has



already been observed in the set of interesting microarchitectures considered for
industry implementation. For example, the IBM POWERS5, Intel Pentium 4 and
Sun UltraSPARC T1 occupy very different parts of the design space. POWERS5 im-
plements relatively wide pipelines, Pentium4 implements relatively deep pipelines,
and UltraSPARC T1 cores are relatively simple in-order pipelines [Intel Corporation
2001; Kongetira et al. 2005; Sinharoy et al. 2005].

Metric and design diversity illustrate the need for scalable techniques to more
comprehensively explore a space and assess the relative advantages of very different
design options. Current approaches to design evaluation are often inefficient and ad
hoc due to the significant computational costs of modern simulator infrastructure.
The detail in modeling microprocessor execution result in long simulation times.
Designers circumvent these challenges by constraining the design space considered
(often using intuition or experience) and reducing the size of simulator inputs via
instruction trace sampling. However, by pruning the design space with intuition
before a study, the designer risks obtaining conclusions that simply reinforce prior
intuition and may not generalize to the broader space.

Instruction trace sampling, while effective in reducing the simulator input size by
orders of magnitude, only impacts per simulation costs and does not address the
number of simulations required in a comprehensive design space study. Trace sam-
pling alone is insufficient as per simulations costs decrease linearly, albeit by a large
factor, while the number of potential simulation points increase exponentially with
the number of design parameters. This exponential increase is currently driven by
the design of multi-core, multi-threaded microprocessors targeting diverse metrics
including single-thread latency, throughput for emerging parallel workloads, and
energy. These trends will also lead to more variety in the set of viable and interest-
ing designs (e.g., simpler, less aggressive cores), thereby requiring a more thorough
exploration of a comprehensive design space.

Techniques in statistical inference are necessary for a scalable simulation ap-
proach that addresses these fundamental challenges, modestly reducing detail for
substantial gains in speed and tractability. Even for applications in which obtaining
extensive measurement data is feasible, efficient analysis of this data often lends
itself to statistical modeling. Such an approach typically requires an initial data
set for model formulation or training. The model responds to predictive queries by
leveraging correlations in the original data for inference.

Regression modeling is integrated into a simulation paradigm designed to increase
the information content for a given simulation cost (Section 2). This paradigm spec-
ifies a large, comprehensive design space, selectively simulates a modest number of
designs sampled from that space, and more efficiently leverages that simulation
data using regression models to identify trends and optima. Design space sampling
and statistical inference enables the designer to perform a tractable number of sim-
ulations independent of design space size or resolution. Applying this simulation
paradigm, we sample 1,000 points uniformly at random from a design space of
375,000 points for simulation. Given these samples, we formulate non-linear regres-
sion models for microarchitectural performance and power prediction (Section 3),
achieving median error rates of 7.2 and 5.4 percent, respectively, relative to simu-
lation. We apply the derived models to comprehensively explore a design space for

ACM Journal Name, Vol. V, No. N, MM 20YY.



three optimization problems:

(1) Pareto Frontier Analysis: We comprehensively characterize the design space,
constructing a regression predicted Pareto frontier in power delay coordinates.
We find predictions for Pareto optima exhibit median errors comparable to
those for the broader space (Section 4).

(2) Pipeline Depth Analysis: We compare a constrained pipeline depth study
against an enhanced study that varies all parameters simultaneously via regres-
sion modeling. We find constrained sensitivity studies may not generalize when
many other design parameters are held at constant values. Furthermore, such
generalized studies more effectively reveal interactions between design param-
eters (Section 5).

(3) Multiprocessor Heterogeneity Analysis: We identify efficiency maximiz-
ing architectures for each benchmark via regression modeling and cluster these
architectures to identify design compromises. We quantify the power-performance
benefits from varying degrees of core heterogeneity, quantifying a theoretical
upper bound on bips®/w efficiency gains. We find modest heterogeneity may
provide substantial efficiency benefits relative to homogeneity (Section 6).

For each case study, we provide an assessment of predictive error and sensitivity
of observed trends to such error. Collectively these studies demonstrate the ap-
plicability of regression models for performance and power prediction in practical
design space optimization.

2. EXPERIMENTAL METHODOLOGY

We use Turandot, a generic and parameterized, out-of-order, superscalar processor
simulator [Moudgill et al. 1999]. Turandot is enhanced with PowerTimer to ob-
tain power estimates based on circuit-level power analyses and resource utilization
statistics [Brooks et al. 2003]. The modeled baseline architecture is similar to the
POWER4/POWERS5. The simulator has been validated against both a POWER4
RTL model and a hardware implementation. pipeline width increases, using scal-
ing factors derived for an architecture with clustered functional units [Zyuban and
Kogge 2001]. Cache power and latencies scale with array size according to CACTI
[Tarjan et al. 2006]. We do not leverage any particular feature of the simulator
and our framework may be generally applied to other simulation frameworks. We
measure billions of instructions per second (bips) and watts (w).

We use R, an open-source software environment for statistical computing, to
script and automate statistical analyses. Within this environment, we use the
Hmisc and Design packages [Harrell 2001].

2.1 Benchmark Suite

We consider SPEC JBB, a Java server benchmark, and eight compute intensive
benchmarks from SPEC CPU 2000 (ammp, applu, equake, gcc, gzip, mcf, mesa,
twolf). We report experimental results based on PowerPC traces of these bench-
marks. Traces used in this study were sampled from the full reference input set to
obtain 100 million instructions per benchmark program using graph-based heuris-
tics to identify representative basic blocks [Iyengar et al. 1996]. Systematic val-
idation was performed to compare the sampled traces against the full traces to

ACM Journal Name, Vol. V, No. N, MM 20YY.



[ [ Set [[ Parameters [ Measure [ Range [ [Si[ ]
S1 Depth depth FO4 9::3::36 10
So Width width decode b/w 2,4,8 3

L/S queue entries
store queue entries
functional units count
Ss3 Physical general purpose | count 10
Registers floating-point count
special purpose count
S4 Reservation branch entries 10
Stations fixed-point entries
floating-point entries
Ss I-LL1 Cache i-L1 cache size KB 16::2x::256 5
Se D-L1 Cache d-L1 sache size KB 8::2x::128 5
S7 L2 Cache L2 cache size MB 0.25::2x::4 5

Table I. Design Space :: range i::j::k denotes values from 4 to k in steps of j

ensure accurate representation. Our benchmark suite is representative of larger
suites frequently used in the microarchitectural research community [Phansalkar
et al. 2005]. Although specific conclusions of our design space studies may differ
with different benchmarks, we do not leverage any particular benchmark feature in
model formulation and our framework may be generally applied to other workloads.

2.2 Simulation Paradigm

Challenges in microarchitectural design motivate a new simulation paradigm that
(1) specifies a large, comprehensive design space, (2) selectively simulates a mod-
est number of designs sampled from that space, and (3) more efficiently leverages
that simulation data using techniques in statistical inference to identify trends and
optima. This paradigm begins with a comprehensive design space definition that
considers many high-resolution parameters simultaneously. Given this design space,
we apply techniques in spatial sampling to obtain a small fraction of design points
for simulation. Spatial sampling allows us to decouple the high-resolution of the
design space from the number of simulations required to identify a trend within it.
Lastly, we construct regression models using simulations of these sparsely sampled
designs to enable predictions for metrics of interest. The predictive ability and com-
putational efficiency of these models enables new capabilities in microarchitectural
design optimization.

The first part of this paradigm is implemented with the design specification of
Table I.' This table identifies seven groups of parameters varied simultaneously.
The range of values considered are specified by sets, Si,...,57. The Cartesian
product of these sets, S = H;l S;, defines the design space that contains |S| =
1, |S:| = 375,000 points.

The second part of the paradigm requires sampling design points for simulation.
Spatial sampling provides observations from the full range of parameter values and
enables identification of trade-offs between parameter sets. An arbitrarily large
number of values may be included in each set S;, thereby increasing design space
resolution, since the number of simulations is decoupled from set cardinality via
random sampling. We sample uniformly at random (UAR) from the design space

1FO4 delay is defined as the delay of one inverter driving four copies of an equally sized inverter.
When logic and latch overhead per pipeline stage is measured in terms of FO4 delay, deeper
pipelines have smaller FO4 delays.

ACM Journal Name, Vol. V, No. N, MM 20YY.



INSTRUCTION TRACE SAMPLING

.......... SR

)" SIMULATO

y P e (e

! '

( REGRESSION MODEL CONSTRUCTION ]

Fig. 1. Simulation Paradigm :: temporal and spatial sampling

S to obtain unbiased observations and to control the exponentially increasing num-
ber of design points as parameter count and resolution increases [Lee and Brooks
2006]. Spatial sampling complements existing techniques in trace sampling [Sher-
wood et al. 2002; Wunderlich et al. 2003]. Figure 1 illustrates a combination of
trace and spatial sampling to reduce the costs per simulation and the number of
required simulations, respectively.

2.3 Alternative Sampling Strategies

For comparison, other sampling strategies have been proposed to increase the pre-
dictive accuracy of machine learning models for the microarchitectural design space.
These techniques generally increase sample coverage of the design space or empha-
size samples considered more important to model accuracy.

—Weighted sampling is a strategy for emphasizing samples in particular design
regions given samples from the broader space. Emphasized samples are weighted
to increase their influence during model training. Weighted sampling may im-
prove model accuracy for design regions known to exhibit greater error.

—Regional sampling also emphasizes samples from particular design regions
given samples from the broader space. Instead of using a continuous range of
weights, this approach specifies a region of interest and excludes undesired sam-
ples during model training (effectively binary weights). Regional sampling might
be used to construct localized models from samples collected uniformly at ran-
dom from the entire space. This approach may be necessary if regions of interest
are unknown prior to sampling but become known after exploratory data analysis
[Lee and Brooks 2006].

—Adaptive sampling estimate model error variances for each sampled design.
Samples with larger variances are likely poorly predicted and including such
samples for model training may improve accuracy. These error-prone samples

ACM Journal Name, Vol. V, No. N, MM 20YY.



are iteratively added to the training set, with each iteration choosing a sample
with large error variance and most different from those already added [Ipek et al.
2006].

—Latin hypercube sampling and space-filling seek to maximize design space
coverage. Hypercube sampling guarantees each parameter value is represented in
the sampled designs. Space-filling metrics are used to select the most uniformly
distributed sample from the large number of hypercube samples that exist for
any given design space [Joseph et al. 2006b].

While these techniques seek to maximize design space coverage and improve the
accuracy of models constructed from the resulting samples, they are also more com-
plex and computationally expensive. Determining inclusion in regional sampling
requires distances computed between all collected samples, an expensive opera-
tion in high dimensions that must be performed for each region of interest. UAR
sampling is parallel, but adaptive sampling introduces a feedback loop that limits
this parallelism. Hypercube sampling and space-filling techniques guarantee sample
properties that are only approximated by uniform at random sampling, but such
a guarantee increases sampling complexity. Collectively, these sampling strategies
provide options for improving model accuracy.

3. REGRESSION MODELING

Regression modeling is the third part of the simulation paradigm. We apply regres-
sion modeling to efficiently obtain estimates of microarchitectural design metrics,
such as performance and power. We apply a general class of models in which a
response is modeled as a weighted sum of predictor variables plus random noise.
Since basic linear estimates may not adequately capture nuances in the response-
predictor relationship, we also consider more advanced techniques to account for
potential predictor interactions and non-linear relationships. A statistically robust
derivation applies hierarchical clustering, association and correlation analysis, and
residual analysis. Lastly, we assess model effectiveness and predictive ability. This
article surveys the derivation with further detail available in prior work [Lee and
Brooks 2006].

