
4

Energy- and Area-Efficient Architectures
through Application Clustering and
Architectural Heterogeneity

LUKASZ STROZEK and DAVID BROOKS

Harvard University

Customizing architectures for particular applications is a promising approach to yield highly

energy-efficient designs for embedded systems. This work explores the benefits of architectural

customization for a class of embedded architectures typically used in energy- and area-constrained

application domains, such as sensor nodes and multimedia processing. We implement a process flow

that performs an automatic synthesis and evaluation of the different architectures based on run-

time profiles of applications and determines an efficient architecture, with consideration for both

energy and area constraints. An expressive architectural model, used by our engine, is introduced

that takes advantage of efficient opcode allocation, several memory addressing modes, and operand

types. By profiling embedded benchmarks from a variety of sensor and multimedia applications,

we show that the energy savings resulting from various architectural optimizations relative to the

base architectures (e.g., MIPS and MSP430) are significant and can reach 50%, depending on the

application. We then identify the set of architectures that achieves near-optimal savings for a group

of applications. Finally, we propose the use of heterogeneous ISA processors implementing those

architectures as a solution to capitalize on energy savings provided by application customization

while executing a range of applications efficiently.

This article is an extension of the conference paper entitled “Efficient Architectures through Ap-

plication Clustering and Architectural Heterogeneity” and presented at the 2006 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems. The following new

material was introduced, which constitutes about 25% of this article’s contents: (a) focus on the

transformation routines and the model parameters in 3, (b) the determination of efficient area-

constrained architectures in 4.2, (c) an efficient opcode allocation scheme in 3.3,(d) lessons learned

from an application of complex benchmarks in 4.2, and (e) additional optimizations that decrease

the running time of the entire process. These additions extend the scope of the previous work: They

propose a novel approach for looking at area-constrained efficient designs and offer insights into

possible applications of the described process in general-purpose architectures.

This work is supported by NSF grants CCF-0048313 (CAREER), CNS-0330244, Intel, and IBM.

Any opinions, findings, and conclusions or recommendations expressed in this material are those

of the author(s) and do not necessarily reflect the views of the NSF, Intel, or IBM.

Author’s address: Lukasz Strozek and David Brooks, Harvard University, Massachusetts; email:

stozek@post.harvard.edu.

Permission to make digital or hard copies part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific per-

mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1544-3566/2009/03-ART4 $5.00

DOI 10.1145/1509864.1509868 http://doi.acm.org/10.1145/1509864.1509868

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:2 • L. Strozek and D. Brooks

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of

Systems; C.1.0 [Computer Systems Organization]: Processor Architectures—General

General Terms: Performance, Design

Additional Key Words and Phrases: Efficient custom architectures, heterogeneous ISA processors

ACM Reference Format:
Strozek, L. and Brooks, D. 2009. Energy- and area-efficient architectures through application clus-

tering and architectural heterogeneity. ACM Trans. Architec. Code Optim. 6, 1, Article 4 (March

2009), 31 pages. DOI = 10.1145/1509864.1509868 http://doi.acm.org/10.1145/1509864.1509868.

1. INTRODUCTION

Historically, computer architects have focused on designing instruction sets
and microarchitectures that perform well across a broad space of user pro-
grams. These architectures are necessary to drive high-volume manufactur-
ing for the general-purpose computing market, and designers often focus on
benchmark suites, such as SPEC, that are inspired by a variety of existing
applications.

However, as architectures become more and more complex, their performance
for some programs becomes far from optimal. This is not a problem if the objec-
tive is to execute arbitrary user applications from many application domains.
However, due to the increased popularity of embedded devices, such as sen-
sor networks and portable media devices, the opposite trend begins to emerge:
Machines are built with very specialized applications in mind. In this case, em-
bedded chip designers should consider the potential of specialized architectures
for these high-volume markets, particularly in light of the energy-efficiency de-
mands of these domains.

For instance, consider most sensor network applications. They are executed
on small computers (“motes”) equipped with a range of sensors and are usually
deployed with a specific task in mind [Hill 2003]: They function as a fire
detection system that is independent of the main building infrastructure [Fok
et al. 2005], or around volcanoes, measuring seismic activity [Werner-Allen
et al. 2005]. When the task to perform is well defined and does not vary over
time, it might be advantageous to design specialized hardware for a particular
application.

