
Eliminating Voltage Emergencies via
Software-Guided Code Transformations

VIJAY JANAPA REDDI, SIMONE CAMPANONI, MEETA S. GUPTA,
MICHAEL D. SMITH, GU-YEON WEI, DAVID BROOKS
Harvard University
and
KIM HAZELWOOD
University of Virginia

In recent years, circuit reliability in modern high-performance processors has become increasingly

important. Shrinking feature sizes and diminishing supply voltages have made circuits more sen-
sitive to microprocessor supply voltage fluctuations. These fluctuations result from the natural

variation of processor activity as workloads execute, but when left unattended, these voltage fluc-

tuations can lead to timing violations or even transistor lifetime issues. In this paper, we present a
hardware-software collaborative approach to mitigate voltage fluctuations. A checkpoint-recovery

mechanism rectifies errors when voltage violates maximum tolerance settings, while a run-time

software layer reschedules the program’s instruction stream to prevent recurring violations at the
same program location. The run-time layer, combined with the proposed code rescheduling al-

gorithm, removes 60% of all violations with minimal overhead, thereby significantly improving

overall performance. Our solution is a radical departure from the ongoing industry standard ap-
proach to circumvent the issue altogether by optimizing for the worst case voltage flux, which

compromises power and performance efficiency severely, especially looking ahead to future tech-

nology generations. Existing conservative approaches will have severe implications on the ability
to deliver efficient microprocessors. The proposed technique reassembles a traditional reliability

problem as a runtime performance optimization problem, thus allowing us to design processors for
typical case operation by building intelligent algorithms that can prevent recurring violations.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance

General Terms: Performance, Reliability

Additional Key Words and Phrases: Voltage Noise, dI/dt, Inductive Noise, Voltage Emergencies

1. INTRODUCTION

Power supply noise directly affects the robustness and performance of microprocessors.
With the use of ever lower supply voltages and aggressive power management techniques
such as clock gating, resulting large current swings are becoming inevitable. These current
swings, when coupled with the parasitic inductances in the power-delivery subsystem, can
cause voltage fluctuations that violate the processor’s operating margins. A significant drop
in the voltage can lead to timing-margin violations due to slow logic paths, while significant
overshoots in the voltage can cause long-term degradation of transistor characteristics. For
reliable and correct operation of the processor, large voltage swings, also calledvoltage
emergencies, should be avoided.

The traditional way of dealing with voltage emergencies has been to over-design the sys-
tem to accommodate the worst-case voltage swing. A recent paper analyzing supply noise
in a Power6 processor [James et al. 2007] shows the need for operating margins greater than

ACM Transactions on Architecture and Code Optimization.

2 · Vijay Janapa Reddi et al.

20% of the nominal voltage (200mV for a nominal voltage of 1.1V). Conservative proces-
sor designs with large timing margins ensure robustness. However, conservative designs
either lower the operating frequency or sacrifice power efficiency. For instance, Bowman
et al. show that removing a 10% operating voltage margin leads to a 15% improvement in
clock frequency [Bowman et al. 2008].

As an alternative to such conservative design, researchers have proposed designing for
average-case operating conditions while providing a “fail-safe” hardware-based mecha-
nism that guarantees correctness in the presence of voltage emergencies. Such a fail-safe
mechanism enables more aggressive timing margins in order to maximize clock frequency,
or even improve energy efficiency, but at the expense of some runtime penalty when viola-
tions occur. Architecture- and circuit-level techniques either proactively take measures to
prevent a potentially impending voltage emergency [Ayers 2002; Joseph et al. 2003; Pow-
ell and Vijaykumar 2003; 2004], or operate reactively by recovering a correct processor
state after an emergency corrupts machine execution [Gupta et al. 2008].

Traditional hardware techniques do not exploit the effect of program structure on emer-
gencies. Figure 1 shows the number of unique static program locations or instructions that
are responsible for emergencies1 on our simulated platform (see Section 4.1), and the total
number of emergencies they contribute over the lifetime of a program. The stacked log-
scale distribution plot indicates that on average fewer than 100 program instructions are
responsible for several hundreds of thousands of emergencies. Even an ideal oracle-based
hardware technique will need to activate its fail-safe mechanism once per emergency, and
cannot exploit the fact that there are just a few emergency code hotspots responsible for
nearly all emergencies. Additionally, hardware-based schemes must ensure that perfor-
mance gains from operating at a reduced margin outweigh the fail-safe penalties. They
therefore rely on tuning the fail-safe mechanism to the underlying processor and power
delivery system specifics [Gupta et al. 2008]. When combined with implementation costs,
potential changes to traditional architectural structures, and challenges like response-time
delays [Gupta et al. 2008], design, validation and wide-scale retargetability all become
increasingly difficult.

In this paper, we present a hardware-software collaborative approach for handling volt-
age emergencies. Hazelwood and Brooks [2004] suggest the potential for a collaborative
scheme, but we demonstrate and evaluate a full-system implementation. The collaborative
approach relies on a general-purpose fail-safe mechanism as infrequently as possible to
handle emergencies, while having a software layer dynamically smooth bursty machine
activity via code transformation to prevent frequently occurring emergencies. Ideally, the
fail-safe mechanism activates only once per static emergency location, and therefore only
a few times in all, as shown in Figure 1.

Our software transformation to prevent emergencies is a form of performance optimiza-
tion because preventing emergencies at aggressive margins leads to better performance,
due to reduced fail-safe recoveries. The software layer relies on feedback from the hard-
ware to identify and eliminate emergency-prone program addresses, which is similar to
present day industrial-strength virtual machines that target runtime performance optimiza-
tion using feedback from hardware performance counters [Schneider et al. 2007; Lau et al.
2006]. In the future, we envision run-time systems treating reliability transformations as a

1We use the event categorization algorithm described by Guptaet al.[Gupta et al. 2007] to identify the instruction
that gives rise to an emergency.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 3

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Lo
g

S
ca

le

 Static program locations
 Dynamic emergency count

Fig. 1: A small set of static program locations or instructions (fewer than 100) are responsible for
nearly all voltage emergencies. Any voltage crossing beyond the 4% operating margin is considered
an emergency in our experimental setup, which is described in Section 4.1.

class of dynamic performance optimization.
Dynamic optimization systems [Bala et al. 2000] are well suited for scenarios where

“90% of the execution time is spent in 10% of the code”. Figure 1 shows similar behav-
ior with respect to emergencies. In contrast to hardware techniques, a compiler-assisted
scheme can exploit the fact that programs have so few static emergency-prone hot spots. In
our scheme, a dynamic compiler eliminates a large fraction of theDynamic emergency count.
We demonstrate a compiler-based issue rate staggering technique that reduces emergencies
by applying transformations such as rescheduling existing code or injecting new code into
the dynamic instruction stream of a program.

Unlike throttling-based hardware schemes, our solution does not require design-time
package- and microarchitecture-specific solutions. A dynamic compiler is inherently fine-
grained, code-aware, and machine-specific, and it can adapt to the run-time environment.
Our collaborative design is a more holistic technique for handling voltage emergencies, as
compared to prior hardware techniques. Therefore, our solution allows us to more eas-
ily harness the benefits of improved energy efficiency or performance improvement that
aggressive margins enable.

The primary contributions of this paper are as follows:

(1) Design and implementation of a dynamic compiler-based system for suppressing re-
curring voltage emergencies.

(2) An instruction rescheduling algorithm that prevents voltage emergencies by staggering
the issue rate.

(3) Demonstration that general-purpose checkpoint-recovery hardware is useful to infre-
quently tolerate voltage emergencies at aggressive operating margins when combined
with our hardware and software co-design approach.

The rest of the paper is organized as follows: Section 2 presents the structure of the pro-
posed hardware-software collaborative approach along with design details for each of the
individual hardware and software components. Section 3 presents a code transformation
algorithm that we employ to smooth the voltage of the executing program, after the region
has been identified. Section 4 discusses performance results, Section 5 discusses related
work and Section 6 concludes the paper.

ACM Transactions on Architecture and Code Optimization

4 · Vijay Janapa Reddi et al.

Event History Tracker
BTB and D-EAR performance counters

Fail-safe Mechanism
Execution recovery maintaining correctness guarantees

Profiler
Hotspot detection &
Event categorization

Compiler
NOP injection &

Code rescheduling
Binary

Software

Hardware

Execution
Engine

Emergency Detector
Current or voltage sensing

Fig. 2: Workflow diagram of the proposed software-assisted hardware-guaranteed architecture to
deal with voltage emergencies.