3.1 Model Formulation

For a large universe of interest, suppose we have a subset of n observations for

which values of the response and predictor variables are known. Let ¥ = y1,...,yn
denote observed responses. For a particular point ¢ in this universe, let y; denote
its response and T; = ;1,...,%;, denote its p predictors. Let § = Bo,...,0p

denote regression coefficients used in describing the response as a linear function of
predictors plus a random error e; as shown in Equation (1). The e; are assumed
independent random variables with zero mean and constant variance; F(e;) = 0 and
Var(e;) = 0. Transformations f and § = gi,..., g, may be applied to the response
and predictors, respectively, to improve model fit by stabilizing a non-constant error
variance or accounting for non-linear predictor-response relationships.

p
F@)=Bo+ Y Bigi(zij) + e (1)
j=1
ACM Journal Name, Vol. V, No. N, MM 20YY.



Fitting a regression model to observations, by determining the p 4+ 1 coefficients
in 5 , enables response prediction. The method of least squares is commonly used to
identify the best-fitting model by minimizing S (5), the sum of squared deviations
of predicted responses given by the model from actual observed responses. S(E)
may be minimized by solving a system of p+ 1 partial derivatives of S with respect

to B;, j € [0,p]. The solutions to this system are estimates of the coefficients.

5(507""ﬁp) = Z(yi_?i)2 (2>

i=1

In the context of microprocessor design, the response y represents a metric of in-
terest (e.g., performance or power) and the predictors = represent design parameter
values (e.g., pipeline depth or L2 cache size).

3.2 Predictor Interaction

In some cases, the effect of two predictors xy; and zs on the response cannot be
separated; the effect of ;1 on y depends on the value of x5 and vice versa. The
interaction between two predictors may be modeled by constructing a third predic-
tor x3 = x1x2 to obtain y; = By + B1x1 + Poxs + B3x122 + ;. Modeling predictor
interactions in this manner makes it difficult to interpret 8; and (s in isolation.
After simple algebraic manipulation to account for interactions, we find 8 + S3x2
is the expected change in y per unit change in z; for a fixed x5. The difficulties of
these explicit interpretations of ,5 for more complex models lead us to prefer more
indirect interpretations of the model via its predictions.

We draw on domain-specific knowledge to specify predictor interactions. For ex-
ample, domain knowledge provides Equation (3), which states the speedup from
pipelining increases with pipeline depth and decreases with the number of stalls
per cycle [Hennessy and Patterson 2003]. Such insight leads to a relationship be-
tween depth and cache structure, which in turn leads to the interaction specified
by Equation (3). Suppose x; is pipeline depth and zo is L2 cache size. As the
L2 cache size decreases, memory stalls per instruction will increase and instruction
throughput gains from pipelining will be impacted.

Depthypipe

Speeduppipe = ==
peeaUPpipe StallSpipe

o DepthpipeCache < x129 (3)

Similarly, we might expect pipeline width to interact with register file and queue
sizes. We also specify interactions between sizes of adjacent cache levels in the mem-
ory hierarchy (e.g., L1 and L2 cache size interaction). Appendix A illustrates the
specification of these interactions in the R scripting language. We do not attempt
to capture all possible interactions, but seek to characterize the most significant
effects through domain knowledge. While automated approaches to parameter se-
lection (e.g., step-wise regression [Harrell 2001]) might be used, the accuracy of our
models suggest our high-level representation of interactions is sufficient for effective
performance and power modeling [Lee and Brooks 2006].

ACM Journal Name, Vol. V, No. N, MM 20YY.



k4 x

»
>

Fig. 2. Restricted Cubic Spline :: 5 knots with linear tails

3.3 Non-Linearity

Basic linear regression models assume the response behaves linearly in all predic-
tors. This assumption is often too restrictive (e.g., power increases superlinearly
with pipeline depth) and several techniques for capturing non-linearity may be
applied. The most simple of these techniques is a polynomial transformation on
predictors suspected of having a non-linear correlation with the response. However,
polynomials have undesirable peaks and valleys that are determined by the degree
of the polynomial and are difficult to manipulate. Furthermore, a good fit in one
region of the predictor’s values may unduly impact the fit in another region of val-
ues. For these reasons, we consider splines a more effective technique for modeling
non-linearity.

Spline functions are piecewise polynomials used in curve fitting [Harrell 2001].
The function is divided into intervals defining multiple different continuous polyno-
mials with endpoints called knots. The number of knots can vary depending on the
amount of available data for fitting the function, but more knots generally leads to
better fits. Relatively simple linear splines may be inadequate for complex, highly
curved relationships. Splines of higher order polynomials may offer better fits and
cubic splines have been found particularly effective [Stone and Koo 1986]. Unlike
linear splines, cubic splines may be made smooth at the knots by forcing the first
and second derivatives of the function to agree at the knots. However, cubic splines
may have poor behavior in the tails before the first knot and after the last knot.
Restricted cubic splines that constrain the function to be linear in the tails are
often better behaved (Figure 2).

The choice and position of knots are variable parameters when specifying non-
linearity with splines. Stone has found the location of knots in a restricted cubic
spline to be much less significant than the number of knots [Stone and Koo 1986].
Placing knots at fixed quantiles of a predictor’s distribution is a good approach
in most datasets, ensuring a sufficient number of points in each interval. As the
number of knots increases, flexibility improves at the risk of over-fitting the data. In
many cases, four knots offer an adequate fit of the model and is a good compromise
between flexibility and loss of precision from over-fitting [Harrell 2001]. We vary
the number of knots to explore the trade-offs between flexibility and fit, finding
rapidly diminishing marginal returns in fit from more than five knots that do not
justify the larger number of terms in the model.

ACM Journal Name, Vol. V, No. N, MM 20YY.



The strength of a predictor’s correlation with the response will determine the
number of knots in the transformation. A lack of fit for predictors highly correlated
with the response will have a greater negative impact on accuracy and we assign
more knots to such predictors. As shown in Appendix A, predictors with stronger
performance relationships will use 4 knots (e.g., pipeline depth and register file size)
and those with weaker relationships will use 3 knots (e.g., latencies, cache sizes)
[Lee and Brooks 2006].

Splines are non-linear transformations on predictors, but transformations may
also be needed for the response. A square-root transformation on the response
(f(y) = \/¥) is particularly effective for reducing error variance in our performance
models. Similarly, a log transformation (f(y) = log(y)) more effectively captures
superlinear trends in our power model. The /y and log(y) transformations are
standard from the statistics literature and were empirically shown effective for re-
ducing error and bias in our analyses [Harrell 2001]. We fit a transformed response
f(y) but quantify accuracy for the original response y (Section 3.5).

3.4 Model Derivation

The statistically rigorous derivation of performance and power models emphasizes
the role of domain knowledge in computer engineering when specifying the model’s
functional form. This approach leads to models consistent with prior intuition about
the design space. Furthermore, association and correlation analyses before model
specification prune unnecessary, ineffective predictors to improve model efficiency.
Specifically, we consider the following design process for regression modeling:

(1) Hierarchical Clustering: Clustering examines correlations between potential
predictors and enables elimination of redundant predictors. Predictor pruning
controls model size, thereby reducing risk of over-fitting and improving model
efficiency during formulation and prediction.

(2) Association Analysis: Scatterplots qualitatively capture approximate trends
of predictor-response relationships, revealing the degree of non-monotonicity
or non-linearity. Scatterplots with low response variation as predictor values
change may suggest predictor insignificance, enabling further pruning.

(3) Correlation Analysis: Correlation coefficients quantify the relative strength
of predictor-response relationships observed in the scatterplots of association
analysis. These coefficients impact our choice in non-linear transformations for
each predictor.

(4) Model Specification: Domain-specific knowledge is used to specify predictor
interaction. The correlation analysis is used to specify the degree of flexibility
in non-linear transformations. Predictors more highly correlated with the re-
sponse will require more flexibility since any lack of fit for these predictors will
impact overall model accuracy more. Given the model’s functional form, least
squares determines regression coefficients.

(5) Assessing Fit: The R? statistic quantifies the fraction of response variance
captured by the model’s predictors. Larger R? suggests a better fit to training
data. Normality and randomness assumptions for model residuals are vali-
dated using quantile-quantile plots and scatterplots. Residual normality and

ACM Journal Name, Vol. V, No. N, MM 20YY.



10

Random Validation :: Performance Random Validation :: Power
Error Distribution Error Distribution
0.35 0.35
0.3 0.3
0.25 0.25
s o g °
w 02 w02
@ 13
2 =
&015 BB} 2015
[} | I | [}
x | 1 \\ ,) 214
0.1 T (BN I STRT S At W 01 L =
1§V { Lt - A I_ ]
k__< o V< ( N m r ] [ | J[ )
(V1] o s L) o0 WY I IS
0.05 i 0.0 n 7y |
¥ T ‘I | L) I T L > Lid
) | ]
£ AL 0 L L

amm app equ gcc gzi jbb mcf mes two amm app equ gcc gzi jbb mcf mes two
Fig. 3. Model Accuracy :: error distribution for 100 random validation designs

randomness are prerequisites to any further significance testing. Lastly, pre-
dictive ability is assessed by performance and power predictions on a set of
randomly selected validation points.

This process leads to a model specification, illustrated by example in Appendix A.

3.5 Prediction

Once E is determined, evaluating Equation (1) for a given z; will give the expecta-
tion of y; = E[y;] in Equation (4). This result follows from observing the additive
property of expectations, the expectation of a constant is the constant, and the
random errors are assumed to have zero mean.

f@:)=E[f(y;)] =E [50 +Y 5j9j(ffij)] +Elei] =Bo+ > Bigilziy) (4

Jj=1 Jj=1

Figure 3 presents boxplots of the error distributions from performance and power
predictions of 100 validation points sampled UAR from the design space. Note that
these 100 validation points are collected separately and independently from training
points. The error is computed as |obs — pred|/pred. Boxplots are graphical displays
of data that measure location (median) and dispersion (interquartile range), iden-
tify possible outliers, and indicate the symmetry or skewness of the distribution.
Boxplots are constructed by

—horizontal lines at median and upper, lower quartiles

—vertical lines drawn up/down from upper/lower quartile to most extreme data
point within a factor of 1.5 of the IQR (interquartile range - the difference between
first and third quartile) of the upper/lower quartile with short horizontal lines to
mark the end of the vertical lines

—circles to denote outliers

Boxplots highlight quartiles, which are more representative of accuracy than an
average error; averages can be biased by outliers. Medians are less susceptible to
bias and can provide a better picture of error distributions.

Figure 3 indicates the performance model achieves median errors ranging from
3.7 percent (ammp) to 11.0 percent (mesa) with an overall median error across all

ACM Journal Name, Vol. V, No. N, MM 20YY.



