
                                                   
Abstract

We present the high-level microarchitecture of LPX:
a low-power issue-execute processor prototype that is being
designed by a joint industry-academia research team. LPX
implements a very small subset of a  RISC architecture, with a
primary focus on a vector (SIMD) multimedia extension. The
objective of this project is to validate some key new ideas in
power-aware microarchitecture techniques, supported by
recent advances in circuit design and clocking.

1.  Introduction
Power dissipation limits constitute one of the

primary design constraints in future high performance
processors. Also, depending on the thermal time
constants implied by the chosen packaging/cooling
technology, on-chip power-density is a more critical
constraint than overall power in many cases. In current
CMOS technologies, dynamic (“switching”) power still
dominates; but, increasingly, the static (“ leakage”)
component is threatening to become a major component
in future technologies [1]. In this paper, we focus primar-
ily on the dynamic component of power dissipation.

Current generation high-end processors like the
IBM POWER4TM [2,3] are performance-driven designs.
In POWER4, power dissipation is still comfortably below
the 0.5 watts/sq. mm. power density limit afforded by the
package/cooling solution of choice in target server
markets. However, in designing and implementing future
processors (or even straight “ remaps”) the power (and
especially the power-density) limits could become a
potential “show-stopper”  as transistors shrink and the
frequency keeps increasing. 

Techniques like clock-gating (e.g. [4, 5]) and
dynamic size adaptation of on-chip resources like caches
and queues (e.g. [6-10, 25, 27]) have been either used or
proposed   as   methods  for  power management in future
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processor cores. Many of these techniques, however,
have to be used with caution in server-class processors.
Aspects like reliability and inductive noise on the power
supply rails (Ldi/dt) need to be quantitatively evaluated
prior to committing a particular gating or adaptation
technique to a real design.

Another issue in the design of next generation,
power-aware processors, is the development of accurate
power-performance simulators for use in early-stage
design. University research  simulators like Wattch [11]
and industrial research simulators like Tempest [12] and
PowerTimer [13] have been described in the recent past;
however their use in real design environments is needed
to validate the accuracy of the energy models in the
context of power-performance tradeoff decisions made in
early design. 

In the light of the above issues, we decided to
design and implement a simple RISC “sub-processor”  test
chip to validate some of the key new ideas in adaptive
and gated architectures. This chip is called: LPX, which
stands for low-power issue-execute processor. This is a
research project, with a goal of influencing real develop-
ment groups. LPX is a joint university-industry collabora-
tion project. The design and modeling team is composed
of 10-12 part-time researchers spanning the two groups
(IBM and University of Rochester) aided by several
graduate student interns and visiting scientists recruited
from multiple universities to work (part-time) at IBM.
LPX is targeted for fabrication in a CMOS 0.1 micron
high-end technology. RTL (VHDL) simulation and verifi-
cation is scheduled for completion in 2002. Intermediate
circuit test chips are in plan (mid- to late 2002) for early
validation of the circuit and clocking support. LPX chip
tapeout is slated for early 2003. In this paper, we present
the microarchitecture definition with preliminary
simulation-based characterization of the LPX prototype. 

We summarize the goals of the LPX project as
follows:
� To understand and assess the true worth of a few key

ideas in power-aware microarchitecture design
through simulation and eventually via direct
hardware measurement. Based on known needs in
real products of the future, we have set a target of
average power density reduction by at least a factor
of 5, with no more than 5 % reduction in
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architectural performance (i.e. instructions per cycle
or IPC).

� To quantify the instantaneous power (current) swings
incurred by the use of the adaptive resizing, throt-
tling  and clock-gating ideas that are used to achieve
the targeted power reduction factors in each unit of
the processor.

� To use the hardware-based average and instantane-
ous power measurements for calibration and valida-
tion of energy models used in early-stage,
power-performance simulators.

Clearly, what we learn through the “simulation and proto-
typing in the small”  experiments in LPX, will be useful in
influencing full-function, power-efficient designs of the
future. The calibrated energy models will help us conduct
design space exploration studies for high-end machines
with greater accuracy. In this paper, we limit our focus to
the microarchitectural definition process, with related
simulation-based result snapshots, of the LPX prototype.1

2. Background: Power-Per formance Data              
       In an out-of-order, speculative super
scalar design like each of the two cores in POWER4, a
large percentage of the core power in the non-cache
execution engine is spent in the instruction window or
issue queue unit [3, 8-10].  Figure 1(a) shows the relative
distribution of power across the major units within a
single POWER4 core. Figure 1(b) zooms in on the
instruction sequencing unit that contains the various
out-of-order issue queues and rename buffers. 