2. A COLLABORATIVE FRAMEWORK TO MITIGATE VOLTAGE NOISE

The benefits of a collaborative hardware-software approach are twofold: First, recur-
ring emergencies are avoidable via software code transformation. Second, a collaborative
scheme allows hardware designers to relax worst-case timing margin requirements be-
cause of the reduced number of emergencies. The net effect is better energy efficiency or
improved performance. In this section, we first present an overview of how our collabora-
tive architecture works and highlight the critical components. Following that, we present
details about each of the hardware and software components.

2.1 Overview

Figure 2 illustrates the operational flow of our system. AnEmergency Detector contin-
uously monitors execution. When it detects an emergency, it activates the hardware’s
Fail-safe Mechanism. We assume that a general-purpose checkpoint-recovery mechanism
restores execution to a previously known valid processor state whenever an emergency is
detected. After recovery, the detector notifies the software layer of the voltage emergency.

The software operates inlazymode; it waits for emergency notifications from the hard-
ware. Whenever a notification arrives, the software’sProfiler extracts information about
recent processor activity from theEvent History Tracker, which maintains information about
cache misses, pipeline flushes, and so on. The profiler uses this information to identify
the code region corresponding to an emergency. Subsequently, the profiler calls a run-time
Compiler to alter the code responsible for causing the emergency in an attempt to eliminate
future emergencies at the same program location.

2.2 Hardware Design

The hardware support mechanism consists of a voltage emergency detector that iden-
tifies when an emergency has occurred, a fail-safe mechanism that engages after every
emergency to provide a rollback mechanism, and an event history tracker that is used to

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 5

communicate to the software component.

2.2.1 Emergency detector.To detect operating margin violations, we rely on a voltage
sensor. The detector invokes the fail-safe mechanism when it detects an emergency. After
recovery, the detector invokes the software layer for profiling and code transformation to
eliminate subsequent emergencies.

2.2.2 Fail-safe mechanism.Our scheme allows voltage emergencies to occur in or-
der to identify emergency-prone code regions for software transformation. We therefore
require a mechanism for recovering from a corrupt processor state. We use a recovery
mechanism similar to that found in reactive techniques for processor error detection and
correction that have been proposed for handling soft errors [Wang and Patel 2006; Agarwal
et al. 2004]. These are primarily based on checkpoint and rollback. We use explicit check-
pointing, which is a scheme already shipping in production systems [Ando et al. 2003;
Slegel et al. 1999].

Explicit-checkpoint mechanisms rely on explicitly saving the architectural state of the
processor, i.e., the architectural registers and updated memory state. But there is substan-
tial overhead associated with restoring the register state, and there are additional cache
misses at the time of recovery (a buffered memory update is assumed, with updated lines
between checkpoints marked as volatile). Moreover, a robust explicit-checkpoint mecha-
nism for noise margin violations must be independent of sensor delays. Any checkpoint
falling after a violation but before its subsequent detection due to sensor delays must be
considered corrupt. Therefore, providing correct recovery semantics requires maintaining
two checkpoints. The interval between checkpoints is just tens of cycles.

While we choose explicit checkpointing for evaluation in this paper, the overall approach
is independent of the specific checkpointing implementation. So we refer readers to Sec-
tion 5 for alternative checkpointing schemes that could be used in place of the explicit
checkpointing mechanism.

2.2.3 Event history tracker.The software layer requires pertinent information to lo-
cate the instruction sequence responsible for an emergency in order to do code transforma-
tion. For this purpose, we require the processor to maintain two circular structures similar
to those already found in existing architectures like the IPF and PowerPC systems. The
first is abranch trace buffer (BTB), which maintains information about the most recent
branch instructions, their predictions, and their resolved targets. The second is adata event
address register (D-EAR), which tracks recent memory instruction addresses and their cor-
responding effective addresses for all cache and translation lookaside buffer (TLB) misses.
The software extracts this information whenever it receives a notification about an emer-
gency.

2.3 Software Design

The software component consists of a profiler that converts the information gathered by
the hardware event history tracker into a particular location in the code, and a compiler that
analyzes and modifies the program to prevent future recurrences.

2.3.1 Profiler. The profiler is notified whenever a hardware emergency occurs. The
profiler identifies emergency-prone program locations for the compiler to optimize. It
records the time and frequency of emergency occurrences in addition to recent microarchi-
tectural event activity extracted from the performance counters. Using this information the

ACM Transactions on Architecture and Code Optimization

6 · Vijay Janapa Reddi et al.

480 490 500 510 520 530

10

20

30

C
ur

re
nt

480 490 500 510 520 530

2
4
6
8

10

Is
su

e
R

at
e

480 490 500 510 520 530

Flush

Longlat

Cache

TLB
P

ro
ce

ss
or

 E
ve

nt

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04

V
ol

ta
ge

480 490 500 510 520 530

Flush

Longlat

Cache

TLB

480 490 500 510 520 530

2
4
6
8

10

480 490 500 510 520 530
0.96

0.98

1

1.02

1.04

480 490 500 510 520 530

10

20

30

Before Software Optimization After Software Optimization

Steep dI/dt causes voltage to
 drop below the minimum margin

Data dependence on a long latency operation
 causes all pipeline activity to stall

Software optimization reduces issue
 rate, thereby causing a smaller dI/dt

Smaller dI/dt prevents
 the voltage emergency

Rapid issue rate causes steep dI/dt

Fig. 3: A 50-cycle execution snapshot of benchmarkSieve. It shows the impact of a pipeline stall due
to a long latency operation on processor current and voltage. An operating margin of 4% is assumed
(i.e., a maximum of 1.04V and minimum of 0.96V). (a)Before Software Optimization shows how a stall
triggers an emergency as the issue rate ramps up quickly once the long-latency operation completes.
(b) After Software Optimization demonstrates how compiler-assisted code rescheduling slows the issue
rate after the long latency operation to eliminate the emergency illustrated in (a).

profiler locates the instruction responsible for an emergency using theevent categorization
algorithm [Gupta et al. 2007]. The algorithm works on an out-of-order superscalar machine
and it is important to note that the compiler is sensitive to the algorithm’s effectiveness, as
the algorithm is responsible for directing the compiler to the appropriate code location to
target. We refer to this problematic instruction as theroot-causeinstruction and we rely on
the robustness of the algorithm provided by prior work to identify the root-cause correctly.

Event categorization identifies root-cause instructions based on the understanding that
microarchitectural events along with long-latency operations can give rise to pipeline stalls.
A burst of activity following the stall can cause the voltage to drop below the minimum
operating margin due to a sudden increase in current draw. Such a violation of the min-
imum voltage margin is by definition a voltage emergency. Figure 3(a) illustrates such a
scenario using the experimental setup we describe in Section 4.1. A data dependence on
a long-latency operation stalls all processor activity. When the operation completes, the
issue rate increases rapidly as several dependent instructions are successively allocated to
different execution units. This gives rise to a voltage emergency because of the sudden in-
crease in current draw. The categorization algorithm associates the long-latency operation
as the root cause since it caused the burst of activity that gave rise to an emergency.

Generally, there are several other causes of voltage emergencies, ranging from cache
misses to branch mispredictions and TLB misses. We characterize these for the bench-
marks we evaluate later in Section 4.1.3. The profiler is equipped to detect the root-cause
for all types of emergencies. In this work, we do not focus on eliminating the events that
lead to an emergency, rather we focus on smoothing activity following the event to prevent
an emergency, since in reality it is impossible to eliminate every microarchitectural event
from a real system.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 7

2.3.2 Compiler. Figure 3(a) illustrates that voltage emergencies depend on the issue
rate of the machine. Therefore, slowing the issue rate of the machine at the appropriate
point can prevent voltage emergencies. We can achieve the same goal in software by alter-
ing the program code that gives rise to emergencies at execution time, and can do so without
large performance penalties. The compiler tries to exploit pipeline delays by rescheduling
instructions to decrease the issue rate close to the root-cause instruction. Pipeline delays
exist because of NOP instructions or read-after-write (RAW), write-after-read (WAR), or
write-after-write (WAW) dependencies between instructions. Hardware optimization tech-
niques like register renaming in a superscalar machines can optimize away WAR and WAW
dependencies, so a RAW dependence is the only kind that forces the hardware to execute in
sequential order. The compiler tries to exploit RAW dependencies that already exist in the
program to slow the issue rate by placing the dependent instructions close to one another.