Performance :: Error Trends Power :: Error Trends
ammp ammp
0.15 0.15
0.12 0.12
0.09 0.09 — e
0.06k = g 0.06
~
0.03 T~/ 003 ~
(B8 g [ o
-0.03 — -0.03 TS ©
-0.06 T , -0.06 i =
-0.09 — upper quartile H -0.09 = ——upper quartile []
012 © median 1 012 © median 1
—lower quartile —lower quartile
-0.153 -0.15 L
6 33 30 27 24 21 18 15 12 9 36 33 30 27 24 21 18 15 12 9
depth (FO4) depth (FO4)
Fig. 4. Bias Analysis :: ammp model error for varying depths
Performance :: Error Trends Power :: Error Trends
ammp ammp
0.15 0.15
0.12 0.12
0.09 0.09
— ! \/
0.06 \ s 0.06 <
0.03 - P 0.03
g \ 5 8 4
2 o0 R JAsBNi ° jins 2 0 :
-0.03 ) = ~——— ~ — -0.03|_
~ —
-0.06 AR -0.06
-0.09 — upper quartile || 0.09 ——upper quartile |
012 © median 0.12 © median
| —lower quartile —lower quartile
-0.15 ! i 0.15 ! I i
40 50 60 70 80 90 100 110 120 130 40 50 60 70 80 90 100 110 120 130
reg (entries) reg (entries)

Fig. 5. Bias Analysis :: ammp model error for varying register counts

benchmarks of 7.2 percent. Power models are slightly more accurate with median
errors ranging from 3.5 percent (mcf) to 7 percent (gcc) and an overall median of
5.4 percent.

3.6 Bias Analysis

The boxplots assess the high-level accuracy of the models across randomly chosen
design points. However, we should also assess model bias for particular parame-
ters or regions of the design space. We graphically check for biases by ensuring
prediction error is random around zero for various parameter values. Figures 4-5
are representative of the trends across the benchmark suite and various design pa-
rameters. Each figure considers predicted validation points with various parameter
values. For example, Figure 4 takes all validated points at a depth d and plots the
error quartiles for each d from 9 to 36 FO4 delays per stage. These particular fig-
ures suggest the models are generally unbiased with median performance and power
errors distributed between +6 percent for various pipeline depths and register file
sizes. An indication of possible bias is the tail of positive performance errors for
40-entry register files. In general, however, there are no obvious deviations from
randomness to suggest obvious biases and bias might be re-examined if the user
observes suspicious trends when applying the model. Similar results are obtained
for other benchmarks and parameters.

ACM Journal Name, Vol. V, No. N, MM 20YY.



12 :

Parameter-Error Correlation :: Performance Parameter-Error Correlation :: Performance
0.25 0.25
02 02
_ 015 __ 015
< <
€ 041 € 01
@ 2
% 0.05 = % 0.05
o T T < o i \\__——\\\
2 9 o & 2 2 0 E Sy
2 -0.05 2-0.05
© L k
£ 01 5 01
3 3
0.15 —upper quartile [-| 0.15 —upper quartile [ |
-0.2 © median 02 © median
—lower quartile —lower quartile
-0.25 - ! y ! -0.25 - - ! >
amm app equ gcc gzi jbb mcf mes two depth width reg resv i-$ d-$ L2-$

Fig. 6. Performance error correlation across benchmarks, parameters

Parameter-Error Correlation :: Power Parameter-Error Correlation :: Power
0.25 0.25
02 02
__ 015 __ 015
< <
= 01 g 01
° e s a o4 G N o ko) Sme
£ 0.05 e O T £ 0.05 A
g e - — g o N
[¢] 0 [¢] 0
< <
£-0.05 £-0.05
8 K
£ 01 g 0
8 8
-0.15 — upper quartile -0.15 —upper quartile
02 © median & 02 © median 1
—lower quartile —lower quartile
-0.25 " ! ! ! -0.25 N . ! ,
amm app equ gcc gzi jbb mcf mes two depth width reg resv i-$ d-$ L2-%

Fig. 7. Power error correlation across benchmarks, parameters

Figures 6-7 summarize the measured model bias by reporting correlations be-
tween model error, benchmarks and parameters. Given that correlation coefficients
range from -1 to 1, errors from ideally unbiased models will have a correlation of
zero. The figures on the left illustrate correlations between error and benchmarks
summarized across all parameters. For example, Figure 6 illustrates a median error
correlation of -0.011 for ammp. This value computes the correlation between ammp
model error and parameter value for each of the seven parameters. The median
of these seven correlation coefficients is reported as -0.011. Thus, the figures on
the left summarize error correlations across the full range of parameters for each
benchmark. Similarly, the figures on the right summarize error correlations across
the full range of benchmarks for each parameter.

The performance correlations of Figure 6 are distributed around zero with very
small correlations (less than 0.05), suggesting an unbiased performance model with
errors correlated with neither benchmark nor parameter. The power analyses of
Figure 7 indicate a small positive bias, suggesting errors tend to increase with
larger parameter values. However, this correlation is less than 0.05 in most cases
and is unlikely to cause any significant problems when applying the model.

The current bias study examines global biases at coarse granularity only. Such a
study indicates the models are unbiased for predictions randomly chosen across the
entire design space. However, we may observe non-trivial biases at fine granularity

ACM Journal Name, Vol. V, No. N, MM 20YY.



13

in which all predictions within a region of interest are biased either positive or
negative. These regional biases arise from a mismatch between global samples used
in model formulation and local model usage. Such biases may be mitigated by
re-formulating models solely with samples from the region of interest. Since this
article’s studies evaluate models for points throughout the design space, a lack of
global bias is sufficient.

3.7 Design Space Studies

Given the accuracy of regression models, we present applications of performance
and power regression modeling to three representative design space studies:

—Pareto Frontier Analysis: Comprehensively characterize the design space,
constructing a regression predicted Pareto frontier in the power-delay space.

—Pipeline Depth Analysis: Combine regression and the framework of prior
pipeline depth studies to identify bips®/w maximizing depths. Enhance prior
studies by varying all design parameters simultaneously instead of fixing most
non-depth parameters.

—Multiprocessor Heterogeneity Analysis: Identify bips®/w maximizing ar-
chitectures for each benchmark via regression. Cluster these architectures to
identify compromise designs and power-performance benefits from varying de-
grees of core heterogeneity.

We formulate models using samples from the training space of 375,000 points
(Table I). We explore a design space of 262,500 points ranging that includes depths
from 12 to 30 FO4, which is smaller than the original sample space of 375,000 points
that include 9, 33, and 36 FO4 depths. The sample space should be larger than
the design space for exploration to mitigate errors from extrapolation. We exclude
9, 33, and 36 FO4 from exploration since performance and power trends do not
change dramatically in these extreme design regions [Zyuban et al. 2004].

4. PARETO FRONTIER ANALYSIS

Pareto optimality is an economic concept with broad applications to engineering.
Given a set of design parameters and a set of design metrics, a Pareto optimization
changes the parameters to improve at least one metric without negatively impacting
any other metric. A design is Pareto optimal when no further Pareto optimizations
can be implemented. For the microarchitectural design space, Pareto optima are
designs that minimize delay for a given power budget or minimize power for a given
delay target. A Pareto frontier is defined by a set of Pareto optima.

Regression models enable a complete characterization of the microarchitectural
design space. We leverage the computational efficiency of regression to perform
an exhaustive evaluation of the design space containing more than 260,000 points.
Such a characterization reveals all trade-offs between a large number of design
parameters simultaneously compared to an approach that relies on per parameter
sensitivity analyses. Given this characterization, we construct Pareto frontiers.
While we cannot explicitly validate the regression identified Pareto frontier against
a hypothetical frontier found by exhaustive simulation, the former is likely close to
the latter given the accuracy observed in validation.

ACM Journal Name, Vol. V, No. N, MM 20YY.



14

Depth | Width | Reg | Resv 1-3$ D-$ L2-$ Delay Err Power Err

| | 60 | | "] o5 | kB | (1) | oder | 00) | vioda | (4)
ammp 27 8 130 12 32 128 2 1.0 0.2 35.9 -3.9
applu 27 8 130 15 16 8 0.25 0.8 -0.8 39.6 0.1
equake 27 8 130 15 64 8 0.25 1.2 -0.8 41.5 -3.0
gce 15 2 70 9 16 8 1 1.2 5.2 44.1 -6.0
gzip 15 2 70 6 16 8 0.25 0.8 8.8 24.2 0.0
jbb 15 8 80 12 16 128 1 0.6 -4.7 80.9 1.6
mcf 30 2 70 6 256 8 4 3.5 2.4 12.9 -3.0
mesa 15 8 80 13 256 32 0.25 0.4 5.2 86.9 -7.1
twolf 27 8 130 15 128 128 2 1.1 -1.2 34.5 -3.6

Table II.  Efficient Designs :: bips3 /w maximizing architectures per benchmark

Design Space Characterization Design Space Characterization
ammp :: I2cache

mcf :: 12cache
180 : .

160

140
120

W)

2100
80
60

Powe

40
20

85 1 15 2 25 3 1 2 3 4 5 6 7
Delay (inv-bips) Delay (inv-bips)
Fig. 8. Design Characterization :: predicted delay, power of all designs for repre-
sentative benchmarks; arrows indicate trends as parameter values change; colors
map to L2 cache sizes

4.1 Design Space Characterization

Figure 8 plots the predicted delay (inverse throughput) and power of the design
space by exhaustively evaluating the regression models for representative bench-
marks. The design space is characterized by several overlapping clusters of similar
designs. Each cluster contains designs with a particular pipeline depth-width com-
bination. For example, the shaded mcf cluster with delay ranging from 1.9 to 5.3
seconds and power ranging from 100 to 160 watts minimizes delay at the greatest
power cost with depth of 12FO4 and decode bandwidth of 8 instructions per cycle.

The arrows of Figure 8 identify power-delay trends as a particular resource size
increases. Consider the shaded 12F04, 8-wide design clusters for ammp and mcf.
Mcf experiences substantial performance benefits from larger caches with delay
shifting from 5.3 to 1.9 seconds as L2 cache size shifts from 0.25 to 4MB. In contrast,
ammp sees increasing power costs with limited performance benefits of 1.0 to 0.8
seconds as L2 cache size increases by the same amount. Ammp also appears to
exhibit greater instruction level parallelism, effectively utilizing additional physical
registers and reservation stations to reduce delay from approximately 1.8 to 0.8
seconds compared to mcf’s reduction of 2.5 to 2.0 seconds.

4.2 Pareto Frontier ldentification

Given a design space characterization, Figure 9 plots regression predicted Pareto
optima. These optima minimize delay for a given power budget. Given regression

ACM Journal Name, Vol. V, No. N, MM 20YY.



200

175

150

125

Power (w)
N 2
o o

o
=]

25

200

175

150

125

Power (w)
=]
o

Pareto Optima :: Power-Performance

ammp
o Observed
'S 4 Predicted |
8a
A
&b
ey

o @
0.5 1 1.5 2 25 3 35
Delay (inv-bips)
Pareto Optima :: Power-Performance
equake
& o Observed
4 Predicted |

@™ o
25 3 35

1.5 2
Delay (inv-bips)
Pareto Optima :: Power-Performance

gzip
o Observed
4 Predicted |

00

0.5 1 25 3 3.5

1.5 2
Delay (inv-bips)
Pareto Optima :: Power-Performance

mesa
o Observed
A Predicted
-, o

0.5 1 15 2 25 3 35
Delay (inv-bips)

Power (w)
o o o o

N
o

Power (w)
o ~ 3 S
o o o [

N
o

Pareto Optima :: Power-Performance

applu
é o Observed
4 Predicted
o
A
s @

05 1 15 2 25 3 35
Delay (inv-bips)
Pareto Optima :: Power-Performance
gce
o Observed
4 Predicted

o
0.5 1 25 3 3.5

15 2
Delay (inv-bips)
Pareto Optima :: Power-Performance

mcf
o Observed
4 Predicted
o a 1
@ A
% A

200

175

150

125

Power (w)

0.5 25 3 3.5

15 2
Delay (inv-bips)
Pareto Optima :: Power-Performance

twolf
o Observed
A Predicted
o
c% g
OOA
LN p=

0.5 1 1.5 2 25 3 35
Delay (inv-bips)

Fig. 9. Pareto Frontier :: Pareto optima for representative SPEC CPU benchmarks

ACM Journal Name, Vol. V, No. N, MM 20YY.