Figure 2 shows the power density across some of
the major units of a single POWER4 core. The power
figures are non-validated pre-silicon projections based on
unconstrained (i.e. without any clock-gating assumptions)
“average/max”  power projections using a circuit-level
simulation facility called CPAM [22]. (Actual unit-wise

power distribution, with available conditional clocking
modes enabled, are not shown). This tool allowed us to
build up unit-level power characteristics from very
detailed, macro-level data. Here, the activity (utilization)
factors of all units are assumed to be 100 % (i.e. worst
case with no clock-gating anywhere); but average,
expected input data switching factors (based on represen-
tative test cases run at the RTL level, and other

heuristics) are assumed for each circuit macro. Such
average macro-level input data switching factors typically
range from 4-15 %. (From Figure 2, we note that
although on a unit basis, the power density numbers are
under 0.5 watts/sq. mm., there are smaller hotspots, like
the integer FX issue queue within the ISU that are above
the limit in an unconstrained mode).
(Legend for Figs. 1-2: IDU: instruction decode unit;
FXU: fixed point unit; IFU: instruction fetch unit; BHT:
branch history table; ISU: instruction sequencing unit;
LSU: load-store unit: includes L1 data cache; FPU: float-
ing point unit).

Another class of data that we used was the
performance and utilization information obtained from
pre-silicon performance simulators. Figure 3 shows the
relative “active/idle”  barchart plot across some of the
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1 Note that LPX is a research test chip. It is not intended to be a full-function, production-quality microprocessor. At this time,
LPX is not directly linked to any real development project.
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major units for a POWER4-like pre-silicon simulation
model. The data plotted is for a commercial TPC-C trace
segment. This figure shows, for example, that the instruc-
tion fetch unit (IFU) is idle for approximately 47 % of the
cycles. Similar data, related to activities within other
units, like  issue queues and execution unit pipes were
collected and analyzed. 

3. Areas of Focus in Defining the LPX processor
Based on microarchitecture level and circuit

simulation level utilization, power and power-density
projections, as above, we made a decision to focus on the
following aspects of a super scalar processing core in our
LPX test chip:

Power-Efficient, Just-in-Time Instruction Fetch:
Here, we wanted to study the relative advantages

of conditional gating of the ifetch function, with a goal of
saving power without appreciable loss of performance.
The motivation for this study was clearly established after
reviewing data like that depicted in Figures 1 and 2. In
simulation mode, we studied the benefit of various
hardware heuristics for determining the “gating
condition”  [14, 23, 15] before fixing on a particular set of
choices (being reported in detail in [16]) to implement in
LPX. Our emphasis here is on studying ifetch gating
heuristics that are easy to implement and test, with negli-
gible added power for the control mechanism.

Adaptive Issue Queue:
The out-of-order issue queue structure inherent

in today’s high-end super scalar processors is a known
“hot-spot”  in terms of power dissipation. The data shown
in Figures 1, 2, and also corroborative data from other
processors (e.g. [5]), makes this an obvious area to focus
on. In LPX, our goal is also to compare the achieved
power savings with a fixed issue queue design, but with
fine-grain clock-gating support, where the valid-bit for
each issue queue entry is used as a clock-gating control.
A basic issue in this context is the extra power that is

spent due to the presence of out-of-order execution
modes. Is the extra power spent worth the performance
gain that is achievable? We wish to understand the funda-
mental power-performance tradeoffs in the design of
issue queues for the next generation processors. Again,
simplicity of the adaptive control and monitoring logic is
crucial, especially in the context of the LPX prototype
test vehicle.

Locally Clocked Execution Pipeline:
Based on the data shown in Figures 1 and 2, a

typical, multi-stage complex arithmetic pipeline is also a
high power-density region within the chip. We wish to
study the comparative benefit of alternate conditional
clocking methods proposed in ongoing work in advanced
circuit design groups ([4, 17, 18]). In particular, we wish
to understand: (a) the benefit of simple valid-bit-based
clock-gating in a synchronously clocked execution unit;
and (b) the added power-savings benefit of using a locally
asynchronous arithmetic unit pipeline, within a globally
synchronous chip. The asynchronously clocked pipeline
structure is based on the IPCMOS circuit technology
previously tested in isolation [17] by some in our
research team. Such locally clocked methods offer the
promise of low power at high performance, with manage-
able inductive noise (Ldi/dt) characteristics. In LPX, we
wish to measure and validate these expectations as the
IPCMOS pipe is driven by data in real computational
loop kernels.