In the following sections, we discuss two approaches we explored for injecting pipeline
delays at the software level. We outline one simple approach consisting of inserting nops,
and a more sophisticated approach that exploits existing RAW dependencies. Later, in
Section 4, we evaluate each approach in turn.

NOP Injection. A simple way for the compiler to slow the pipeline is to insert NOP
instructions specified in the instruction set architecture into the dynamic instruction stream
of a program. However, modern processors discard NOP instructions at the decode stage.
Therefore, the instruction does not affect the issue rate of the machine. Instead of real
NOPs, the compiler can generate a sequence of instructions containing RAW dependencies
that have no effect. Since thesepseudo-NOPinstructions perform no useful work, this
approach often degrades performance.

The compiler attempts to construct the pseudo-NOP instruction sequence utilizing only
dead registers. However, this is not always feasible. In such cases, the compiler spills
the contents of live general purpose registers needed for pseudo-NOP code generation.
Following the creation and insertion of the pseudo-NOP code in the appropriate location,
the compiler fills back live register state and returns control back to the original program
code instruction sequence. Therefore, in addition to wasted cycles due to pseudo-NOP
code execution, the system may experience additional performance loss due to register
spills and fills.

Code Rescheduling.A better way to smooth processor activity is to exploit RAW de-
pendencies already existing in the original control flow graph (CFG) of the program. This
constrains the burst of activity when the machine resumes execution after the stall, which
prevents the emergency. Whether the compiler can successfully move instructions to cre-
ate a sequence of RAW dependencies depends on whether moving the code violates either
control dependencies or data dependencies. From a high level, the compiler’s instruction
scheduler does not break data dependencies, but it works around control dependencies by
cloning the required instructions and moving them around the control flow graph such that
the original program semantics are still maintained.

To illustrate our code rescheduling approach, in Figure 4(a) we present a simplified
sketch of the code corresponding to the activity shown in Figure 3(a). The long-latency op-
eration illustrated in Figure 3 corresponds to thedivide instruction shown in basic block 4
of Figure 4. An emergency repeatedly occurs in basic block 3 along the dotted loop
backedge path4 → 1 → 2 → 3. The categorization algorithm identifies thedivide in-
struction corresponding toC ← A / B in basic block 4 as the root-cause instruction. The

ACM Transactions on Architecture and Code Optimization

8 · Vijay Janapa Reddi et al.

A ← A + 1

C ← A > B
...

...

...

A ← B

C ← 0 > B

C ← A / B
...

L
o
o
p
b
a
c
k
 e
d
g
e

1

2

3

4

(a) Before.

A ← B

A ← A + 1

C ← A > B

...

...

C ← 0 > B

C ← A / B
...

A ← B

L
o
o
p
b
a
c
k
 e
d
g
e

1

2

3

4

5

(b) After.

Fig. 4: Effect of code rescheduling on an emergency-prone loop from benchmarkSieve. (a) An
emergency consistently occurs in basic block 3 along the dotted loop backedge path4→1→2→3.
(b) Moving instructionA ← B from block 1 to block 2 puts dependent instructions closer together,
thereby constraining the issue rate. This prevents all subsequent emergencies in basic block 3.

compiler identifies the control flow path using the branch history information extracted by
the profiler from the BTB counters, and recognizes that moving instructionA ← B from
basic block 1 to 2 will constrain the issue rate of the machine because of a tighter sequence
of RAW dependencies. But the compiler also recognizes that the result ofA ← B is live
along edge1→3, so it clones the instruction into a new basic block (basic block 5) along
that edge to ensure correctness.

The resulting effect after rescheduling is illustrated in Figure 3(b). Activity in this figure
is slightly offset to the right by about 5 clock cycles from Figure 3(a) due to subtle changes
to the loop structure from code rescheduling. Nevertheless, the stall event still occurs at
the same program location. The slight change in current activity between cycles 490 and
500 is a result of code rescheduling. After dependent instructions are packed close to one
another in basic block 2, the issue rate in Figure 3(b) does not spike as high as it does in
Figure 3(a) once pipeline activity resumes after the stall.

Code rescheduling alters the current and voltage profile. Therefore, the scheduler must
be careful not to simply displace emergencies from one location to another by arbitrarily
moving code from far away regions. To retain the original activity, the code rescheduling
algorithm searches for RAW dependencies starting with the basic block containing the
root-cause instruction. Using this anchor point, the software code scheduler enlarges its
search window iteratively over the CFG until it finds a RAW dependence to exploit or it
reaches the scope of a function body, at which point it gives up.

Out-of-order execution complicates instruction rescheduling, as the machine can bypass
the RAW dependence chain generated by the compiler if there is enough other code avail-
able for execution in the hardware’s scheduling window. The scheduler handles this by
choosing a RAW candidate from a setC1 of candidates by computing the subsetC2 ⊆ C1

such that each element ofC2 has the longest RAW dependence chain after moving the
instructions to the required location. By targeting long RAW dependence chains, the com-
piler increases the chances that the machine’s scheduling window will fill with depen-
dent code, reducing the issue rate. Otherwise, the compiler must generate multiple sets of
smaller RAW dependence chains.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 9

Instruction Description Event Type

Root-cause Instruction identified by the hardware as the cause of an emergency. All but BR.
Last-writeback Most recent instruction in the write back stage of the pipeline. All but BR.

Wrong-path First instruction along the speculative path prior to detecting a misprediction. All (including BR).

Table I: Types of instructions that the code rescheduling algorithm targets depending on the event
responsible for an emergency.

In the following section, we present a detailed description of our algorithm, which
is a specific instantiation of the general concept we propose to prevent emergencies—
staggering the issue rate using RAW dependence chains.

3. SOFTWARE-BASED CODE RESCHEDULING ALGORITHM

Given a root-cause instruction, our scheduler constrains the instruction issue rate at dif-
ferent points within the CFG. The scheduler transforms the code differently depending on
whether or not the emergency was caused by a branch misprediction. In the simple case,
such as an emergency caused by a sudden burst of activity following a cache miss event or a
long latency stall (as illustrated in Figure 3), the scheduler targets the root-cause instruction
and the last writeback instruction to successfully remove emergencies. Table I describes
these instruction types and indicates under which event conditions the code rescheduler
targets them. We consider these two particular locations to prevent the out-of-order issue
logic from intelligently bypassing the RAW dependence chain put in place to prevent the
emergency. The hardware may discover some other instruction sequences also ready for
execution. These other sequences could lead to a burst of activity that can cause an emer-
gency, thus rendering our transformations ineffective. Therefore, we conservatively target
two locations to constrain the issue rate.

When an emergency is caused by a branch misprediction (BR), the scheduler must take
into account the speculative set of instructions executed by the machine. We experimen-
tally discovered that constraining the issue rate before a pipeline flush event along the
wrong path significantly increases the chances of preventing an emergency. Therefore, to
prevent branch misprediction-related emergencies, the scheduler targets the root-cause in-
struction, the last writeback instruction, as well as the first instruction along the speculative
path that is executed just prior to detecting the branch misprediction.

Algorithm 1 illustrates the highest-level pseudocode that the compiler invokes to trans-
form the code at the point of an emergency (i.e., root-cause instructionr). It takes as input
the three input instructions described above that theProfiler mechanism (illustrated in Fig-
ure 2) identified. The algorithm then invokes theScheduler function to transform the code in
order to constrain the issue rate just before a specific instruction: the algorithm constrains
the issue rate on the last write back instruction regardless of the emergency type and before
every successor of the root-cause instruction. However, depending on the emergency type,
we decide the successor paths on which to constrain the issue rate. In the case of a branch
misprediction-related emergency, we constrain the issue rate on the fallthrough, as well the
taken path, thereby smoothing voltage along the speculative path as well.

Determining Candidates for Code Motion. The Scheduler function discovers and
schedules a RAW chain before its input parameter instructiona. To locate the closest and
longest RAW chain, theScheduler invokes theGlobalCandidate function. TheGlobalCandidate

function defines the scope or range of basic blocks from within which theLocalCandidate

ACM Transactions on Architecture and Code Optimization

10 · Vijay Janapa Reddi et al.