16

models and exhaustively predicted power and delay characteristics, the frontier
is constructed by discretizing the range of delays and identifying the design that
minimizes power for each delay in a number of delay targets. These designs are
Pareto optimal with respect to the regression models, but may not be the same
optima obtained via a hypothetical exhaustive simulation of the space.

Although Pareto optima are useful for particular delay or power targets, not all
Pareto optima are power-performance efficient with respect to bips®/w, the inverse
energy delay-squared product.?2 We compute the efficiency metric for each design on
the Pareto frontier and identify the most efficient designs in Table IT. The bips®/w
optimal design for ammyp is located at 1.0 seconds and 35.9 watts in the delay-power
space, the knee of the Pareto optimal curve. Similarly, the mcf bips3/w optimal
design is located at 3.5 seconds and 12.9 watts. Overall, these optima are drawn
from diverse design regions motivating comprehensive space exploration.

The boxes of Figure 9 identifies a region around the bips®/w optima for each
benchmark. Although Table II indicates these optima occupy very different parts
of the design space, they reside in very similar regions of the power-delay space.
Most of the optima are located between 0.5 and 1.5 seconds, 25 and 50 watts with
obvious exceptions in mcf and mesa.

4.3 Pareto Frontier Validation

Figure 9 superimposes simulated and predicted Pareto frontiers, suggesting good
relative accuracy. Regression effectively captures the delay-power trends of the
Pareto frontier. As performance prediction is less accurate than power prediction,
however, differences are often characterized by horizontal shifts in delay. Perfor-
mance model accuracy is the limiting factor for more accurate Pareto frontier pre-
diction across all benchmarks in our suite.

Performance errors are particularly evident for benchmark mcf. This application
is relatively memory bound and many designs occupy the high-delay region of the
space. Thus, low-delay points are rare and tend to be over-estimated, as high-delay
points exert greater influence during model fitting. This bias might be addressed by
customizing a sampling strategy for mcf, which might assign greater weight to low-
delay training samples. Benchmark mcf performance errors are more an exception
than a common case and ammyp is more representative of Pareto frontier accuracy.

Figure 10 presents the error distributions for the performance and power predic-
tion of points on the Pareto frontier. The median performance error ranges from
4.3 percent (ammp) to 15.6 percent (mcf) with an overall median of 8.7 percent.
Similarly, the median power error ranges from 1.4 percent (mcf) to 9.5 percent
(applu) with an overall median of 5.5 percent. These error rates are consistent
with the performance and power median error rates of 7.2 and 5.4 percent observed
in the validation of random designs (Figure 3), suggesting predictions for Pareto
optima are generally as accurate as those for the overall design space. As shown
in Table II, errors associated with bips®/w optimal predictions are also consistent
with those for the broader space. Delay errors range from 0.2 to 8.8 percent while
power errors range from 0.1 to 7.1 percent.

2bips® /w is a voltage invariant power-performance metric derived from the cubic relationship
between power and voltage [Brooks et al. 2000].

ACM Journal Name, Vol. V, No. N, MM 20YY.



17

Pareto Optima :: Performance Pareto Optima :: Power
Error Distribution Error Distribution

0.35 0.35

°

0.3 = T 1 0.3

0.25

o-co

0.25

0.2 0.2
5 8 5
] ] ?
0.15 ] 015+ 5
0.1 1 0.1 1
0.05 0.05 % i $ é
amm app equ gcc gzi jbb mcf mes two amm app equ gcc gzi jbb mcf mes two

Fig. 10. Pareto Frontier Accuracy :: complete error distribution for Pareto optima

Note regression models are evaluated exhaustively for the design space to perform
Pareto frontier validation; performance and power is predicted for every point in the
space; the frontier is read off from these predictions. By comparing simulated and
predicted metrics for designs estimated to be Pareto optimal, we find regression is
accurate for designs in efficient regions of the space. However, this validation does
not indicate whether regression models identify the same Pareto frontier that would
have been identified by simulation alone. Identifying a frontier through exhaustive
simulation to perform this comparison is prohibitively expensive.

In practice, not all Pareto optima are interesting and viable designs. The high
power or high delay designs located at the frontier extrema are not particularly
interesting due to unfavorable power and delay trade-offs. For the majority of
benchmarks, we find our models may be more accurate for the more interesting
points near the bips®/w optimum of Table II. Figure 11 presents restricted error
distributions from considering only Pareto optima with delay and power within 25
percent of the bips®/w optimal delay and power (boxes of Figure 9).

Comparing complete and restricted error distributions, we find the median and
interquartile range decrease for a majority of benchmarks as we examine only the
region around the bips3 /w optimum. The restricted performance and power error
distributions are more favorable for five and six benchmarks, respectively. Models
are more effective for the interior of the design space as interpolation is often more
accurate than extrapolation. Since bips3/w optimal designs often reside within the
interior of the design space, moderating resource allocations to balance performance
and power, models are likely more accurate for bips/w optimal designs.

The differing error distributions between Figures 10-11 motivate future work on
hierarchical modeling schemes in which high-level models are constructed for a com-
prehensive design space to identify regions of interest around particular optima or
bips3 /w maximizing designs. Further detail and accuracy may be achieved by per-
forming constrained spatial sampling and constructing localized regression models
for this region of interest. Such a scheme overcomes the models’ potential regional
biases and may further reduce model error as we shift emphases from the complete
design space to particular subspaces.

ACM Journal Name, Vol. V, No. N, MM 20YY.



18

Pareto Optima :: Performance Pareto Optima :: Power
Restricted Error Distribution Restricted Error Distribution
0.35 T T T 0.35 T T
0.3 1 0.3
0.25 1 0.25
_ 02 _ 02
e I
o5 . o5 .
° o
0.1 - 0.1 1
0.05 % 0.05 é g
amm app equ gcc gzi jbb mcf mes two amm app equ gcc gzi jbb mcf mes two

Fig. 11. Pareto Frontier Accuracy :: restricted error distribution for Pareto optima

[ Processor Core ]

Decode Rate 4 non-branch insns/cy
Dispatch Rate 9 insns/cy
Reservation Stations | FXU(40),FPU(10),LSU(36),BR(12)
Functional Units 2 FXU, 2 FPU, 2 LSU, 2 BR
Physical Registers 80 GPR, 72 FPR
Branch Predictor 16k 1-bit entry BHT
[ Memory Hierarchy ]
L1 DCache Size 32KB, 2-way, 128B blocks, 1-cy lat
L1 ICache Size 64KB, 1-way, 128B blocks, 1-cy lat
L2 Cache Size 2MB, 4-way, 128B blocks, 9-cy lat
Memory 77-cy lat
Pipeline Dimensions
[ Pipeline Depth [ 19 FO4 delays per stage |
| Pipeline Width | 4-decode |

Table ITI. Baseline Architecture

5. PIPELINE DEPTH ANALYSIS

Prior pipeline studies considered various depths while holding most other design
parameters at constant values, in part, to control the simulation costs of varying
multiple parameters simultaneously [Hartstein and Puzak 2002; Hrishikesh et al.
2002; Zyuban and Strenski 2003]. Thus constraining the space may lead to narrowly
defined studies with conclusions that may not generalize. Regression models enable
a more complete characterization of pipeline depth trends by allowing other design
parameters to vary simultaneously. A more comprehensive depth analysis ensures
observed trends are not an artifact of the constant baseline values to which other
parameters are held.

Pipeline depth is specified by the number of fan-out-of-four (FO4) inverter delays
per pipeline stage. When logic and latch overhead per pipeline stage is measured in
terms of FO4 delay, deeper pipelines have smaller FO4 delays. We consider pipeline
ranging from 12 to 30 FO4 to compare and contrast the following:

—Original Analysis: Consider the POWERA4-like baseline architecture of Table
III, predicting power-performance efficiency as depth varies and all other design
parameters are held constant at baseline values.

—Enhanced Analysis: Consider the design space of Table I, predicting efficiency
as parameters vary simultaneously.

ACM Journal Name, Vol. V, No. N, MM 20YY.



19

5.1 Pipeline Depth Trends

The line plot of Figure 12 presents predicted efficiency relative to the bips®/w maxi-
mizing baseline design in the constrained original analysis. 18 FO4 delays per stage
is optimal for an average of the benchmark suite. Although choosing the deepest or
shallowest pipeline will achieve only 85.9 or 87.6 percent of the optimal efficiency,
respectively, the models suggest a plateau around the optimum and not a sharp
peak. The superimposed boxplots of Figure 12 show the efficiency distribution of
the 37,500 designs for each pipeline depth in the enhanced analysis.® By graphically
presenting efficiency quartiles, the boxplot for 18 FO4 designs indicate 75, 50, and
25 percent of these designs achieve efficiency of at least 79, 102, and 131 percent of
the original bips3/w optimum.

The maxima of these boxplots constitute a potential bound on bips®/w efficiency
achievable in this design space with up to 2.1x improvements at the optimal 18 FO4
pipeline depth.* These bounding architectures are characterized by wide pipelines
as well as larger queue and register file sizes. The efficiency of wide pipelines
are likely a result of the energy-efficient functional unit clustering modeled by the
simulator, which enables near linear power increases as width increases [Zyuban
and Kogge 2001]. However, our power models also account for superlinear width
power scaling for structures such as the multi-ported register file, memory units,
rename table, and forwarding logic [Zyuban and Kogge 2001]. Larger queue and
reservation resources result from deeper pipelines and more instructions in flight.

The points at which the line plot intersect the boxplots indicate unexploited ef-
ficiency. Intersection at a lower point in the boxplot indicates a larger number
of configurations are predicted more efficient than baseline at a particular depth.
More than 58 percent of 12 FO4 and 39 percent of 30 FO4 designs are predicted
more efficient than baseline, corresponding to more than 21,000 and 14,000 designs,
respectively. Such a large number of more efficient designs is not surprising, how-
ever, since the baseline resembles designs for server workloads with less emphasis on
energy efficiency. Less efficient designs may be pruned from further study enabling
more judicious use of detailed simulators should additional simulation be necessary.

Predicted efficiency penalties for sub-optimal depths are also more significant for
the bound architectures. The bips®/w maximizing depth is 15-18 FO4 and the sub-
optimal 30 FO4 design achieves 88 percent of the optimal efficiency, incurring a 12
percent efficiency penalty. The numbers above each boxplot in Figure 12 quantify
each bound architecture’s efficiency relative to that of the bips®/w maximizing
bounding architecture. While the bounding architectures are also most efficient at
15 to 18 FO4, the sub-optimal 30 FO4 design achieves only 81 percent of the optimal
efficiency and incurs a 19 percent penalty. This trend is observed for all depths
shallower than the optimal 18 FO4. Since bound architectures are characterized by
wider pipelines, choice of depth becomes more significant. For the average across

3Given |S| = 272,500 points in the design space and 7 possible depths (12-30FO4 in steps of
3FO04), there are 37,500 designs for each depth.