Power-Efficient Stalling of Synchronous Pipelines: 
In the synchronous regions of the design, we

wish to quantify the amount of power that is consumed by
pipeline stall (or “hold/recirculation” ) conditions. Antici-
pating (from circuit simulation coupled with microarchi-
tectural simulation data) such wastage to be significant,
we wish to experiment with alternate methods to reduce
or eliminate the “stall energy”  by using a novel circuit
technique called interlocked synchronous pipelines (ISP)
that was recently invented by some members of our team
[18].  

Thus, a basic fetch-issue-execute super scalar
processing element (see sections 4 and 5) was decided
upon as the study vehicle for implementation by our small
research team. The goal is to study the power-
performance characteristics of dynamic adaptation: in
microarchitectural terms as well as in clocking terms with
the target of achieving significant power (and especially,
power density) reduction, with acceptable margins of IPC
loss.

4. Tuning the Microarchitecture
In this section, we outline the methodology

adopted for defining the range of hardware design
choices to be studied in the LPX testchip. Since we are
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constrained by the small size of our design team, and yet
the ideas explored are targeted to influence real, full-
function processor designs, we adopted the following
general method.

Figure 4 shows the iterative method used to
decide what coarse-level features to add into the LPX test
chip, starting from an initial,  baseline “bare-bones”
fetch-issue-execute model.

� A given, power-efficient microarchitectural design
idea is first simulated in the context of a realistic,
current generation  super scalar processor model
(e.g. POWER4-like microarchitectural parameters)
and full workloads (like SPEC and TPC-C) to infer
the power-performance benefit. Once a basic
hardware heuristic is found to yield tangible benefit -
in other words, a significant power reduction, at
small IPC impact - it is selected for possible imple-
mentation in LPX.

� A detailed, trace-driven, cycle-by-cycle simulator for
the baseline LPX processor is coded to run a set of
application-based and synthetic loop test cases
designed to test and quantify the LPX-specific
power-performance characteristics of the candidate
hardware power-saving feature. In order to get a
measurable benefit, it may be necessary to further
simplify the heuristic, or augment the microarchitec-
ture minimally to create a new baseline. Once the
power-performance benefit is deemed significant, we
proceed to the next candidate idea.

In this paper we mainly focus on (b) above: i.e.
understanding the fundamental power-performance trade-
off characteristics, using a simple, illustrative  loop test
case. However, we also refer briefly to example, full-
model super scalar simulation results to motivate the
choice of a particular hardware heuristic. 

Energy models used
The LPX cycle-by-cycle simulator used to

analyze early stage microarchitectural power-
performance tradeoffs has integrated energy models, as in
the PowerTimer tool [13]. These energy models were
derived largely from detailed, macro-level energy data for
POWER4, scaled for size and technology to fit the
requirements of LPX. The CPAM tool [22] was used to
get this data for most of the structures modeled.
Additional experiments were performed at the circuit
simulation level, to derive power characteristics of newer
latch designs (with and without clock- and stall-based
gating). The energy model-enabled LPX simulator is
systematically validated using specially architected
testcases. Analytical bounds modeling is used to generate
bounds on IPC and unit-wise utilization (post-processed
to form power bounds). These serve as reference “signa-
tures”  for validating the power-performance simulator.
Since the LPX design and model are still evolving,
validation exercises must necessarily continue throughout
the high-level design process. Details of the energy model
derivation and validation are omitted for brevity.

5. High-Level Microarchitecture of LPX
Figure 5 (placed at the very end of this paper)

shows a very high-level block diagram of the baseline
LPX processor that we started with before further refine-
ment of the microarchitectural features and parameters
through a simulation-based study. The function and
storage units shown in dashed edges are ones that are
modeled (to the extent required) in the simulation infra-
structure, but are not targeted for implementation in the
initial LPX design. The primary goal of this design is to
experiment with the fetch-issue-execute pipe which
processes a basic set of vector integer arithmetic instruc-
tions. These instructions are patterned after a standard,
4x32 bit SIMD multimedia extension  architecture [21]
but, simplified in syntax and semantics.

The “ fetch-and-issue”  sub-units act together as a
producer of instructions, which are consumed by the
“execute”  sub-unit. The design attempts to balance the
dynamic complexity of the producer-consumer pair with
the goal of maximizing performance, while minimizing
power consumption.