Algorithm 1 : Highest-level routine for performing instruction scheduling to prevent
voltage emergencies
Input : Emergence typet
Input : Root-cause instructionr
Input : Last write-back instructionl
Input : Wrong instructionw
Scheduler(l) ;
switch t do

caseBranch misprediction-related emergency
a ∈ Succ(r)|a 6= w ;
Scheduler(a) ;
Scheduler(w) ;

end
otherwise

a ∈ Succ(r) ;
Scheduler(a) ;

end
end

Function Scheduler(a)
Input : Instructiona
l = GlobalCandidate(a) ;
if length(i) > 0 then

MarkScheduled(i) ;
GCSMove(i, a) ;

end

function attempts to construct the longest RAW dependence chain. WhenLocalCandidate

fails (for instance, when no dependent instructions can be found),GlobalCandidate enlarges
the range of basic blocks to consider and the process repeats.

The return value ofGlobalCandidate is a linked list of instructionsl that can be success-
fully scheduled. If this list is not null, theScheduler function notes these instructions as
already visited using theMarkScheduled function. Visited or previously scheduled instruc-
tions cannot be subsequently rescheduled, as that would perturb or invalidate a previously
scheduled RAW chain, or could lead to schedule thrashing.

Performing Code Motion. Upon identifying a useful RAW chain fromGlobalCandidate,
theScheduler function callsGCSMove to migrate the necessary set of instructions from one
location to another.GCSMove is based on the standardGlobal Code Scheduling(GCS) al-
gorithm [Aho et al. 2006]. Briefly, the GCS algorithm clones instructions as necessary to
move instructions. It discovers the necessary set of clones by means of the pre and post
dominance relations computed using the CFG. An instructiona predominates instruction
b if, and only if, instructiona always executes before instructionb. Instructionb post-
dominates instructiona if, and only if, instructionb is always executed after executing
instructiona. If the instruction to schedule, sayb, postdominates target instructiona, and
a predominatesb, then no instruction cloning is necessary. However, if this condition does

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 11

Function GlobalCandidate(a)
Input : Instructiona
Output : Linked list of instructions
S = BasicBlock(a) ;
i = {} ;
while i == {} ∧ S 6= CFG do

i = LocalCandidate(S, a) ;
S1 = S ;
forall s ∈ S do

S1 = S1∪ Succ(s) ∪ Prev(s) ;
end
S = S1 ;
forall s ∈ S do

S1 = S1∪ BasicBlock(s) ;
end
S = S1 ;

end
returni ;

not hold, instructions must be cloned and inserted in positions found by theanticipated
expressionscomputed using data-flow analysis [Aho et al. 2006].

TheLocalCandidate function attempts to construct the longest dependence chain using the
MoveableBefore function. This intermediateMoveableBefore function checks to see if the first
instructions given as its input can be moved just prior to its targeta by means of GCS. We
impose constraints withinMovableBefore to prevent perturbing the original voltage profile
so much so that our constructive code transformations become ineffective. Specifically, we
impose instruction cloning rules:

(1) The head of the RAW chain, instructions, can be scheduled before targeta assuming
no limit on the number of clones necessary to migrates anywhere within the scope
defined by theGlobalCandidate function.

(2) All other instructions belonging to the RAW chain can be cloned at most once.

(3) Allowed cloning cannot increase the dynamic instruction of the program, since ag-
gressive cloning can potentially impact performance.

If these conditions are not satisfied, theLocalCandidate function returns a null list of in-
structions, forcingGlobalCandidate to enlarge the scope and retry. Readers are welcome to
relax these constraints in an attempt to improve the chances of finding a suitable RAW
dependence chain. However, there is a risk of increasing the execution time, and even po-
tentially perturbing neighboring code so much so that the transformed code leads to new
emergencies.

A Demonstration of the Code Rescheduling Algorithm. To facilitate better under-
standing, here we illustrate the functionality of the code rescheduling algorithm with a
simplified example extracted from a real scenario in benchmarkRayTrace. Consider the
original program CFG and its related Data-Dependence Graph (DDG) shown in Figure 5a
and Figure 5c, respectively. Instruction4 is the root-cause related to a branch mispre-
diction. Instruction8 corresponds to the wrong path instruction, or the first instruction

ACM Transactions on Architecture and Code Optimization

12 · Vijay Janapa Reddi et al.

Function LocalCandidate(S, a)
Input : Instruction setS
Input : Instructiona
Output : Linked list of instructions
C = ∅ ;
forall s ∈ S do

if MovableBefore(s, a) ∧¬Marked(s) then
C = C ∪ {s} ;

end
end
j ∈ C ;
forall c ∈ C do

if DataDependencesLength(c, a) > DataDependencesLength(j, a) then
j = a ;

end
end
returnLongestRAWDependenceChain(j) ;

executed along the incorrectly speculated path. In order to smooth the voltage emergency
at the root-cause, the scheduler attempts to add a RAW dependence chain of instructions
between instructions4 and 5, instructions4 and 8 and just before the last writeback in-
struction. For simplicity, we only elaborate the steps taken to construct the chain between
instructions4 and5.

The algorithm starts by looking for the best RAW chain by calling theGlobalCandidate

function, giving instruction5 as its input. TheGlobalCandidate function callsLocalCandidate

to find the longest RAW chain inside the present scope of interest, which is the basic block
containing instruction5. The LocalCandidate function returns null upon first invocation.
Consequently,GlobalCandidate enlarges the scope and re-invokes theLocalCandidate func-
tion. Figure 5a illustrates this scope enlargement process using the initially small dotted
inner circle, and subsequently enlarging the scope to include more basic blocks.

During the subsequent call toLocalCandidate, several additional blocks are chosen for
creating the RAW chain. These basic blocks are chosen because they are within one edge
distance away from all basic blocks previously considered. At this point, the algorithm
finds six candidate instructions (1, 2, 9, 10, 11 and14) as heads of RAW chains. Hence, we
haveC = {1, 2, 9, 10, 11, 14}. From this set of six potential chains,LocalCandidate chooses
the longest RAW chain it can create without violating our cloning rules. It finds instruc-
tion 1 as the best candidate. Moving instruction1 along with its data-dependent sequence
(instructions1, 2 and3) between instructions4 and5 leads to an optimum solution with
a chain length of three. Note that while instruction 9 can lead to a RAW chain length of
4, LocalCandidate cannot choose this alternative because we specified that cloning cannot
increase the dynamic instruction of the program. Alternative implementations of our al-
gorithm that relax this constraint are possible for improving emergency coverage, albeit
at the risk of potentially slower runtime performance. The transformed CFG is shown in
Figure 5b, where we see that instructions 1, 3, and 5 have been replicated and migrated
down the CFG.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 13

(a) Before rescheduling. (b) After rescheduling.

(c)

Fig. 5: (a) Control flow graph of an emergency-prone piece of code from benchmarkRayTrace.
(b) Rescheduled code after the compiler moves instructions to remove the emergency caused by
the frequently mispredicted branch at location4. (c) Data dependence graph corresponding to the
original code that the rescheduling algorithm uses to extract the safest RAW dependence chain.

4. EVALUATION

Our system evaluation demonstrates the effectiveness of the compiler at reducing voltage
emergencies and shows the impact of its code changes on performance. After showing that
the compiler can reduce over 60% of emergencies (Section 4.2) with minimal overheads
(Section 4.3), we present a performance study (Section 4.4) showing that our software-
assisted scheme overcomes the challenges of existing hardware techniques effectively.

ACM Transactions on Architecture and Code Optimization

14 · Vijay Janapa Reddi et al.

Clock Rate 3.0 GHz RAS 64 Entries
Inst. Window 128-ROB, 64-LSQ Branch Penalty 10 cycles

Functional 8 Int ALU, 4 FP ALU, Branch 64-KB bimodal
Units 2 Int Mul/Div, Predictor gshare/chooser

2 FP Mul/Div BTB 1K Entries
Fetch Width 8 Instructions Decode Width 8 Instructions
L1 D-Cache 64 KB 2-way L1 I-Cache 64 KB 2-way

L2 I/D-Cache 2MB 4-way, Main Memory 300 cycle
16 cycle latency latency

Table II: Baseline architecture parameters for SimpleScalar.

4.1 Experimental Setup

Given that modern hardware does not support fine-grained access to voltage sensors,
we explored our design using a hardware simulator together with an existing software
compilation infrastructure.