4The 2.1x improvement over the IBM Power4 18 FO4 baseline likely arises from a difference in
target workloads. Customized architectures for nine specific workloads from Section 2.1 will be
more efficient than the baseline IBM Powerd 18 FO4 pipeline, which likely targeted a broader
range of applications.

ACM Journal Name, Vol. V, No. N, MM 20YY.



20

Enhanced Analysis :: Power-Performance Distribution Original Analysis :: Power-Performance
average average
. 25 T
1.00
2 0.96 4

E 0.81 g 2
, ©

4 (73

E=3 k-3

515 s

> 315

5 c

2 o

£ 2

o 1 w 1

14 o

= 2

3 % -o-Enhanced - Observed
o5 @ 0.5/ .5 Enhanced - Predicted

—e—Original - Observed
= —&—Original - Predicted
30 27 15 12 0 30 27 15 12

24 21 18 24 21 18
Pipeline Depth (fo4) Pipeline Depth (fo4)

Fig. 12. Comparative Efficiency :: original [line plot] and enhanced [boxplots]
analyses relative to original bips3/w optimum; bips3 /w efficiency validation

Original Analysis :: Performance Original Analysis :: Power
average average
1.6 T T T T 150 T T T .
-o-Enhanced - Observed ~o~Enhanced - Observed
1.5 .e--Enhanced - Predicted ° 1 ~a-Enhanced - Predicted
—e—Original - Observed 1 —e—Original - Observed ]

—&—Original - Predicted v ’ —e—Original - Predicted

30 27 24 21 18 15 12 30 27 24 21 18 15 12
Pipeline Depth (fo4) Pipeline Depth (fo4)

Fig. 13. Metric Validation :: performance, power validation for varying depths

our benchmark suite, wide pipelines with shallow depths will result in greater design
imbalances and power-performance inefficiencies.

Figure 14 presents the distribution of data cache sizes in the most efficient designs
at each depth. In particular, we take the 37,500 designs at each depth and consider
designs in the 95-th percentile (i.e., 1,875 designs in the top 5 percent of each
depth’s boxplot). Small 8KB data caches are observed for 20.3 percent of top
designs at 30FO4 while such caches are optimal for only 1.4 percent of top designs at
12FO4. The percentage of top designs with larger 64KB caches increases from 22.8
to 34.4 percent with deeper pipelines. Thus, smaller caches are increasingly viable
at shallow pipelines while top designs often have larger caches at deep pipelines.
This frequency analysis confirms our intuition that deeper pipelines favor larger
caches to mitigate the increased costs of cache misses. This analysis also illustrates
variability in the most efficient designs and the effect of parameter interactions.

5.2 Pipeline Depth Validation

Figure 12 validates the bips®/w predictions, suggesting regression captures high-
level trends in both analyses. The models correctly identify the most efficient
depths to within 3 FO4 and capture the difference in efficiency penalties from
sub-optimal depths between the two analyses. Whereas models predict 12 and 19

ACM Journal Name, Vol. V, No. N, MM 20YY.



21

Distribution of D-L1 Cache Sizes
Designs in 95th Percentile

I 8KB [ 16KB [ 32KB [l 64KB [l 128KB|

EN
o

w
[$)]

w
o
T

N
a

-
(&)}

N
o
I

[$)]

Percentage of Designs in 95th Percentile
N
(=)

o

30 27 24 21 18 15 12
Pipeline Depth

Fig. 14. Data Caches and Depth :: distribution of d-L1 cache sizes for designs in
95th percentile

percent penalties, simulation identifies 52 and 67 percent penalties relative to 15
FO4 for the original and enhanced analyses, respectively. Thus, the significance
of the optimum and penalties for sub-optima are more pronounced in simulation.
Sub-optima are more likely located at the extreme regions of the design space,
resulting in greater extrapolation error.

Although the models are accurate for capturing high-level trends, bips®/w er-
ror rates are larger than those for performance and power. However, the bips®/w
validation obscures underlying performance and power accuracy. By decomposing
the validation of bips3 /w in Figure 13, we find the underlying models exhibit good
relative accuracy, effectively capturing performance and power trends. Since pre-
dictions from less accurate performance models must be cubed to compute bips® /w,
performance model errors are also cubed and negatively impact bips®/w accuracy.
Countering these effects is continuing work.

6. MULTIPROCESSOR HETEROGENEITY ANALYSIS

As shown in Table 11, regression models may be used to identify the bips® /w optimal
architectures for each benchmark. In a uniprocessor or homogeneous multiproces-
sor design, the core is designed as an approximate compromise between these per
benchmark optima to accommodate a range of workloads. Heterogeneous multi-
processor core design mitigates the efficiency penalties of this compromise [Kumar
et al. 2004]. However, prior work considered limited design spaces due to simulation
costs. We combine regression modeling and clustering analyses to enable a more
general exploration of core designs in heterogeneous architectures. This study iden-
tifies design compromises for the bips® /w design metric and quantifies a theoretical
upper bound on the potential efficiency gains from high-performance heterogeneity,

ACM Journal Name, Vol. V, No. N, MM 20YY.



22

neglecting any associated multiprocessor overhead.

In particular, we combine our regression models with K-means clustering. A K-
clustering of a set S is a partition of the set into K subsets which optimizes some
clustering criterion, usually a similarity metric. Well defined clusters are such that
all objects in a cluster are very similar and any two objects from distinct clusters
are very dissimilar. General K-clustering is NP-hard and K-means clustering is a
heuristic approximation.

6.1 Clustering Methodology

We first completely characterize the design space via regression to identify the
bips® /w maximizing architectures for each benchmark in our suite (Table IT). These
designs constitute the set to be partitioned into K subsets when clustering. The op-
timal design parameters exhibit significant diversity across benchmarks with depth
ranging from 15 to 30 FO4, width ranging from 2 to 8 instructions decoded per
cycle, and L2 caches ranging from 0.25 to 4 MB. Each benchmark’s execution char-
acteristics are reflected in its optimal architecture. For example, compute-intensive
gzip has the smallest L2 cache while memory-intensive mcf has the largest.

We perform K-means clustering for these nine benchmark architectures to identify
compromise architectures. The heuristic for K clusters consists of the following:

(1) Define K centroids, one for each cluster, and place randomly at initial locations
in space containing objects to be clustered.

(2) Assign each object to cluster with closest centroid.

(3) When all objects have been assigned, re-compute placement of K centroids
such that its distance to objects in its cluster is minimized.

(4) Since centroids may have moved in step 3, object assignment to clusters may
change. Thus, steps 2 and 3 are repeated until centroid placement is stable.

We use a normalized and weighted Euclidean distance as our measure of similarity
in steps 2 and 3. For a particular design parameter, we normalize its values by sub-
tracting its mean and dividing by its standard deviation. Furthermore, we weight
these normalized values by the parameter’s correlation coefficient with bips®/w, ef-
fectively giving greater emphasis to parameters with a greater impact on bips®/w
in the distance calculation. Thus, if correlation coefficients p?; > p?-, an increase in
parameter p; will change the distance more than the same increase in parameter p;.
The distance between two architectures represented by vectors &'75 of p parameter
values is determined by normalizing and weighting the values in Ei,g and computing
the Euclidean distance.

For example, pipeline depth values range from 12 to 30 FO4 in increments of 3
with a mean of 21 and standard deviation of 6.48. The normalized depth values
range from -1.39 to 1.39 with mean 0 and standard deviation of 1.0. We then utilize
the 1,000 samples used in regression model formulation to compute the correlation
between depth and bips®/w and obtain a weighting factor.

6.2 Heterogeneity Efficiency

Each cluster from K-means corresponds to a grouping of similar architectures and
each centroid represents its cluster’s compromise architecture. We take the number

ACM Journal Name, Vol. V, No. N, MM 20YY.



23

Cluster Depth | Width | Reg | Resv 1-$ D-$ L2-$ Avg Delay | Avg Power

’ ‘ ‘ ‘ ‘ (KB) ‘ (KB) ‘ (MB) ‘ Model ‘ Model
1 15 8 80 12 64 64 0.5 2.26 82.17
2 27 8 130 14 32 32 0.5 1.05 32.53
3 15 2 70 8 16 8 0.5 0.93 37.55
4 30 2 70 6 256 8 4 0.29 12.91

Table IV. K=4 Compromise Architectures :: microarchitectural designs

[ Cluster [[ Benchmarks |
1 jbb, mesa
2 ammp, applu, equake, twolf
3 gce, gzip
4 mcf

Table V. K=4 Compromise Architectures :: benchmark mapping

of clusters as the number of distinct compromise designs and, thus, a measure of
heterogeneity. Table IV uses a K = 4 clustering to identify compromise architec-
tures and their average power-delay characteristics when executing their associated
benchmarks. This analysis illustrates our models’ ability to identify optima and
compromises occupying diverse parts of the design space. For example, the four
compromise architectures capture all combinations of pipeline depths and widths.
Cluster 1 contains the aggressive deep, wide pipeline for jbb and mesa. Cluster 4,
containing the memory-intensive mcf, is characterized by a large L2 cache and shal-
low, narrow pipeline. Clusters 2 and 3 trade-off pipeline depth and width depending
on application-specific opportunities for instruction level parallelism. The ability to
identify diverse optima is increasingly important as we observe microarchitectural
differentiation for various market segments and applications.

Figure 15 plots the delay and power characteristics of the nine benchmark ar-
chitectures executing their corresponding benchmarks (radial points). Aggressive
architectures with deep, wide pipelines are located in the upper left quadrant and
the less aggressive cores with shallow, narrow pipelines are located in the lower right
quadrant. Deep, narrow and shallow, wide architectures both occupy the moderate
center. The four compromise architectures executing their benchmark clusters are
also plotted (circles) to demonstrate the delay and power compromises with asso-
ciated per benchmark optima. Although we cluster in a p-dimensional microarchi-
tectural space, the strong relationship between an architecture and its delay and
power characteristics means we also observe clustering in the 2-dimensional delay-
power space. Spatial locality between a centroid and its cluster’s objects suggest
modest delay and power penalties from architectural compromises. Thus, the de-
lay and power characteristics of the benchmark suite executing on a heterogeneous
multiprocessor with these four cores are similar to those when executing on the
nine benchmark architectures. As a corollary, the benchmarks could achieve close
to ideal bips® /w efficiency on this heterogeneous design.

Figure 15 also reveals new opportunities for workload similarity analysis based on
resource requirements at the microarchitectural level. For example, ammp, applu,
equake, and twolf may be similar workloads since they are most efficient at similar
pipeline dimensions and cache sizes. Prior work in similarity analysis has been
used to reduce the fraction of benchmark suites for microarchitectural simulation
[Eeckhout and H. Vandierendonck 2003; Phansalkar et al. 2005; Yi et al. 2005].

ACM Journal Name, Vol. V, No. N, MM 20YY.