We begin with a custom architecture generation: We design a process that
finds an optimal architecture through an automated process. It takes advan-
tage of the fact that most architectures intended for this application domain can
be described by a handful of parameters, and creates a generic model of a mi-
crocontroller. With minimal human input, the system determines architectures
appropriate for a given application, creates a hardware description language
(HDL) model for them, then synthesizes the model to output a chip layout de-
sign ready to be fabricated. We focus on the analysis of microcontrollers of sim-
ilar complexity and market focus, such as the TI MSP430 [Texas Instruments
2006], MIPS R2000 [MIPS Technologies], or ARM7 [Budd and Milne 1996]—
simple instruction sets implemented on unpipelined or minimally pipelined mi-
croarchitectures that are increasingly popular for energy- and area-constrained

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:3

sensor and media workloads. We then extend this technique to a set of
architectures comprising a heterogeneous ISA processor, a chip that imple-
ments a set of different ISA architectures.

The main contribution of this article is the exploration of heterogeneous
multicores for sets of applications through application evaluation and an auto-
matic synthesis and evaluation of different architectures. By identifying pareto
optimal curves of architectures for a given application, an efficient applica-
tion/architecture clustering can be found.

The process used in this article takes a runtime profile of an application,
synthesizes families of “optimal” architectures, and performs efficient code
transformations to improve the efficiency of these architectures, where opti-
mality is defined as a function of performance and power. We then relax the
single-application requirement and partition a set of all given applications into
“clusters,” that is, groups with similar efficient architectures. For each clus-
ter, the selected custom architecture is more efficient than the off-the-shelf
microcontroller (note that in order to make any comparisons, we will define ef-
ficiency/optimality in terms of a specific metric—the energy-delay-square prod-
uct). Finally, given a partition, we determine the right number of architectures
(comprising different cores in a heterogeneous ISA processor) by trading off
energy benefits against hardware costs.

Note that we do not advocate multithreaded/multicore designs for sensor
devices. In the proposed architecture, only one core is used at a time, but appli-
cations can select the most energy-efficient core.

The rest of the article is organized as follows: Section 2 presents the process
from a functional point of view and describes (and justifies the validity of) the
workflow. Section 3 introduces the architectural model and describes each of
the parameters. Section 4 presents the results and analyzes them. Section 5
discusses previous work in automated architecture generation, relevant to the
objectives and results of this article, and proposes future work. Finally, Section
6 concludes the article.

2. PROCESS FLOW

The process on which our results are based is an architecture generator. Given a
particular user program, we would like to produce a layout design of a micropro-
cessor. However, since the search space of possible microprocessors is practically
infinite, to make the search for an optimal design feasible, we create a model
of a generic microprocessor that takes several parameters and generates the
design based on those parameters only. Since such a model limits the search
space drastically (in our case, to some 3,840 instances of different micropro-
cessor designs), it should be very expressive in order to emulate many diverse
microprocessor designs. In particular, our model includes parameters, such as
register file size; various memory addressing modes; the presence of complex
instructions, such as a divider or a multiplier; and immediate operands. To de-
termine the best architecture, the process, therefore, accepts a user program as
input, and determines a set of parameters that yield the optimal architecture.
Two factors affect the decision:

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:4 • L. Strozek and D. Brooks

—The profile of any candidate architecture, determined in advance, that will
be used to determine the execution time and energy usage of the resulting
microcontroller. Since this profile is generated offline, and only once for every
architecture embraced by the model, we simply look up the precomputed
information about a particular architecture in a database.

—The profile (and the trace information) of the user program provided as in-
put, converted to be compatible with a particular architecture. Since differ-
ent computer architectures feature different instruction sets, it is necessary
to convert the user program to a program with identical functionality, but
written using a particular instruction set that we call a “universal assembly
language” (the universal assembly is a generic language featuring a number
of simple operators). Since the user program is written in a superset of all
allowed instruction sets, we wrote a custom software profiler that is able to
execute arbitrary applications conforming to the model’s requirements.