4.1.1 Hardware simulator.We used SimpleScalar/x86 to simulate a Pentium 4 with
the characteristics shown in Table II. The modified 8-way superscalar x86 SimpleScalar
gathers detailed cycle-accurate current profiles using Wattch [Brooks et al. 2000]. This
tool is an architectural simulator that estimates CPU power consumption based on a set of
parameterizable power models for different hardware structures using per-cycle resource
accounting. To model voltage variations, the simulator convolves the simulated current
profiles with an impulse response of the power delivery subsystem [Powell and Vijaykumar
2004; Joseph et al. 2003] each cycle. In this work, we focus on a power delivery subsystem
model based on the characteristics of the Pentium 4 package [Aygun et al. 2005], which
exhibits a mid-frequency resonance at 100MHz with a peak impedance of 5mΩ. Finally,
we assume peak current swings of 16-50A.

4.1.2 Compiler infrastructure.We use the ILDJIT [Campanoni et al. 2008] CIL com-
piler as our framework for optimizing emergencies at run time. The compiler dynamically
generates native x86 code from CIL byte code, which it then executes directly on the sim-
ulator. We extended the ILDJIT compiler to include the code injection and scheduling
algorithms described in Section 2.3. The compiler has access to metadata such as the
complete control flow graph and data flow graph, all of which is utilized at run time for
optimization.

4.1.3 Benchmarks.We use the C# benchmarks that come from the Java Grande bench-
mark suite [Bull et al. 2000]. Table III presents a summary description of each of the bench-
marks. While the programs run for an extended period of time, on the order of billions of
instructions, we shorten their execution time to approximately 150 million instructions
because of the hardware simulation overhead exhibited by SimpleScalar.

To briefly characterize the voltage emergencies in our benchmarks, Figure 6 shows the
distribution of root-causes across the benchmarks. The majority of the emergencies in
the Java Grande benchmark suite arise because of stalls due toLong Latency operations,
Cache Miss andBranch Misprediction events. TheOthers category corresponds to those events
we were unable to successfully attribute to any specific microarchitectural event. This
likely resulted from code-based bursts of activity such as the “power virus” demonstrated
by other researchers [Joseph et al. 2003]. Finally,TLB Miss events did not tend to result in

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 15

Benchmark Description

FFT Performs a one-dimensional forward transform of N different complex numbers

RayTrace Measures the performance of a 3D ray tracer on a scene containing 64 spheres

LU Linear system solver that is based on Linpack

Montecarlo Financial simulation using MonteCarlo techniques

Sor Performs successive over-relaxation over a grid

SparseMM Matrix-vector multiplication using an unstructured sparse matrix

Heapsort Sorts an array of integers using a heap sort algorithm

Method Determines virtual machine method call overheads

Sieve Algorithm for finding the prime numbers in a given interval

Table III: Benchmark descriptions.

 Cache Miss (17.8%)

 TLB Miss (0.1%)

 Branch Misprediction (47.8%)

 Long Latency (28.6%)

 Others (5.8%)

Fig. 6: Aggregate distribution of root-causes across benchmarks in the Java Grande benchmark suite.

emergencies in our evaluated benchmark suite. The absolute number of emergencies per
benchmark is shown in Table V.

The emergency distribution we present allows readers to compare the traits of our bench-
marks to more traditional benchmarks such as CPU2006. CIL byte code is unavailable for
SPEC workloads, so we were unable to evaluate them directly. However, since the distri-
bution and number of emergencies for the Java Grande programs is representative of prior
hardware-based work using SPEC workloads [Gupta et al. 2009], we expect our results
to generalize, and we feel that the results and contributions of this paper outweigh this
limitation of the experimental infrastructure.

4.2 Effectiveness of the Compiler-Based Transformations

The goal of our software-based voltage emergency elimination is to: (1) reduce the
number of voltage emergencies, and (2) ensure that performance does not suffer as a result
of our code transformations. We first evaluate the effectiveness of NOP injection and code
rescheduling, where we find that (1) the choice of transformation affects performance, and
that (2) the transformation itself can introduce new emergencies if the scheduler is not
careful. Following this analysis, in the next section, we will factor in all costs to evaluate
full-system performance.

ACM Transactions on Architecture and Code Optimization

16 · Vijay Janapa Reddi et al.

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

100

200

300

P
er

ce
nt

ag
e

of
E

m
er

ge
nc

ie
s

R
em

ai
ni

ng

NOP injection
Code rescheduling

Baseline

Fig. 7: Percentage of emergencies remaining after code transformation. Lower than the baseline
100% is good, implying fewer emergencies than the original code. Otherwise, it means the transfor-
mation lead to more emergencies than the original code.

4.2.1 NOP injection.As described earlier, the NOP injection algorithm inserts new
instructions into the program path that slows down the machine issue rate as needed to
prevent an emergency. In our specific implementation, the sequence is made up of three
instructions that form a RAW chain at the intermediate representation-level. But after code
generation we find that the sequence typically grows to between six and eight instructions
due to register allocation.

The effectiveness of the scheme is shown by the left bar in Figure 7. The bar shows the
percentage of emergencies remaining after the compiler has attempted to prevent emergen-
cies by injecting pseudo-NOP code. The number of emergencies is reduced by∼50% or
more in benchmarksFFT, RayTrace, Method, Sieve, andHeapsort, which shows that the
transformation can be effective. However, the transformation is not as effective across the
remaining benchmarksLU, Montecarlo, SorandSparseMM. In fact, the number of emer-
gencies increases by over twofold for benchmarkLU. The loops and the specific code paths
within that the compiler targets in these benchmarks are under extreme register pressure.
Consequently, adding new code leads to frequent spills and fills during each loop iteration.
These memory loads and stores cause additional cache and TLB misses. Some become
new root-causes that lead to more emergencies than the original code experiences.

Analysis reveals that pseudo-NOP injection does reduce the original program’s emer-
gencies, but the transformation itself also gives rise to new emergencies. The compiler
generates spill and fill code to create the pseudo-NOP code sequence. This has the ad-
verse effect of not only increasing the number of instructions needed to simulate the NOP,
but also potentially causing architectural events like cache misses (from the spill and fill
code) that dramatically alter the current and voltage profile. These side effects depend
on the number of registers available for use and the properties of the original instruction
schedule, among other conditions. It is difficult to predict the current and voltage response
activity that will result from injecting new code, so the new emergencies are not easy to
avoid, as we see in the case ofLU, Montecarlo, Sor, andSparseMM.

Additionally, the run-time performance of the original program suffers with the injection
of pseudo-NOP code, as the injected code does not serve the original program’s purpose.
The left bar in Figure 8 shows execution performance of the program with the injected
code. The data indicates that the effect of simply adding new code to prevent emergencies
can be severely detrimental to performance. In the case of benchmarksHeapsortandSieve
performance degrades by as much as 300%. Large execution overheads indicate that while
a transformation can be very effective at reducing voltage emergencies (e.g., benchmark
Sievehas fewer than 10 emergencies remaining), the compiler must be sensitive to its run-
time performance implications.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 17

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

100

200

300

400

%
 R

el
at

iv
e

P
er

fo
rm

an
ce

(w
/o

 e
m

er
ge

nc
y

pe
na

lti
es

)

NOP injection
Code rescheduling

Baseline

Fig. 8: Code performance after transformation. The cost for handling emergencies is not shown
in this plot to isolate the effect of code transformation on the run-time performance. Section 4.4
evaluates overall performance after factoring in code performance costs, along with penalties for
handling emergencies.

4.2.2 Code rescheduling.A compiler approach that relocates RAW dependencies fol-
lowing the root-cause instruction does not suffer from the severely unpredictable behavior
of injecting code to prevent emergencies. Code rescheduling is superior to simple NOP
injection for the following reasons. First, it successfully reduces more emergencies across
all the benchmarks (illustrated by the bars on the right in Figure 7). Second, it does so
without dramatically increasing the execution time of a program (as shown in Figure 8).
Our analysis also shows that it does not introduce new emergencies, as the compiler does
not inject new code that significantly alters the current and voltage profile.

For instance, consider benchmarkFFT. The NOP injection transformation and the code
rescheduling transformation eliminate approximately the same number of emergencies.
However, the effect on performance between the two transformations is substantially dif-
ferent. The NOP injection transformation causes the original program to take twice as long
to execute, whereas code rescheduling has a negligible effect on the original program’s per-
formance. That is because the NOP code wastes processor cycles, while the rescheduled
instructions are real program code that is simply restructured to prevent emergencies.