24

Benchmark Clusters :: Predictions

0 & | Cluster1{jbb/mesa} | |
o | Depth:15F
80 =TO - Width
Reg :! 8(
L1 : 64 KB (I-$), 64 KB (D-$)
70F [27°05NMB i
Cluster 2 { ammp. applu. equake, twolf
~ 60 Depth = 27 Fo4 diatord t
2 Width ::'8 Inst/Cy De“sme_r_ 3 ng —
o 50 --Reg.:130 GFR vvigtn '"z Inst/Cy
g L1 :: 32 KB (I-$), 32 KB (D-$) Reg ' 70.GPR
T 40 L2z 049Me L1 16 KB (I-$), 8 KB (D-$ |
L2: 0.5 MB
Cluster 4 { mcf}
30 Depth - 30 FO4
4/ Width :: 2 Inst/Cy
20+ Reg :: 70 GPR i
L1 :: 256 KB (I-$), 8 KB (D-$)
L2::4 MB g
10 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5
Delay (1/bips)

Fig. 15. Optimization and Clustering :: delay, power for per benchmark optima of
Table IT (radial points) and resulting compromises of Table IV (circles)

However, similarity exposed by microarchitectural clustering may be most useful
for hardware accelerator design. In the ideal case, accelerators would be designed for
every kernel of interest. However, resource constraints necessitate compromises and
the penalties from such compromises may be minimized by designing an accelerator
to meet the needs of multiple similar kernels.

Figure 16 plots predicted bips® /w efficiency gains for the nine benchmarks and the
benchmark average as the number of clusters increases in the K-means algorithm.
Recall cluster count quantifies the degree of heterogeneity. Efficiency is presented
relative to the POWERA4-like baseline (cluster count 0). The homogeneous archi-
tecture identified by K-means clustering (cluster count 1) is predicted to improve
average efficiency by 1.46x with the largest gains for mesa (4.6x) at the expense
of mef (0.46x). For three cores, all benchmarks see benefits from heterogeneity
resulting in an average gain of 1.9x. We observe diminishing marginal returns in
heterogeneity beyond 4 cores. The four cores in Table IV are predicted to benefit
efficiency by 2.2x, 8 percent less than the theoretical upper bound of 2.4x that is
achievable only from the much greater heterogeneity of 7 to 9 cores. The benefits
for nine different cores is the theoretical upper bound on heterogeneity benefits as
each benchmark executes on its bips®/w maximizing core.

6.3 Heterogeneity Validation

Figure 17 compares the simulator reported heterogeneity gains against those of our
regression models. The models are pessimistic for lower degrees of heterogeneity
(i.e. cluster counts less than four). The gap between predicted and simulated ef-
ficiency narrows from 37.9 percent at cluster count zero to 14.4 percent at cluster
count three. The simulated four core average benefit is 2.0x compared to the mod-

ACM Journal Name, Vol. V, No. N, MM 20YY.



25

Heterogeneous Efficiency :: Predictions

T T
I ammp
| I applu (i} ! 4
) I equake
gce
[Cozip
[_jbb
.O | I mef .
I mesa
| I twolf i ! 1 ! i
—— avg

» o
A OO0 0 O
T
i

o
[3)

Relative Efficiency (bips®/w)

o = N
o=~ ;N O W

0o 1 2 3 4 5 6 7 8 9
Cluster Count

Fig. 16. Heterogeneity Trends :: predicted efficiency gains; cluster 0 is baseline of
Table III, cluster 1 is homogeneous multicore from K-means, cluster 9 is heteroge-
neous multicore of Table II.

average

(@]

o
»

a0

»
»

N

w
»

N
()]
\
'
[
| |
[
B

o .
)\
T
|
I

Relative Efficiency (bipEiw)
w

1.5 gt
1

05 ——Observed |
' —o—Predicted
0 I A I

0 1 2 3 4 5 6 7 8 9
Cluster Count

Fig. 17. Heterogeneity Validation :: average bips®/w average efficiency validation,
x-axis interpreted as in Figure 16

ACM Journal Name, Vol. V, No. N, MM 20YY.



ammp applu
6 6
55 55
5 5
245 245
g 4 g 4
535 335
] 1]
s 3 g 3
525 Eos
z 2 . : 2 . s &
(] — @ 3t
T 15 § T 15 o
“ i ey
05 —&—Observed | | 05 —&—Observed | |
: —o—Predicted : —o—Predicted
0 T T ; 0 T ;
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Cluster Count Cluster Count
equake gce
6
55 55
5 5
245 245
g 4 g 4
535 335
@ T
23 23
H2s H2s
e e i
S5 e 515
4 ; e 14 ] =
05 [——Observed| | 05 [——Observed| |
' |~ Predicted ' |~ Predicted
0 T T ; 0 T T
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Cluster Count Cluster Count
gzip mef
6 6
55 55
5 5
= Lo =
245 ] \ 245
3 4 \ \ 5 4
335 i 335
E 3 p—— / _g 3
F2s5 F2s
22 )
15 15
14 ; [i4 ]
Q
05 —&—Observed | | 05 / | —&—Observed | |
' |~ Predicted ' |~ Predicted
0 T T T 0 T ;
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Cluster Count Cluster Count
mesa twolf
6 6
—
55 i 55
5 / “ / 5
= \ \ =
245 Vo 245
g RN g4
335 Il / ! 335
2 /j 2
& B g e i e o 5 3
Fos o ‘ F2s |
£ oo ) -
S 15 A 15 i ¥
[i4 ) [i4 ]
05 —2—Observed || 05 —2—Observed ||
: —e—Predicted : —o—Predicted
0 L 0 L
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Cluster Count Cluster Count

Fig. 18. Heterogeneity Validation :: bips3/w efficiency validation for representative
SPEC CPU benchmarks, x-axis interpreted as in Figure 16

ACM Journal Name, Vol. V, No. N, MM 20YY.



27

eled benefit of 2.2x. This point of diminishing marginal returns from additional
heterogeneity is predicted with a 7.8 percent error; the regression models are rel-
atively optimistic. At higher degrees of heterogeneity (i.e. cluster counts greater
than 6), we observe much greater accuracy with error rates of less than three per-
cent. The predicted upper bound on heterogeneity benefits of 2.4x is accurate with
only 1.7 percent difference in simulation.

Figure 18 assesses benchmark level effects, illustrating efficiency trends at varying
degrees of heterogeneity. The regression models effectively capture application-
specific effects. For example, in both simulation and model, we observe significant
efficiency benefits for gzip, mesa at the expense of mcf when heterogeneity is limited
(i.e., low cluster counts). In effect, fewer clusters lead to design compromises that
favor the majority (gzip,mesa) over the minority (mcf).

Figure 18 illustrates particularly poor relative accuracy for gzip, which arises
from a combination of model errors and K-means clustering artifacts. With the
exception of cluster count 4, benchmark gzip is assigned to clusters with 8-way
superscalar designs for cluster counts 0 to 5. At 4 clusters, however, K-means mis-
classifies gzip into a 2-way superscalar design. Refined clustering or post-processed
K-means might identify and eliminate the discontinuity at K=4.

Clustering artifacts aside, fewer clusters lead gzip to 8-way superscalar designs
for which performance tends to be under-estimated, and more clusters lead gzip
to 4-way superscalar designs for which performance tends to be over-estimated.
Given that we observe good relative accuracy within a particular superscalar width,
these effects might be mitigated by a gzip-specific derivation that builds separate
regression models for each superscalar width.

We observe similar heterogeneity trends for benchmarks within the same clus-
ter. For example, Table V identified a cluster with ammp, applu, equake and twolf.
Since these benchmarks have similar resource requirements at the microarchitec-
tural level, their achieved efficiency gains in the range of 1.5x to 2.0x are also
similar. Collectively, these figures illustrate our models’ abilities to capture the
relative benefits of heterogeneity across benchmarks.

7. RELATED WORK

Fast simulation and improved design space exploration have been targets of many
prior efforts. Sampling and modeling reduce costs of performance and power esti-
mation for a variety of microarchitectural optimization studies.

7.1 Sampling and Modeling

Sampling. In contrast to this work, which focuses on spatial sampling for de-
signs, much prior work reduces simulation costs through temporal sampling for
representative instructions. SimPoint identifies phases from a workload, clusters
these phases, and takes phases in cluster centroids as representative of the original
workload during microarchitectural simulation [Sherwood et al. 2002]. By reducing
sizes of instruction traces, SimPoint reduces costs per simulation. SMARTS iden-
tifies the number of instructions needed for a representative subset of the original
workload [Wunderlich et al. 2003]. The number of samples is chosen to achieve user-
specified confidence intervals when estimating design metrics, such as performance.
Both SimPoint and SMARTS extract instruction segments from the original trace

ACM Journal Name, Vol. V, No. N, MM 20YY.



28

to capture broader application behavior.

Similarly, statistical profiling reduces the fraction of a workload that must be
simulated [Eeckhout et al. 2003; Nussbaum and Smith 2001; Oskin et al. 2000] Such
efforts recognize detailed simulations for specific benchmarks are not feasible early
in the design process. Instead, profiling produces relevant program characteristics,
such as instruction mix and data dependencies between instructions. A smaller
synthetic benchmark then replicates these characteristics.

Introducing sampling and statistics into simulation reduces accuracy in return
for gains in speed and tractability. While researchers in instruction sampling and
synthetic benchmarks suggest this trade-off for simulator inputs (i.e., workloads),
we propose this trade-off for simulator outputs (i.e., performance and power re-
sults). Temporal and spatial sampling should be applied jointly to reduce costs per
simulation and number of simulations, respectively.

Significance Testing. Plackett-Burman matrices identify critical, statistically
significant microarchitectural design parameters to design optimal multi-factorial
experiments [Yi et al. 2005]. This method fixes all non-critical parameters to rea-
sonable constants and performing extensive simulations that sweep a range of values
for the critical parameters. By designing experiments more intelligently, designers
use simulations more effectively and reveal more about the design space.

Stepwise regression provides an automatic and iterative approach to adding and
dropping terms from a model depending on measures of significance [Joseph et al.
2006a]. However, prior applications of stepwise regression use these models for sig-
nificance testing only and do not actually predict performance. Although commonly
used, stepwise regression has several problems cited by Harrell [Harrell 2001]: (1)
R? values are biased high, (2) standard errors of regression coefficients are biased
low leading to falsely narrow confidence intervals, (3) p-values are too small, and
(4) regression coefficients are biased high.

Empirical Modeling. Like regression, artificial neural networks can predict
microarchitectural [Ipek et al. 2006; Joseph et al. 2006b]. ANN training costs for
new, untrained applications can be reduced by expressing their performance as a
linear combination of performance predictions for previously modeled applications
[Dubach et al. 2008]. Training weights in this linear model is less expensive than
training completely new application-specific models.

Comparing neural networks and spline-based regression models, we find simi-
lar accuracy but also find trade-offs in efficiency and automation [Lee et al. 2007].
Regression requires more rigorous statistical analysis while neural network construc-
tion is automated; the network is often treated as a black box. Regression models
are likely more computationally efficient than neural networks. Regression models
are constructed by solving linear systems and evaluated by multiplying matrices
and vectors. In contrast, neural networks are constructed with gradient ascent and
evaluated with nested weighted sums in multi-layer networks.

Analytical Modeling. In contrast to empirical models, analytical models cap-
ture first-order design trends by encapsulating designers’ prior intuition and un-
derstanding of the design space. A first-order model for analyzing pipeline depth
illustrates opposing design trends: greater instruction-level parallelism decreases
the optimal depth while fewer pipeline stalls increases the optimal depth [Hartstein

ACM Journal Name, Vol. V, No. N, MM 20YY.