Those two sources present us with trade-offs; for example, the hardware
profiler may report that a simpler architecture results in a microprocessor that
consumes less power and has less area, but at the same time, the software
profiler may report that on the same architecture, the resulting program takes
more cycles to execute. Therefore, the process finds a pareto optimal family of
architectures [Fudenberg and Tirole 1983].

2.1 Implementation Details

The implementation of the model is a Verilog file that contains the description of
the data path. Since memory has such an important impact on the performance
of any microcontroller, it cannot be ignored in this model. For that purpose, a
memory compiler included in the Faraday standard cell toolkit [UMC Faraday]
called Memaker is used to generate memory, models for the data memory, code
memory, and the register file. Different architectures require memories of dif-
ferent bit-widths and number of words. The memory generated by Memaker is
incorporated into the final design of the microcontroller.

Consider the process flow shown in Figures 1 and 2, consisting of two parts:
offline and online analysis. Offline analysis generates the architecture-specific
data that can be stored in the database (this data is independent of the ap-
plication being analyzed). First, given a particular set of model parameters, a
Verilog model is generated (note that we are generating a model of a micro-
controller and interfacing it with third-party external memory that is included
in the overall model). This model is analyzed by Synopsys Design Analyzer,
which synthesizes it and converts it into a mapped design. The Synopsys tool
also combines this design with the three memory modules and reports the chip
area, the worst-case delay (clock frequency) and power consumed. A correction
needs to be made for switching power: Synopsys provides metrics for switching
power assuming a certain switching frequency; a linear model is then assumed
to determine actual switching power when executing a particular application.
Memory usage statistics from the user program are also passed into the power
model for the memory (obtained from Memaker). For synthesis, the 1.2V 130nm
UMC Faraday standard cells are used [UMC Faraday]. Once Design Analyzer

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:5

Fig. 1. The offline part of the process flow. For each configuration c, the analyzer generates the

Verilog model, gathers the metrics (the worst-case delay of the circuit, the chip area, and the static

and dynamic power consumption) from Synopsys Design Analyzer and SoC Encounter, and saves

them in a database. In other words, every possible datapath is generated and its characteristics

are saved for later use.

Fig. 2. The online part of the process flow. Given a (for example) MIPS assembly file, the

adapter first converts it to a file compatible with the universal assembly. For each configuration to

test c2, the search module passes the file to the translator, and then the software profiler. Given

the metrics from the hardware profiler and the software profiler, the search module determines the

family F of optimal architectures.

generates the mapped design, Cadence SoC Encounter [Cadence Incorporate]
performs cell placement and routes the design to provide more accurate area
and worst-case delay analysis. The output of those two tools is combined, and
the resulting data is stored in the database.

Online analysis is the main component of the process. The code for the user
program is written originally in some assembly language for some architecture.
This architecture must be one of the architectures embraced by the model, but
the instruction set can be arbitrary. However, it is relatively easy to convert
that input program to a program that is written in the universal assembly
with instructions from the instruction set defined by us. The universal
assembly resembles an intermediate language used by compilers, yet all the

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:6 • L. Strozek and D. Brooks

instructions of the underlying instruction set can easily be implemented in
Verilog.

Once the program is adapted (converted to universal assembly), it is then
passed on to the search module. The user supplies the search module with
a few model parameters that must be held fixed. Those parameters, called
irreducible, do not vary and are usually common for the original architecture
and the optimal architecture.

Since the user program has been written for a particular architecture, it may
not necessarily be run on any arbitrary architecture. If not, it needs to be trans-
lated (reduced) into a program that will. This means that certain instructions
might need to be written as series of instructions, or even entire procedure
calls, if the target architecture is too simple to support those instructions. It
is important to note that all translations are lossless, that is, they convert the
program into a program with identical functionality. It may take more cycles
to execute, but for an outside observer, it does not differ in function from the
original program. The architecture model we implemented ensures that a loss-
less translation is always possible; that is, for any configuration of the reducible
parameters (all parameters that do not have to be kept fixed), it is possible to
translate the program to one supported by a model generated with any other
configuration of those parameters. Moreover, converting a simple architecture
into a more complex architecture means that applications need to be further
optimized. Usually, certain groups of instructions are collapsed, which signifi-
cantly increases program performance.