By restricting the compiler’s scheduling algorithm to the strict cloning rules described
in Section 2.3.2, we were able to effectively limit performance loss from injecting new
instructions. Table IV shows that the number of instructions added due to cloning is in
the order of tens of instructions. Thus when the dynamic instruction count of the program
does increase (resulting from the register allocator generating spill/fill code) it does so by a
tiny amount. These instruction increases are especially insignificant when considering that
the benchmarks execute hundreds of millions of instructions. In some benchmarks such
asMethodandHeapsort, the dynamic instruction count decreases by a small percentage
because code transformations change register allocation, leading to fewer register spills
and fills along the specialized paths.

Changes in the run-time performance of the rescheduled code are generally in the noise
for all benchmarks, and the reduction in emergencies averages∼61%. Reductions are
smaller over benchmarksLU, Sor, andSparseMM(around 30%) because the compiler
could not find enough RAW dependencies that it could relocate to slow the issue rate at
the frequently occurring root-cause locations. Therefore, some emergencies continue to
persist. Making code transformations can lead to new emergencies root-causes as well.
Figure 9 illustrates this breakdown. As we are careful to not aggressively modify the code
surrounding a root-cause, we see that the percentage of new emergencies introduced is a
very small fraction of all emergencies.

Ideally, the scheduling algorithm should attempt to create a RAW dependence chain long

ACM Transactions on Architecture and Code Optimization

18 · Vijay Janapa Reddi et al.

Benchmark
of Instructions % Change in

Cloned Moved Dynamic Instructions

FFT 7 30 0.0

RayTrace 20 40 -0.24

LU 28 64 0.1

Montecarlo 23 53 5.2

Sor 39 77 2.3

SparseMM 33 67 3.3

Heapsort 37 61 -1.0

Method 2 8 -3.7

Sieve 7 11 0.0

Table IV: Only a small percentage of the static code (in the order of tens of instructions) need modi-
fication to eliminate emergencies. Additionally, the changes the compiler makes has minimal impact
on the dynamic instruction count.

FFT RayTrace LU Montecarlo Sor SparseMMHeapsort Method Sieve

100

80

60

40

20

0%
 R

oo
t−

ca
us

e
D

is
tr

ib
ut

io
n

 New
 Persistent
 Eliminated

Fig. 9: Not all emergencies can be eliminated. Some root-causes cannot be fixed because the com-
piler cannot find sufficient code to construct RAW dependence chains. Also, new emergencies can
be introduced as a result of making transformations to existing code.

1.4 1.6 2.1 4 4.8 5 6 6.1 7
0

20

40

60

80

100

%
 E

m
er

ge
nc

ie
s

E
lim

in
at

ed

Fig. 10: There is a correlation between the number of emergencies the compiler can eliminate and
the average length of the dependence chains it creates. The compiler can eliminate more emergencies
as it creates chain lengths that approach the machine’s issue width. Our machine is 8-wide.

enough to block the issue width of the machine. We find that there is a strong correlation
between the length of the RAW dependence chain and how successfully the compiler can
eliminate emergencies. Figure 10 plots the average RAW chain length on the x-axis. The
percentage of emergencies eliminated across the different benchmarks is presented on the
y-axis. The simulated machine has an issue width of 8 instructions, and we find that the
number of emergencies eliminated steadily grows towards 100% as the length of the RAW
chain approaches the issue width of the machine.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 19

FFT RayTrace LU Montecarlo Sor SparseMM Heapsort Method Sieve
0

0.2

0.4

0.6

0.8

1
F

ra
ct

io
n

of
 E

m
er

ge
nc

ie
s

R
em

ov
ed

 Root−cause
 Root−cause + Wrong Path
 Root−cause + Wrong Path + Last Writeback

Fig. 11: This figure justifies the use of three program points for resolving voltage emergencies. The
combination of the root-cause instruction, the wrong path instruction, and the last writeback instruc-
tion, results in the ability to identify and resolve nearly all of the voltage emergencies encountered.

In Section 2.3.2, we mentioned that the compiler’s instruction scheduler targeted three
specific points of interest in the CFG for an emergency: the root-cause instruction, the
last write-back instruction, and in the case of a branch misprediction-related emergency,
the first instruction along the speculative path. We made a qualitative argument that these
three points provided good coverage to eliminate emergencies successfully, but here we
quantitatively justify that claim.

Assuming all three points are covered as the baseline, Figure 11 shows how effective
the compiler is at removing emergencies as we increase the number of points the scheduler
targets. We examine the three points here cumulatively, starting with the root-cause, but
we do not claim they are disjoint. The graph is normalized to 1, which indicates the utmost
number of emergencies we are able to eliminate using the code rescheduling algorithm.
This number corresponds to theCode rescheduling bar shown in Figure 7.

The left-most bar in Figure 11 shows the effect of targeting only theRoot-cause instruc-
tion. Since higher values mean fewer emergencies, we observe that the root-cause instruc-
tion alone is insufficient, and the effectiveness of the scheduler increases as we consider
the Last writeback andWrong path points. This is especially the case for programs that are
control intensive such as benchmarksRayTraceandMethod. Most of the emergencies in
these benchmarks arise because of branch mispredictions, therefore ignoring the issue rate
on the incorrectly speculated path can have a significant impact. However, by covering the
speculative execution path as well, efficiency improves onRayTraceby 60% andMethod
by nearly 80%.

Finally, all benchmarks, with the exception ofRayTraceandMethod, cover 100% of
emergencies when we take into account theLast writeback point. Our general consensus is
that if the program is highly data intensive with few control flow changes, then throttling
the issue rate at the last writeback instruction has a positive effect. The benchmark that
benefits the most from theLast writeback transformation isSieve, where all emergencies
eliminated were the result of focusing on theLast writeback instruction.

4.3 Compiler-Based Transformation Overhead

Our compiler cannot recompile itself, therefore we incur rollback penalties whenever
the compiler is itself executing. This includes the scenario when the compiler is generating
new dynamic code, as well as when the compiler is transforming existing code to prevent
emergencies. Table V shows the distribution of emergencies between the compiler and

ACM Transactions on Architecture and Code Optimization

20 · Vijay Janapa Reddi et al.

Benchmark
Number of Emergencies

Runtime Compiler Application Code

FFT 639 431368

RayTrace 16 834753

LU 2 29639

Montecarlo 0 201355

Sor 16 286487

SparseMM 203 203759

Heapsort 299 196915

Method 763 428671

Sieve 0 1407500

Table V: Number of emergencies that arise as the compiler generated application code is running
versus when the compiler is itself running (either for generating newly requested dynamic code or
while transforming existing application code to prevent emergencies).

Benchmark
% of Execution Time

Runtime Compiler Application Code

FFT 0.087 99.913

RayTrace 0.151 99.849

LU 0.082 99.918

Montecarlo 0.010 99.990

Sor 0.020 99.980

SparseMM 0.024 99.976

Heapsort 0.021 99.979

Method 0.010 99.990

Sieve 0.001 99.999

Table VI: Distribution of execution time spent handling emergencies in the compiler versus running
application code.

generated application code. The data strongly indicates that the fraction of emergencies
encountered during compiler execution is less than 1% on average across all benchmarks.
Since the fraction of emergencies is so small, compiler-associated rollback overhead is
insignificant.

Based on these results, the overhead of run-time code transformation to fix and elimi-
nate emergencies appears to be insignificant. Figure 1 showed that the number of static
emergency-prone program locations (root-cause instructions) is fewer than a hundred.
Therefore, our compiler is rarely invoked during execution to transform the code. Table VI
substantiates this claim by demonstrating that the percentage of execution time spent run-
ning generated application code is substantially larger than the time spent in the compiler
executing the rescheduling algorithm.

4.4 Full-System Performance Evaluation

Reducing operating voltage margins allows for frequency improvements and/or im-
proved energy efficiency. However, there are fail-safe mechanism penalties associated
with handling voltage emergencies at tighter margins. In this section, we demonstrate that
our dynamic compilation strategy complements general-purpose checkpoint-recovery for

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 21

Scheme CPI Overhead Performance Gain

Fail-safe mechanism 25.0% 3.0%
Fail-safe mechanism with code rescheduling 7.6% 19.8%

Oracle-based throttling 4.0% 23.8%

Table VII: Increase in CPI to handle voltage emergencies, and net performance improvement after
scaling the operating margin and factoring in the overheads. The upper bound on performance im-
provement is 29% assuming the margin is scaled from 18% to 4%. These results are the average
measured across all benchmarks.

voltage emergencies, enabling very aggressive operating margins in the processor. Per-
formance gains for our collaborative approach are within four percentage points of an
oracle-based throttling scheme. Results are presented in Table VII.