29

and Puzak 2002]. While trace-driven simulation can provide measures of applica-
tion parallelism that combine with analytical expressions of microarchitectural ca-
pabilities to estimate performance [Noonburg and Shen 1994]. Similarly, analytical
models can estimate performance by penalizing idealized steady-state performance
with miss events from the branch predictor or cache hierarchy measured with fast,
functional simulation [Karkhanis and Smith 2007].

7.2 Design Space Exploration

We compare our approach to related work in characterizing the sensitivity of design
parameters, such as pipeline depth. We also draw on related work in statistics to
characterize the roughness of microarchitectural performance and power topologies.

Sensitivity. Metrics for hardware and voltage intensity quantify compromises
between energy and delay from circuit-level tuning and voltage scaling, respectively
[Zyuban and Strenski 2003]. Intensity is computed as 5%% where D is delay and
E is energy. These intensity metrics produce conditions for optimal microarchi-
tectural power-performance from mathematical relations, but do not compute the
needed gradients. Our proposed regression models provide a mechanism for com-
puting these gradients. Instead of implementing symbolically derived optimality
conditions, we would optimize with heuristics using empirically derived regression

models as objective functions.

SE/6X
SD/6X

ply voltage, and threshold voltage, optimal values for circuit parameters are those
that equalize sensitivity [Markovic et al. 2004]. Sensitivity is equalized by jointly op-
timizing registers and logic within microarchitectural blocks (e.g., arithmetic-logic
units). In contrast to this circuit-level emphasis, we consider high-level interactions
across a wide range of microarchitectural blocks and cache structures. Further-
more, prior works calculate the needed gradients from analytical circuit equations
and simulations while we illustrate the feasibility of analogous studies at the mi-
croarchitectural and macro block level using statistical inference.

Optimizing Pipeline Depth. Most prior work in optimizing pipeline depth
focuses exclusively on improving performance. Vector code performance is opti-
mized on deeper pipelines while scalar codes perform better on shallower pipelines
[Kunkel and Smith 1986]. A more general analytical pipeline model shows the
optimal pipeline depth decreases with increasing overhead from partitioning logic
between pipeline stages [Dubey and Flynn 1990].

Prior work also finds optimal pipeline depths from simulation. In particular,
detailed simulations of a four-way superscalar, out-of-order microprocessor with a
memory execute pipeline identify a 10.7 FO4 performance optimal pipeline design
for the SPEC2000 benchmarks [Hartstein and Puzak 2002]. Similarly, simulations
for an Alpha 21264-like machine identify 8 FO4 as a performance optimal design
running the SPEC2000 benchmarks [Hrishikesh et al. 2002]. 18 FO4 delays is
estimated to be the power-performance optimal pipeline design point for a single-
threaded microprocessor [Zyuban et al. 2004]. Analytical modeling suggests depth
multiplied by square-root of width should be constant for optimality [Eyerman et al.
2009].

Optimizing Heterogeneity. Heterogeneous cores constructed from existing

Given sensitivity for tunable circuit parameters X such as gate sizing, sup-

ACM Journal Name, Vol. V, No. N, MM 20YY.



30

core designs or designed from scratch using a modestly sized design space improve
power efficiency [Kumar et al. 2004]. In this prior work, design alternatives are
evaluated with exhaustive simulation to illustrate the potential energy efficiency
of heterogeneity. In contrast, we implement a more thorough analysis, considering
heterogeneity trends as the number of design compromises increases and hetero-
geneity limits as we explore the full continuum between complete homogeneity and
complete heterogeneity. Both analyses are intractable in simulation for a diverse,
broadly defined design space.

Heterogeneity might be viewed as per application customization. Fine-grained
customization within an application naturally leads to custom hardware for different
application phases. Such heterogeneity motivates microarchitectural adaptivity,
which dynamically provisions hardware resources as required by the application.
Regression models facilitate new studies of architectural adaptivity [Lee and Brooks
2008a], building on a large body of prior work [Albonesi et al. 2003].

Optimization Heuristics. While this article exhaustively evaluates regres-
sion models to assess trade-offs, iterative heuristics (e.g., gradient descent, genetic
algorithms) may be required for larger spaces. When using such heuristics, the
roughness or non-linearity of the performance-power topology impacts heuristic ef-
fectiveness [Eyerman et al. 2006]. Roughness metrics penalize the least squares fit
for spline-based regression [Green and Silverman 1994]. For example, a roughness
term may be added to the sum of square errors minimized in least squares. Ac-
counting for roughness when fitting regression coefficients, this penalty approach
favors smooth regression equations. Alternatively, we might use roughness metrics
to characterize the performance-power to implement more effective optimization
heuristics [Lee and Brooks 2008b].

8. CONCLUSIONS AND FUTURE DIRECTIONS

This article presents the case for applied statistical inference in microarchitectural
design, proposing a simulation paradigm that (1) defines a comprehensive design
space, (2) simulates sparse samples from that space, and (3) derives inferential re-
gression models to reveal salient trends. These regression models accurately capture
performance and power associations for comprehensive multi-billion point design
spaces. As computationally efficient surrogates for detailed simulation, regression
models enable previously intractable analyses of energy efficiency. This article
demonstrates such capabilities for design characterization and optimization.

Statistical inference enables further research in pressing microarchitectural design
questions. Statistical inference and the new capabilities demonstrated by this article
also establish a strong foundation for interdisciplinary research across the hardware-
software interface. Inferential models have the potential to capture design trends
and compromises at each abstraction layer. Clean interfaces between models at
each layer enable co-optimization across the hardware-software interface.

Future Methodologies. Other techniques in statistical inference may be ap-
plicable. Quantifying and comparing the accuracy and computational efficiency of
these techniques is an avenue for future work. Machine learning techniques seek
to automate model construction, removing the user from the derivation process.
Heuristics and algorithms drive the derivation, eliminating the need for user feed-

ACM Journal Name, Vol. V, No. N, MM 20YY.



31

back. These automated approaches are easier to adopt and use, but tend to be less
efficient. Comparing the effectiveness of statistical inference and machine learning
is an avenue for future work.

This article focuses primarily on predicting spatial characteristics, performing
multivariate regression to model performance or power topology as a function of
design parameters. In addition to this spatial dimension, computer system design
often includes a temporal dimension where past system behavior may be indicative
of future system behavior. Predicting events or behavior in time may require time
series regression which identifies correlations in time

Multiprocessor Modeling. This article primarily considers microprocessor
cores without considering their interactions within multiprocessors. Interactions
might arise from communication through shared memory, contention for shared
resources, and synchronization for parallel workloads. Models for microprocessor
cores and mechanisms to account for interactions would provide a more thorough
assessment of multiprocessor performance and power. Building on uniprocessor
core models, a potential multiprocessor framework might use a combination of
uniprocessor, contention, and penalty models [Lee et al. 2008].

A modular framework for homogeneous multiprocessors extends naturally to the
heterogeneous sort by generalizing the uniprocessor model with libraries of inferen-
tial models containing one model for each core type; each model would encapsulate
the performance and power trends for each core’s design space. The library would
include models for both general-purpose and special-purpose cores.

Hardware-Software Interface. Statistical inference and regression modeling
establishes a strong foundation for interdisciplinary research across the hardware-
software interface. Inferential models may be constructed to encapsulate perfor-
mance and power trends at each abstraction layer. Given such models, clean inter-
faces between models are needed for optimization across abstraction layers.

Application performance optimization is increasingly important as they are ported
to novel architectures. Effective performance tuning eases the transition by param-
eterizing the application with knobs that impact performance. The optimal knob
configurations vary from platform to platform, requiring models to explore this
space. For example, parameterized numerical methods and scientific computing
applications will expose knobs for data decomposition (i.e., blocks of work), pro-
cessor topology (i.e., processor assignments to those blocks), and algorithms (i.e.,
numerical algorithms used for each block). Early results in applying statistical
machine learning to numerical methods are promising [Lee et al. 2007].

Effective back-end compiler optimizations are critical to delivering application
performance, but the effects and interactions between individual optimizations are
highly complex and non-intuitive. Identifying the best combination of optimization
flags to activate is difficult. Iterative compilation techniques search the space of op-
timizations to optimize metrics, such as performance, energy, and code size [Cooper
et al. 1999; Kulkarni et al. 2005; Triantafyllis et al. 2005]. Statistical machine learn-
ing further improves search efficiency [Cavazos and O’Boyle 2006]. These predictive
models encapsulate the performance trends in back-end compiler optimizations.

Lastly, below the microarchitectural interface, transistor tuning becomes increas-
ingly important in nanoscale technologies. Not only must transistors be sized

ACM Journal Name, Vol. V, No. N, MM 20YY.



32

correctly, circuit delay analyses must account for process variations and statisti-
cal deviations from nominal sizes. Statistical inference and machine learning may
be applied to capture relationships between circuit delays and device parameters
(e.g., transistor length, width, threshold voltage). Such predictive models might
be trained with data from detailed circuit simulations and used for circuit tuning,
statistical timing analysis, and Monte Carlo experiments to evaluate process varia-
tions. Early results in linking circuit and architecture models are promising [Azizi
et al. 2010; Liang et al. 2009; Lovin et al. 2009].

Statistical inference and its capabilities in performance and power analysis extend
across the hardware-software interface. Inference is extensible and might be applied
at each abstraction layer, ranging from applications to devices. Interfaces between
adjacent layers might enable composable inference where models combine to provide
designers a holistic view of computing. Achieving such a vision requires best-known
practices in statistical inference, machine learning, and optimization heuristics to
deliver microarchitectural efficiency.

REFERENCES

ALBONESI, D., BALASUBRAMONIAN, R., DROPSHO, S., DWARKADAS, S., FRIEDMAN, E., HUANG, M.,
Kursun, V., MAgkLis, G., SCOTT, M., SEMEZARO, G., BOSE, P., BUYUKTOSUNOGLU, A., COOK,
P., AND SCHUSTER, S. 2003. Dynamically tuning processor resources with adaptive processing.
IEEE Computer 36, 12, 49-58.

Az1z1, O., STEVENSON, J., PATEL, S., AND HOROWITZ, M. 2010. An integrated framework for joint
design space exploration of microarchitecture and circuits. In Proceedings of the Conference
on Design, Automation and Test in Europe. EDAA, Leuven, Belgium.

BRrROOKS, D., BOSE, P., SCHUSTER, S., JACOBSON, H., KuDvA, P., BUYUKTOSUNOGLU, A., WELLER,
J.-D., ZyuBAN, V., GupTA, M., AND COOK, P. 2000. Power-aware microarchitecture: Design
and modeling challenges for next-generation microprocessors. IEEE Micro 20, 6, 26—-44.

Brooks, D., BOSg, P., SRINIVASAN, V., GSCHWIND, M., EMMA, P.; AND ROSENFIELD, M. 2003.
New methodology for early-stage, microarchitecture-level power-performance analysis of micro-
processors. IBM Journal of Research and Development 47, 5/6, 653-670.

CAvAazos, J. AND O’BOYLE, M. 2006. Method-specific dynamic compilation using logistic regres-
sion. In Proceedings of the 21st Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications. IEEE Computer Society, Washington, DC, 229-240.

COOPER, K., SCHIELKE, P.;, AND SUBRAMANIAN, D. 1999. Optimizing for reduced code space using
genetic algorithms. In Proceedings of the Workshop on Languages, Compilers, and Tools for
Embedded Systems. ACM, New York, NY, 1-9.