The basic instruction processing pipeline is illus-
trated in Figure 6. The decode/dispatch/rename stage,
which is shown as a lumped, dummy dispatch unit in
Figure 5, is actually modeled in our simulator as an
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m-stage pipe, where m=1 in the nominal design point.
The nominal VFXU execute pipe is n=4 stages deep. The
LSFX execute pipe is p=2 stages (in infinite cache mode)
and p=12 stages when a data cache miss stall is injected
using the stall control registers (Figure 5); in particular,
using a miss-control register (MCR).

One of the functional units is the scalar FXU (a
combined load-store unit and integer unit, LSFX) and the
other is the vector integer unit (VFXU). The VFXU
execution pipe is multi-cycle (nominally 4 cycles). The
LSFX unit has a 1-cycle pipe plus (nominally) a 1-cycle
(infinite) data cache access cycle for loads and stores. At
the end of the final execution stage, the results are latched
on to the result bus while the target register tags are
broadcast to the instructions pending in the issue queue. 

As a substitute for instruction caching, LPX uses
a loop buffer in which a loop (of up to 128 instructions)
is pre-loaded prior to processor operation. The loaded
program consists of pre decoded instructions, with inline
explicit specifiers of pre renamed register operands - in
full out-of-order mode of execution. This avoids the task
of designing explicit logic for the instruction decode and
rename processes. LPX also supports an “ in-order”  mode,
without register renaming as the lowest performance
design point for our tradeoff experiments. 

The instructions implemented in LPX are listed
below in Table 1.  For the most part, these are a set of
basic vector (SIMD) mode load, store and arithmetic
instructions, following the general semantics of a
PowerPCTM VMX (vector multimedia extension) archi-
tecture [21]. There are a few added scalar RISC
(PowerPC-like)  instructions to facilitate loading and
manipulation of scalar integer registers required in vector
load-store instructions. The (vector) load and store
instructions have an implied “update”  mode in LPX,
where the scalar address base register is auto-incremented
to hold the address of the next sequential array data in
memory. 

                       Table 1. LPX Instruction Set

Branch
unconditional

BR    +-0x08Uncond.
Branch

Branch
conditional
(PC relative jump)

BC   +-0x08Cond.
Branch

Decrement r1 DEC   r1Scalar Dec

Increment r1
(scalar)

INC    r1Scalar Inc

Load scalar reg  r1LD    r1,  r2,  0x08Scalar
Load

Vector Sub, Mul, Div instructions: similar to VADD
above

vr1 <--- vr2 + vr3VADD  vr1, vr2,
vr3

Vector
Add

Store vr1.VST  vr1, r2, 0x08Vector
Store

Load vr1. Scalar
base address regis-
ter:  r2

VLD  vr1, r2,
0x08

Vector
Load

SemanticsExample Syntax

6. Examples: LPX Microarchitecture Analysis
In this section, we illustrate the use of simple

loop-based test cases in understanding the basic power-
performance trade-offs of adaptive structures and clock-
ing mechanisms that were chosen for study in LPX. The
challenge is to determine the nominal sizes, adaptation
windows and (in each case) a simple “monitor-and-
control”  mechanism that is appropriate in the context of
building a small prototype engine, like LPX. 

We started with the simplest baseline, where
ideal cache effects were modeled, by architecting a
single-stage LSFX pipe unit; but, later we had to augment
the specification to include a variable-length LSFX pipe,
to simulate data cache miss latency. In the absence of real
cache hardware (correspondingly, real cache hit/miss
code in the simulator), we architect for programmable
“miss”  scenarios via a user-loadable miss control register
(MCR). Details of how this works in the real hardware
are not discussed in this paper. For brevity, we only show
a few example tradeoff analysis examples limited to the
infinite (ideal) cache scenario.

As described before in section 4 (see Figure 4),
each candidate power reduction idea is analyzed in the
“ large”  (i.e. using a general out-of-order super scalar
simulator) to ensure potential benefit. Then, a simpler
hardware heuristic is used for trial and measurement “ in
the small”  within the LPX simulation tool kit.