Note that most architectures contain specialized instructions or features
which cannot be losslessly translated into instructions of other architectures
(e.g., Load Linked Word in MIPS). However, those instructions are usually un-
common in most applications—for all benchmarks that we have considered,
inconvertible features comprised less than 2% of all instructions and, since our
analysis ignores I/O time, took less than 5% of the CPU’s execution time.

2.2 Discussion of Alternative Solutions

One alternative is to design custom hardware built to perform a certain class of
tasks. In the case of high-volume custom processors, it may be difficult to come
up with a custom architecture because the design is not synthesized; rather, the
engineering team proceeds straight to circuit design and layout. However, the
reality is that full custom design is very expensive, and hence is only common in
ultra-high performance (e.g., high-end Intel processors). In fact, nonrecurring
engineering costs are too high to justify custom design on the low-end embed-
ded processors, which cost a couple of dollars at most. With increasing design
complexity and better CAD tool support, full custom design is becoming much
less common [Bergamaschi et al. 1995] where performance is not critical, for
example in high-volume embedded processors, which are mostly synthesized.

The process presented in this article performs assembly-to-assembly trans-
lation of user programs. While such translation results in programs that are
correct (programs that are identical in function to the original programs), it is
unlikely that the translation is optimal. In particular, if the target architecture
is known at compile time, the compiler could use the extra information to make

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:7

additional optimization decisions. For example, converting from an architecture
that supports indirect loads to an architecture that does not allow them means
that every indirect load must be rewritten in terms of two loads. If a compiler
had been given an architecture with no indirect loads, it might be possible to
make optimizations that would avoid them altogether in some cases.

Hence, another approach that could be used to perform the reductions is
to use a retargetable compiler instead of an assembly-to-assembly translator.
This approach, however, has certain limitations. First, while some compilers
have an ability to modify a target slightly (for instance, by parameterizing the
number of registers of the target architecture), we are not aware of any existing
compiler that can be reconfigured to target all of the architectures embraced
by our model. Specifically, for some parameters, such as the architecture type,
different compilers are required altogether, and for some parameter, configura-
tions, no compiler exists. Even if all compilers were available, they would vary
in performance and such variation would be impossible to decouple from the
simulation results. Finally, given the unpipelined design space that we consider,
many compiler optimizations would not be necessary.

Rather than developing a retargetable optimizing compiler that can embrace
all the architectures that we consider, we adopt the assembly-to-assembly trans-
lation approach and borrow algorithms from the compiler world where appro-
priate. Specifically, the register reallocation algorithm has been inspired by
solutions seen in open-source compilers. Finally, the results presented in this
article are conservative: We find more efficient architectures but makes no claim
about the absolute efficiency. It is possible that with additional optimizations
early in the compilation stage, a more efficient architecture could be found, but
the architectures found by this process are nonetheless more efficient than the
original one.

Given the discussion above and the simplicity of our base architecture, we feel
that this approach is sufficient. Furthermore, Section 4.5 shows that our results
are relatively insensitive to the choice of the baseline architecture and compiler.

3. ARCHITECTURAL MODEL

The results presented in this article rely heavily on the underlying architecture
model. In order for the process to find optimal data path designs, this model
must be as expressive as possible, allowing for programs written for existing
architectures (such as MIPS or TI MSP430) to be easily adapted. It must have a
balanced number of parameters and always allow a lossless conversion between
configurations.

The underlying architecture is RISC-like, and the supported operands are
registers, immediate values, and memory offsets. The architecture supports
reading from and writing to external memory, which significantly extends its
functionality. However, since the model includes fairly simple architectures,
the Verilog implementation is not pipelined (so as to reflect the MSP430). In
most configurations, instructions take three cycles to execute. Some configura-
tions have instructions that require a greater number of cycles (e.g., the stack
architecture might need to address the data memory up to four times).

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:8 • L. Strozek and D. Brooks

Table I. Model Parameters and Their Values

Parameter Name Values Description

REGISTER COUNT 0 (8) The number of registers.