Bowman et al. show that removing a 10% operating voltage margin leads to a 15%
improvement in clock frequency [Bowman et al. 2008]. This indicates a 1.5x scaling factor
from operating voltage margin to clock frequency. We assume an aggressive operating
margin of 4% in our experiments as compared to a 18% worst-case margin2. Based on the
1.5x scaling factor, the 4% operating voltage margin assumed in this paper corresponds to
a 6% loss in frequency. Similarly, a conservative voltage margin of 18%, sufficient to cover
the worst-case drops, leads to 27% lower frequency. If we take this conservative margin
as the baseline and reduce the 18% margin to 4% while avoiding voltage emergencies,
the resulting ideal clock frequency improvement could be∼29%. This sets the upper
bound on frequency gains achievable. We make the simplifying assumption that frequency
improvements directly translate to higher overall system performance.

4.4.1 Fail-safe mechanism.An explicit-checkpointing scheme recovers from an emer-
gency by rolling back execution. The explicit-checkpoint scheme suffers from the penalty
of rolling back useful work done whenever a voltage emergency occurs. The restart penalty
is a direct function of the sensor delay in the system, i.e., the time required to detect a mar-
gin violation. An explicit-checkpoint scheme incurs additional overhead associated with
restoring the registers (assumed to be 8 cycles, for 32 registers with 4 write ports) and
memory state (when volatile lines are flushed, additional misses can occur at the time of
rollback).

Assuming a 50-cycle rollback penalty per recovery, an explicit-checkpoint scheme in-
curs an average increase of 25% in CPI for the benchmarks we evaluated. Performance
gains from scaling the operating margin down to 4% are minor at only 3%. This minimal
improvement in performance implies that explicit-checkpointing by itself cannot handle
voltage emergencies successfully at aggressive margins.

4.4.2 Fail-safe mechanism with code rescheduling.While the performance gains us-
ing only explicit-checkpointing are minimal, the gains are larger when the fail-safe mech-
anism is combined with our proposed software counterpart. Of the two compiler transfor-
mations discussed in Section 2.3 we evaluate the code rescheduling transformation only,
since it appeared to be the most promising technique for effectively reducing the number
of emergencies without a detrimental performance impact.

The profiler identifies root-cause instructions as the fail-safe checkpoint scheme initiates

2The worst voltage drop we observe for our power delivery package is 18%.

ACM Transactions on Architecture and Code Optimization

22 · Vijay Janapa Reddi et al.

rollbacks. So there is some amount of rollback penalty associated with initially discovering
root-cause instructions for transformation. Thereafter, however, the compiler optimizes the
root-cause instructions to permanently prevent subsequent occurrences of emergencies at
the same program location. If the rescheduling algorithm is ineffective at fixing certain
emergency points, rollback penalties may still arise at those points (as shown in Figure 7
and discussed in Section 4.2). Combining explicit checkpointing with compiler assistance
reduces checkpointing overhead substantially, from 25% to 7.6%. This translates to a net
performance gain of∼20%.

4.4.3 Performance comparison to other schemes.Several researchers have proposed
mechanisms that spread out a sudden increase in current via execution throttling. Sev-
eral kinds of throttling have been proposed [Ayers 2002; Joseph et al. 2003; Powell and
Vijaykumar 2003; 2004]. For evaluation purposes, we compare the performance of our
scheme against a frequency throttling mechanism that quickly reduces current load. The
frequency of the system is halved whenever throttling is turned on, which results in perfor-
mance loss.

We compare against an oracle-based throttling scheme, which throttles once per emer-
gency and always successfully prevents the emergency. As a result, an oracle scheme does
not suffer from rollback costs, nor does it suffer from performance loss due to throttles
that cannot prevent emergencies. Oracle-based throttling enables∼24% improvement in
performance for tightened margins, which is just four percentage points better than our
scheme. Of course, our scheme represents a practical design.

While an oracle-based scheme always successfully prevents emergencies, it is important
to remember that realistic sensor-based implementations suffer from a tight feedback loop
that involves detecting an imminent emergency and then activating the throttling mecha-
nism in a timely manner to avoid the emergency. The detectors are either current sensors or
voltage sensors that trigger when a certain threshold is crossed, indicating that a violation
is likely to occur. Unfortunately, the delay required to achieve acceptable sensor accuracy
inherently limits the effectiveness of these feedback-loop schemes, and operating margins
must remain large enough to allow time for the loop to respond [Gupta et al. 2008].

In contrast, our collaborative approach does not suffer from the limitations of sensor-
based schemes. It leverages general-purpose checkpointing hardware that is already ship-
ping in production systems [Ando et al. 2003; Slegel et al. 1999] to reduce voltage emer-
gencies at very aggressive margins that enable significant performance gains.

5. RELATED WORK

Fail-safe mechanism alternatives.There are unique tradeoffs one should consider in
choosing a fail-safe mechanism. One that is relevant to this work involves balancing the
complexity of the checkpoint-recovery hardware with the recovery scheme’s impact on
runtime performance while the machine is executing smoothly.

Gupta et al. [2008] propose an implicit-checkpoint-restart scheme based on delayed
commit and rollback that speculatively buffers processor updates to the machine state until
it is verified that no noise margin violations have occurred within the time it takes to detect
an emergency. To guarantee system correctness, the implicit-checkpoint mechanism dis-
tinguishes between anoise-verifiedstate and anoise-speculativestate. In the noise-verified
state, the machine is known to be free of corruption caused by inductive noise. Completed
results are buffered in the reorder buffer (ROB) or store queue (STQ) until they are verified

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 23

to reflect no ill effects from noise violations.
The buffer time for the implicit scheme is determined by the emergency detector’s sen-

sor delays; it takes time for voltage sensors across the chip to detect a droop event and
subsequently broadcast the error signal across the processor to initiate recovery. However,
this delay is only in the order of a few clock cycles, therefore its impact on performance
while the machine is executing smoothly is small, if not even negligible in some work-
loads. Moreover, the cost of restoring state under this scheme is effectively as low as
flushing the pipeline due to a branch misprediction. Overall, this design greatly simplifies
the complexity of the checkpoint-recovery hardware since it leverages existing traditional
microarchitectural structures. But therein lies the problem. The scheme is intrusive and
requires changes to traditional microarchitectural structures that increase design cost and
validation time. Moreover, it is a highly custom solution to deal with voltage emergencies
with no general purpose applicability.

By comparison, the explicit checkpointing we use as our fail-safe mechanism is less
intrusive addition to existing processor designs, and it is likely to be useful for other pur-
poses than suppressing voltage emergencies. Several researchers have proposed a variety
of diverse applications using checkpoint-recovery hardware [Wang and Patel 2006; Sorin
et al. 2000; Mart́ınez et al. 2002; Kirman et al. 2005; Shyam et al. 2006; Narayanasamy
et al. 2005]. Our use of checkpoint-recovery for handling inductive noise in collaboration
with software is another novel application of this general-purpose hardware. Explicit-
checkpointing by itself, however, cannot be used to handle voltage emergencies because
the performance penalties are too large (as discussed in Section 4.4.1).

Hardware-based solutions.Prior work suggests preventing emergencies by altering ma-
chine behavior via execution throttling [Ayers 2002; Joseph et al. 2003; Powell and Vi-
jaykumar 2003; 2004] or staggering the issue rate [Powell and Vijaykumar 2003; Pant
et al. 1999]. Hardware mechanisms face increasing sensor delay problems as the margins
are reduced aggressively. The feedback loop delay between detecting and engaging the
preventive mechanism becomes a limiting factor to how aggressively we can reduce the
operating voltage margins. By comparison, the mechanism we propose allows emergen-
cies to occur and then recovers and eliminates them, thus avoiding the sensor delay issue
altogether.

Software-based prior effort.Toburen [1999] and Yun and Kim [2001] demonstrate static
compiler techniques that can target voltage emergencies. However, voltage emergencies
are the result of complex interactions between the application, the execution engine, and the
power delivery subsystem. Therefore, these static optimizations are not easily retargetable
across different combinations of platform and application. Our mechanism dynamically
discovers the emergency hotspots, and can adapt to them effectively. So our scheme is more
robust for wide-scale deployment in the coming era where designing reliable processors is
becoming increasingly challenging.