LPX experiments: an example loop test-case:   vect_add
We use a simple “vector add”  loop trace, formed

by execution of the following loop, to illustrate LPX
tradeoff experiments:
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  | -> VLD     vr1,    r2 (0x4)
  |      VADD  vr4,    vr1, vr6
  |      VLD      vr6,   r2 (0x8)
  |      VADD  vr4,   vr4,   vr6
  |      VST      vr4,   r3 (0x8)
  |       DEC      r7
 ---     BRZ      r7,    -0x7  

The baseline LPX model parameters were fixed as
follows, after initial experimentation. Instruction fetch
(ifetch) bandwidth is up to four instructions/cycle, with
no fetch beyond a branch on a given cycle. The instruc-
tion fetch buffer size is four instructions; dispatch
bandwidth (into the issue queue) is up to two
instructions/cycle; issue bandwidth (into the execution
pipes) is up to two instructions/cycle; and, completion
bandwidth is also two instructions/cycle. Fetch and
dispatch is in-order and issue can be in-order or out-of-
order (switchable); instructions finish out-of-order. (LPX
does not model or implement in-order completion for
precise interrupt support using reorder buffers).

Conditional ifetch
Figures 7(a,b)  show a snapshot of analysis data from a
typical 4-way, out-of-order super scalar processor model.
The data reported is for two benchmarks from the
SPECint2000 suite. It shows that the ifetch stage/buffer,
the front-end pipe and the issue queue/window can be
idle for significant fractions of the program run. These
are cycles where power can be saved by valid-bit-based
clock-gating. In addition, the fraction of cycles that are
wasted by useful (but stalled) instructions and by incor-
rectly fetched speculative instructions can  also be signifi-
cant. Gating off the ifetch process using a hardware
heuristic to compute the gating condition, is therefore a
viable approach to saving energy.
 For LPX, we wish to experiment with the
simplest of such heuristics, that are easy to implement.
The basic method used is to employ  the “stall”  or
“ impending stall”  signals available from “downstream”

consumer units to throttle back the “upstream”  producer
(ifetch). Such stall signals are easy to generate and are
usually available in the logic design anyway. Figures
8(a,b)   show results from an illustrative use of condi-
tional ifetch while simulating the vect_add loop trace. 

We use the following simple hardware heuristic
for determining the ifetch gating scenario. When a “stall”
signal is asserted by the instruction buffer (e.g. when the
ibuffer is full) the ifetch process is naturally inhibited in
most designs; so this is assumed in the baseline model.
However, additional power savings can be achieved by
retaining the “ ifetch-hold”  condition for a fetch-gate
cycle window, GW, beyond the negation of the ibuffer
stall signal. Since the ibuffer was full, it would take a
while to drain it; hence ifetch could be gated off for GW
cycles. Depending on the size of the ibuffer, IPC would
be expected to drop off to unacceptable levels beyond a
certain value of GW; but increasing GW is expected to
reduce IFU (instruction fetch unit) and overall chip
power. 

Adaptive Issue Queue
Figure 9 shows a snapshot of our generalized simulation-
based power-savings projection for various styles of
out-of-order issue queue design. (An 8-issue, super
scalar, POWER4-like research simulator was used).
These studies showed potential power savings of more
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than 80 % in the issue queue with at most 2-3 % hit in
IPC  on the average. However, the best power reductions
were for adaptive and banked CAM/RAM based designs
that are not easy to design and verify. For LPX, we
started with a baseline design of the POWER4 integer
issue queue [3], which is a latch-based design. It is struc-
tured as a 2-chunk structure, where in adaptive mode, one
of the chunks can be shut-off completely (to eliminate
dynamic and static power). 

Figure 10  illustrates the benefit of using a
simple, LPX-specific adaptive issue queue heuristic that
is targeted to reduce power, without loss of performance;
i.e. the size is adapted downwards only when “safe”  to do
so from a performance viewpoint; and the size is
increased in anticipation of increased demand. (In the
example data  shown in this paper, we consider only the
reduction of dynamic power via such adaptation). The
adaptive issue queue control heuristic illustrated is
simpler than proposed in the detailed studies reported
earlier [8], for ease of implementation in the LPX
context.  The control heuristic in LPX is as follows:

if (current-cycle-window-issuecount < 0.5 *
last_cycle_window_issuecount) then
     increase_size (* if possible*);
else decrease_size (* if possible *);
         