DuBAcH, C., JoNES, T., AND O’BOYLE, M. 2008. Microarchitectural design space exploration using
an architecture-centric approach. In Proceedings of the 40th Annual International Symposium
on Microarchitecture. IEEE Computer Society, Washington, DC, 262-271.

DuBEY, P. AND FLYNN, M. 1990. Optimal pipelining. Journal of Parallel and Distributed Com-
puting 8, 1, 10-19.

EECKHOUT, L. AND H. VANDIERENDONCK, K. D. 2003. Quantifying the impact of input data sets
on program behavior and its applicadtions. Journal of Instruction-Level Parallelism 5.

Eecknour, L., NUSSBAUM, S., SMITH, J., AND DEBOSSCHERE, K. 2003. Statistical simulation:
Adding efficiency to the computer designer’s toolbox. IEEE Micro 23, 5, 26-38.

EYERMAN, S., EECKHOUT, L., AND DEBOSSCHERE, K. 2006. Efficient design space exploration
of high performance embedded out-of-order processors. In Proceedings of the Conference on
Design, Automation and Test in Europe. EDAA, Leuven, Belgium, 351-356.

EYERMAN, S., EECKHOUT, L., KARKHANIS, T., AND SMITH, J. 2009. A mechanistic performance
modeling for studying resource scaling in out-of-order processors. ACM Transactions on Com-
puter Systems 27, 2, 1-37.

ACM Journal Name, Vol. V, No. N, MM 20YY.



33

GREEN, P. AND SILVERMAN, B. 1994. Nonparametric regression and generalized linear models: A
roughness penalty approach. Chapman and Hall/CRC, Boca Raton, FL.

HARRELL, F. 2001. Regression modeling strategies. Springer-Verlag, New York, NY.

HARTSTEIN, A. AND Puzak, T. 2002. The optimum pipeline depth for a microprocessor. In
Proceedings of the 29th Annual International Symposium on Computer Architecture. IEEE
Computer Society, Washington, DC, 7-13.

HENNESSY, J. AND PATTERSON, D. 2003. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers, San Francisco, CA.

HRrIsHIKESH, M., FArRkAS, K., Jouppl, N.; BURGER, D., KECKLER, S., AND SIVAKUMAR, P. 2002.
The optimal logic depth per pipeline stage is 6 to 8 fo4 inverter delays. In Proceedings of the
29th Annual Symposium on Computer Architecture. IEEE Computer Society, Washington, DC,
14-24.

INTEL CORPORATION. 2001. Desktop performance and optimization for Intel Pentium 4 processor.
Intel Corporation White Paper 249438-01.

IPEK, E., MCKEE, S., DE SUPINSKI, B., ScHULZ, M., AND CARUANA, R. 2006. Efficiently ex-
ploring architectural design spaces via predictive modeling. In Proceedings of the 12th In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, New York, NY, 195-206.

IYENGAR, V., TREVILLYAN, L., AND BOsg, P. 1996. Representative traces for processor models
with infinite cache. In Proceedings of the 2nd Symposium on High Performance Computer
Architecture. IEEE Computer Society, Washington, DC, 62-72.

JOSEPH, P., VASWANI, K., AND THAZHUTHAVEETIL, M. J. 2006a. Construction and use of linear
regression models for processor performance analysis. In Proceedings of the 12th Symposium on
High Performance Computer Architecture. IEEE Computer Society, Washington, DC, 99-108.

JosepH, P., VASwANI, K., AND THAZHUTHAVEETIL, M. J. 2006b. A predictive performance model
for superscalar processors. In Proceedings of the 39th Annual International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 161-170.

KARKHANIS, T. AND SMITH, J. 2007. Automated design of application specific superscalar pro-
cessors: An analytical approach. In Proceedings of the 34st Annual Symposium on Computer
Architecture. ACM, New York, NY, 402-411.

KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. 2005. Niagara: A 32-way multithreaded sparc
processor. IEEE Micro 25, 2, 21-29.

KULKARNI, P., HINES, S., WHALLEY, D., HISER, J., DAVIDSON, J., AND JONES, D. 2005. Fast and
efficient searches for effective optimization-phase sequences. ACM Transactions on Architecture
and Code Optimization 2, 2, 165—198.

KUMAR, R., TULLSEN, D., RANGANATHAN, P., Jouprpi, N.; AND FARKAS, K. 2004. Single-ISA het-
erogeneous multi-core architectures for multithreaded workload performance. In Proceedings of
the 31st Annual International Symposium on Computer Architecture. IEEE Computer Society,
Washington, DC, 64—-75.

KUNKEL, S. AND SMITH, J. 1986. Optimal pipelining in supercomputers. In Proceedings of the
13th Annual International Symposium on Computer Architecture. IEEE Computer Society, Los
Alamitos, CA, 404-411.

LEE, B. AND BROOKS, D. 2006. Accurate and efficient regression modeling for microarchitectural
performance and power prediction. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM, New York,
NY, 185-194.

LEE, B. AND BROOKS, D. 2008a. Efficiency trends and limits from comprehensive microarchitec-
tural adaptivity. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, New York, NY, 36-47.

LEE, B. AND BrOOKS, D. 2008b. Roughness of microarchitectural design topologies and its impli-
cations for optimization. In Proceedings of the 14th Symposium on High Performance Computer
Architecture. IEEE Computer Society, Washington, DC, 240-251.

LEE, B., BROOKS, D., DE SUPINSKI, B., ScHULZ, M., SINGH, K., AND MCKEE, S. 2007. Methods
of inference and learning for performance modeling of parallel applications. In Proceedings of

ACM Journal Name, Vol. V, No. N, MM 20YY.



34

the 12th Symposium on Principles and Practice of Parallel Programming. ACM, New York,
NY, 249-258.

LEE, B., CoLLINS, J., WANG, H., AND BROOKS, D. 2008. CPR: composable performance regression
for scalable multiprocessor models. In Proceedings of the 41st International Symposium on
Microarchitecture. IEEE Computer Society, Washington, DC, 270-281.

LianG, X., LEg, B., WEI, G.-Y., AND BRooks, D. 2009. Design and test strategies for mi-
croarchitectural post-fabrication tuning. In Proceedings of XX VII International Conference on
Computer Design. 84-90.

Lovin, K., LEE, B., LiaNG, X., BROOKS, D., AND WEI, G.-Y. 2009. Empirical performance models
for 3T1D memories. In Proceedings of XXVII International Conference on Computer Design.
398-403.

MARKOVIC, D., STOJANOVIC, V., NIKOLIC, B., HOROWITZ, M., AND BRODERSON, R. 2004. Methods
for true energy-performance optimization. IEEE Journal of Solid-State Circuits 39, 8, 1282—
1293.

MoUDGILL, M., WELLMAN, J., AND MORENO, J. 1999. Environment for PowerPC microarchitec-
ture exploration. IEEE Micro 19, 3, 9-14.

NOONBURG, D. AND SHEN, J. 1994. Theoretical modeling of superscalar processor performance.
In Proceedings of the 27th Annual International Symposium on Microarchitecture. ACM, New
York, NY, 52-62.

NUSSBAUM, S. AND SMITH, J. 2001. Modeling superscalar processors via statistical simulation. In
Proceedings of the International Conference on Parallel Architectures and Compilation Tech-
niques. IEEE Computer Society, Washington, DC, 15-24.

OskIN, M., CHONG, F., AND FARREN, M. 2000. HL.S: Combining statistical and symbolic simula-
tion to guide microprocessor designs. In Proceedings of the 27th Annual International Sympo-
sium on Computer Architecture. ACM, New York, NY, 71-82.

PHANSALKAR, A., JosHI, A., EECKHOUT, L., AND JOHN, L. 2005. Measuring program similarity:
Experiments with SPEC CPU benchmark suites. In Proceedings of the International Sympo-
sium on Performance Analysis of Systems and Software. IEEE Computer Society, Washington,
DC, 10-20.

SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically character-
izing large scale program behavior. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM, New York,
NY, 45-57.

SINHAROY, B., KALLA, R., TENDLER, J., EICKEMEYER, R., AND JOYNER, J. 2005. Power5 system
microarchitecture. IBM Journal of Research and Development 49, 4/5, 505-521.

STONE, C. AND Koo, C. 1986. Additive splines in statistics. In Proceedings of the Statistical
Computer Section. ASA, Washington, DC, 45-48.

TARJAN, D., THOZIYOR, S., AND Jouppl, N. 2006. CACTI 4.0. HPL Tech Report HPL-2006-86.

TRIANTAFYLLIS, S., VACHARAJANI, M., AND AucusT, D. 2005. Compiler optimization space ex-
ploration. Journal of Instruction-Level Parallelism 7.

WUNDERLICH, R., WENISCH, T., FALSAFI, B., AND HOE, J. 2003. SMARTS: Accelerating mi-
croarchitecture simulation via rigorous statistical sampling. In Proceedings of the 30th Annual
International Symposium on Computer Architecture. ACM, New York, NY, 84-97.

Y1, J., LiLja, D., AND HAWKINS, D. 2005. Improving computer architecture simulation method-
ology by adding statistical rigor. IEEE Computer 54, 11, 1360-1373.

ZYUBAN, V., BROOKS, D., SRINIVASAN, V., GSCHWIND, M., BOSE, P., STRENSKI, P., AND EMMA,
P. 2004. Integrated analysis of power and performance for pipelined microprocessors. IEEE
Transactions on Computers 53, 8, 1004—-1016.

ZYUBAN, V. AND KoaGcE, P. 2001. Inherently lower-power high-performance superscalar archi-
tectures. IEEE Transactions on Computers 50, 3, 268—285.

ZYUBAN, V. AND STRENSKI, P. 2003. Balancing hardware intensity in microprocessor pipelines.
IBM Journal of Research and Development 47, 5/6, 585-598.

ACM Journal Name, Vol. V, No. N, MM 20YY.



35

A. MODEL SPECIFICATION

The R specification of a performance model. Note the square-root transformation
on the bips response.

The rcs(p,k) command implements restricted cubic splines on parameter p with
k knots. Cubic splines fit piecewise cubic polynomials and restricted splines con-
strain the end pieces to use linear fits, which improve model behavior at the extreme
regions of the space.

Interactions are specified by the %ia% operator. The %ial, operator specifies
product terms between splines stripping out doubly-non-linear terms that arise
when multiplying two cubic polynomials for pairwise interactions. Only terms that
contain a linear factor are included, which controls model size when multiplying
polynomials.

The power model is specified by replacing the sqrt(bips) response with the
log(power) response.

m.app <- (sqrt(bips) ~(

# first-order effects
rcs(depth,4) + width + rcs(phys_reg,4)

+ rcs(resv,3) + rcs(l2cache_size,3)
+ rcs(icache_size,3) + rcs(dcache_size,3)

# second-order effects

# interactions of pipe dimensions and in-flight queues
+ width %ia¥% rcs(depth,4)

+ rcs(depth,4) %ia) rcs(phys_reg,4)

+ width %ia¥% rcs(phys_reg,4)

# interactions of depth and hazards

+ width %ia% rcs(icache_size,3)

+ rcs(depth,4) %ia)% rcs(dcache_size,3)

+ rcs(depth,4) %ia), rcs(1l2cache_size,3)

# interactions in memory hierarchy
+ rcs(icache_size,3) %ial, rcs(12cache_size,3)
+ rcs(dcache_size,3) %ia), rcs(1l2cache_size,3)

));

ACM Journal Name, Vol. V, No. N, MM 20YY.