6. CONCLUSION

The primary contribution of this work is a full system design and implementation for a
hardware-software collaborative approach to handle voltage emergencies. The collabora-
tive approach reduces hardware penalties associated with handling voltage emergencies by
having the software (a dynamic compiler) permanently fix the code region responsible for
emergencies. The hardware provides fail-safe guarantees via a coarse-grained checkpoint-

ACM Transactions on Architecture and Code Optimization

24 · Vijay Janapa Reddi et al.

recovery mechanism, while the software layer identifies the emergency-prone code regions
and reschedules that code to prevent further emergencies. The compiler eliminates over
60% of the emergencies on average, and therefore dramatically reduces the recurring over-
head of the fail-safe mechanism. We show that by scaling the operating margin down from
a conservative 18% to an aggressive 4% setting, we can achieve∼20% higher performance,
which is within 4 percentage points of an oracle-based throttling scheme.

Our rescheduling algorithm and general framework are a first step towards exposing
voltage noise to the higher-level software stack. But with even tighter coupling between
hardware and software, we can reduce the complexity of noise-reduction algorithms, mak-
ing it more readily feasible for software to play an integral role in assisting with hardware
issues. For instance, rather than trying to dynamically construct dependence chains that
throttle the issue rate of the machine, a hardware hook that allows the compiler to more
directly request temporary reductions in issue width would greatly simplify the algorithm.
The compiler would then only need to identify and customize the path along which the is-
sue throttling request is triggered, and not have to worry about finding dependence chains.
With such integrated effort designers can recoup increasing operating voltage margin inef-
ficiencies using software assistance and compiler-guided code transformations.

REFERENCES

AGARWAL , S., GARG, R., GUPTA, M. S., AND MOREIRA, J. E. 2004. Adaptive incremental checkpoint-
ing for massively parallel systems. InICS ’04: Proceedings of the 18th annual international conference on
Supercomputing. ACM, New York, NY, USA, 277–286.

AHO, A. V., SETHI, R., AND ULLMAN , J. D. 2006. Compilers: Principles, Techniques and Tools. Prentice
Hall.

ANDO, H., YOSHIDA, Y., INOUE, A., SUGIYAMA , I., ASAKAWA , T., MORITA, K., MUTA , T., MOTOKU-
RUMADA , T., OKADA , S., YAMASHITA , H., SATSUKAWA , Y., KONMOTO, A., YAMASHITA , R., AND

SUGIYAMA , H. 2003. A 1.3ghz fifth generation sparc64 microprocessor. InDAC ’03: Proceedings of the
40th annual Design Automation Conference. ACM, New York, NY, USA, 702–705.

AYERS, D. 2002. Microarchitectural simulation and control of di/dt-induced power supply voltage variation.
In HPCA ’02: Proceedings of the 8th International Symposium on High-Performance Computer Architecture.
IEEE Computer Society, Washington, DC, USA, 7.

AYGUN, K., HILL , M. J., EILERT, K., RADHAKRISHNAN , K., AND LEVIN , A. 2005. Power delivery for
high-performance microprocessors.Intel Technology Journal 9.

BALA , V., DUESTERWALD, E.,AND BANERJIA, S. 2000. Dynamo: a transparent dynamic optimization system.
In PLDI.

BOWMAN , K. A. ET AL . 2008. Energg-efficient and metastability-immune timing-error detection and instruction
replay-based recovery circuits for dynamic variation tolerance. InISSCC.

BROOKS, D., TIWARI , V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level power
analysis and optimizations. InISCA-27.

BULL , M., SMITH , L., WESTHEAD, M., HENTY, D., AND DAVEY, R. 2000. Benchmarking java grande appli-
cations. InThe Practical Applications of Java.

CAMPANONI , S., AGOSTA, G., AND REGHIZZI, S. C. 2008. A parallel dynamic compiler for cil bytecode.
SIGPLAN Not..

GUPTA, M. S., RANGAN , K. K., SMITH , M. D., WEI, G.-Y., AND BROOKS, D. 2007. Towards a software
approach to mitigate voltage emergencies. InISLPED ’07: Proceedings of the 2007 international symposium
on Low power electronics and design. ACM, New York, NY, USA, 123–128.

GUPTA, M. S., RANGAN , K. K., SMITH , M. D., WEI, G.-Y., AND BROOKS, D. 2008. DeCoR: A delayed
commit and rollback mechanism for handling inductive noise in processors. InHPCA-14.

GUPTA, M. S., REDDI, V. J., SMITH , M. D., WEI, G.-Y., AND BROOKS, D. M. 2009. An event-guided
approach to handling inductive noise in processors. InDATE.

ACM Transactions on Architecture and Code Optimization

Software-assisted Hardware Reliability · 25

HAZELWOOD, K. AND BROOKS, D. 2004. Eliminating Voltage Emergencies via Microarchitectural Voltage
Control Feedback and Dynamic Optimization. InISPLED.

JAMES, N., RESTLE, P., FRIEDRICH, J., HUOTT, B., AND MCCREDIE, B. 2007. Comparison of split-versus
connected-core supplies in the POWER6 microprocessor. InISSCC.

JOSEPH, R., BROOKS, D., AND MARTONOSI, M. 2003. Control techniques to eliminate voltage emergencies
in high performance processors. InHPCA-9.

K IRMAN , N., KIRMAN , M., CHAUDHURI , M., AND MARTINEZ, J. 2005. Checkpointed early load retirement.
In HPCA-11.

LAU , J., ARNOLD, M., HIND , M., AND CALDER, B. 2006. Online performance auditing: using hot opti-
mizations without getting burned. InPLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation.

MARTÍNEZ, J. F., RENAU, J., HUANG, M. C., PRVULOVIC , M., AND TORRELLAS, J. 2002. Cherry: Check-
pointed early resource recycling in out-of-order microprocessors. InMICRO-35.

NARAYANASAMY , S., POKAM , G.,AND CALDER, B. 2005. BugNet: Continuously Recording Program Execu-
tion for Deterministic Replay Debugging. InISCA.

PANT, M. D., PANT, P., WILLS , D. S.,AND TIWARI , V. 1999. An architectural solution for the inductive noise
problem due to clock-gating. InISLPED ’99: Proceedings of the 1999 international symposium on Low power
electronics and design. ACM, New York, NY, USA, 255–257.

POWELL, M. D. AND V IJAYKUMAR , T. N. 2003. Pipeline muffling and a priori current ramping: architectural
techniques to reduce high-frequency inductive noise. InISLPED.

POWELL, M. D. AND V IJAYKUMAR , T. N. 2004. Exploiting resonant behavior to reduce inductive noise. In
ISCA-28.

SCHNEIDER, F. T., PAYER, M., AND GROSS, T. R. 2007. Online optimizations driven by hardware performance
monitoring. InPLDI.

SHYAM , S., CONSTANTINIDES, K., PHADKE , S., BERTACCO, V., AND AUSTIN, T. 2006. Ultra Low-Cost
Defect Protection for Microprocessor Pipelines.ASPLOS-XII.

SLEGEL, T. J., AVERILL III, R. M., CHECK, M. A., GIAMEI , B. C., KRUMM , B. W., KRYGOWSKI, C. A.,
L I , W. H., LIPTAY, J. S., MACDOUGALL , J. D., MCPHERSON, T. J., NAVARRO, J. A., SCHWARZ, E. M.,
SHUM , K., AND WEBB, C. F. 1999. Ibm’s s/390 g5 microprocessor design.IEEE Micro 19,2, 12–23.

SORIN, D. J., MARTIN , M. M. K., H ILL , M. D., AND WOOD, D. A. 2000. Fast Checkpoint/Recovery to
Support Kilo-instruction Speculation and Hardware Fault Tolerance. Computing science technical report,
University of Wisconsin-Madison.

TOBUREN, M. 1999. Power Analysis and Instruction Scheduling for Reduced di/dt in the Execution Core of
High-Performance Microprocessors. M.S. thesis, NC State University, USA.

WANG, N. J.AND PATEL , S. J. 2006. ReStore: Symptom-based soft error detection in microprocessors.TDSC..
WILLIAMS , D., SANYAL , A., UPTON, D., MARS, J., GHOSH, S.,AND HAZELWOOD, K. 2009. A cross-layer

approach to heterogeneity and reliability. InProceedings of the 7th ACM/IEEE International Conference on
Formal Methods and Models for Co-Design (MEMOCODE). Cambridge, MA, USA, 88–97.

YUN, H.-S.AND K IM , J. 2001. Power-aware Modulo Scheduling for High-Performance VLIW Processors. In
ISLPED.

ACM Transactions on Architecture and Code Optimization