Discussion of results:
From Figure 8(a) we note that adding out-of-

order (oo) mode to the baseline in-order (io) machine
causes an IPC increase (CPI decrease) of 23.6 %, but
with a 12.5 % overall power increase. The ISU, which
contains the issue queue, increases in power by 27.5 %.
So, from an overall power-performance efficiency
viewpoint,  the out-of-order (oo) mode does seem to pay
off in LPX for this loop trace, in infinite cache mode.
However, from a power-density “hot-spot”  viewpoint,
even this basic enhancement may need to be carefully

evaluated with a representative workload suite. Adding
the valid-bit-based clock-gating (VB-CG) mode in the
instruction buffer, issue queue and the execution unit
pipes, causes a sharp decrease in power (42.4 % from the
baseline oo design point). Adding a conditional ifetch
mode, (with a cycle window W of 10 cycles over which
ifetch is blocked after the ibuffer stall signal goes away)
yields an additional 18.8 % power reduction, without loss
of IPC performance. As the gating cycle window W is
increased, we see a further sharp decrease in net power
beyond W=10, but with IPC degradation. For the
adaptive issue queue experiment (Fig. 10) shown, we see
that a 8 % reduction in net LPX power is possible; but
beyond an adaptation cycle window, AW of 1, a 11 %
increase in CPI (cycles-per-instruction) is incurred. Thus,
use of fine-grain, valid-bit based clock-gating is simpler
and more effective than adaptive methods. Detailed
results, combining VB-CG and adaptation will be
reported in follow-up research.

       Fig. 10. Adaptive issue queue experiment in LPX

Stall-Based Clock-Gating
As previously alluded to, in addition to valid-bit-

based clock-gating in synchronous (an locally asynchro-
nous) pipelines, LPX uses a mode in which an instruction
stalling in a buffer or queue for multiple cycles is
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clock-gated off, instead of a recirculation-based, hold
strategy often used in high performance processors. The
stall-related energy waste is a significant fraction of
queue/buffer power that can be saved if the stall signal is
avaliable in time to do the gating. Carefully designed
control circuits [18] have enabled us to exploit this
feature in LPX. In this version of the paper, we could not
include the experimental results that show the additional
benefits of such stall-based gating. However, suffice it to
say, with the addition of stall-based clock-gating, simula-
tions predict that we are well within the target of achiev-
ing a factor of 5 reduction in power and power density,
without appreciable loss of IPC performance. The use of
a locally asynchronous IPCMOS execution pipe [17] is
expected to increase power reduction even further.
Detailed LPX-specific simulation results for these circuit-
centric features, will be available in subsequent reports.

7. Conclusions and Future Work
We presented the early-stage definition of LPX:

a low-power issue-execute processor prototype that is
designed to serve as a measurement and evaluation
vehicle for a few new ideas in adaptive microarchitecture
and conditional clocking. We described the methodology
that was used to architect and tune simple hardware
heuristics in the prototype test chip, with the goal of
drawing meaningful conclusions of use in future
products. We presented a couple of simple examples to
illustrate the process of definition and to report the
expected power-performance benefits of the illustrated
adaptive features.

The basic idea of fetch-throttling to conserve
power is not new.  In addition to work that we have
already alluded to [14, 23, 15], Sanchez et al. [24]
describe a fetch stage throttling mechanism for the G3
and G4 PowerPC processors. The throttling mode in the
prior PowerPC processors was architected to respond to
thermal emergencies. The work reported in [14, 23, 15]
and the new gating heuristics described in this paper and
in [16] are aimed at reducing average power during
normal operation. Similarly, the adaptive issue queue
control heuristics being developed for LPX are intended
to be simpler adaptations of our prior general work [8]. 

We believe that the constraint of designing a
simple test chip with a small design team forces us to
experiment with heuristics that are easy to implement
with low overhead. If some of these heuristics help create
relatively simple power management solutions for a full-
function, production-quality processor, then the invest-
ment in LPX development will be easily justified.

In addition to the adaptive microarchitecture
principles alluded to above, the team is considering the
inclusion of other ideas in the simulation toolkit; some of
these remain candidates for inclusion in the actual LPX

definition: at least for LPX-II, a follow-on design. The
following is a partial list of these other ideas:
� Adaptive, power-efficient cache and register file

designs: these were not considered for implementa-
tion in the initial LPX prototype, due to lack of
seasoned SRAM designers in our research team. In
particular, as a candidate data cache design for
LPX-II, we are exploring ideas that combine prior
energy-efficient solutions [6, 7, 25, 26] with recently
proposed, high performance split-cache architectures
([19, 20]).

� Exploiting the data sparseness of vector/SIMD-mode
execution, through hardware features that minimize
clocking waste in processing vector data  that
contains lots of zeroes.

� Newer features that reduce static (leakage) power
waste.

� Adding monitoring hardware to measure current
swings in clock-gated and adaptive structures.
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