1 (16)

2 (32)

3 (64)

ARCHITECTURE TYPE 0 (ARCH ACCUMULATOR) How is memory accessed? If through

1 (ARCH STACK) loads/stores (type ≥ ARCH OFFSET),

2 (ARCH OFFSET) how is the address generated?

3 (ARCH REG OFFSET) In such case, cumulative.

4 (ARCH INDIRECT)

COMPLEX UNIT 0 (COMPLEX NONE) Include complex arithmetic modules?

1 (COMPLEX SHIFT) Cumulative: a particular value

2 (COMPLEX MUL) includes all preceding modules.

3 (COMPLEX DIV)

THREE SOURCES 0 (no) Include instructions with three

1 (yes) source registers (i.e., beqr, bgtr)?

IMMEDIATE WIDTH 0 (IMM NONE) Include instructions with

1 (IMM HALF) immediate values?

2 (IMM FULL)

DATAPATH WIDTH 0 (4-bit) The size of memory word

1 (8-bit) and the size of each register (in bits).

2 (16-bit)

3 (32-bit)

EXTENDED ADDRESSING 0 (no) Allow for long jumps and addressing

1 (yes) 2∧(2·DATAPATH WIDTH) bytes?

ARCHITECTURE TYPE, when greater than 1, and COMPLEX UNIT are cumulative, which means that particular

value of a parameter includes the functionality of all the values less than it.

First, thier we discuss the parameters of the model, their possible values,
and, their impact on the resulting architectures. Next, we describe the transla-
tions necessary to convert between various architectures and the optimizations
that we employed. We then introduce the problem of opcode generation. Finally,
we put the model in the context of existing architectures.

3.1 Model Parameters

This section describes all the parameters of the data path that determine the
complexity of the subarchitectures that we model. We consider seven parame-
ters, each of which can take one of several values. All parameters are divided
into two classes: reducible parameters and irreducible parameters. A complete
table of parameters, together with their values and descriptions, is shown in
Table I. The bottom two parameters are irreducible. The search only includes
reducible parameters so that the total number of distinct architectures consid-
ered is 480.

The choice of parameters was not arbitrary. The degree to which the resulting
metrics are sensitive to the change of initial parameters varied depending on
the parameter chosen. The parameters that we decided to include in the model
had the greatest impact in the energy, power, and chip area metrics. More-
over, several other candidates were evaluated and rejected for some reason.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:9

Specifically, we constrained ourselves to simple nonpipelined microcontrollers,
so we did not consider pipelining or multiple issue.

The parameters that we decided to include in the model were fairly uncorre-
lated, with the average correlation equal to 0.18 and the 90th percentile equal
to 0.31. This had two implications: First, low correlations meant that no param-
eter could have been replaced by a combination of other parameters. Moreover,
the savings were path-invariant: Individual energy savings were similar to one
another regardless of the order in which the optimizations were applied to the
original architecture.

The model allows for three different ways to access data memory: accumu-
lator, stack, and load-store. In accumulator mode, the register r1 becomes a
memory-mapped accumulator. In stack mode, the register r1 becomes a stack
pointer—using it as a source register pops data off the stack; using it as a des-
tination register pushes data on the stack. If the architecture is a load-store
architecture, different addressing modes are available: offset, register-offset,
and indirect.

The reason for explicitly singling out a memory-mapped accumulator and a
stack architecture is based on an observation that many applications written
for embedded systems (including several of the benchmarks used in this article)
can be rewritten to take advantage of those specific memory addressing modes.

The parameter that affects the energy and execution time of the generated
architectures the most is REGISTER COUNT. The classical trade-off (more reg-
isters means a slower and larger datapath; fewer registers costs memory for
immediate results) is brought to a test when translations between architec-
tures with various register counts are possible. This is achieved with help of a
register-reallocation algorithm.

When DATAPATH WIDTH is low, so is the size of any address, and so the program-
mer is restricted to very short programs that operate on small amounts of mem-
ory. To give the programmer a chance to extend the program’s addressing space,
EXTENDED MODE has been introduced. Special instructions are introduced that al-
low a program to make long jumps (with twice the number of address bits) and
select data banks (thus effectively increasing the range of addressable memory).

IMM WIDTH describes how the model treats immediate values. They can be
disallowed (in which case it becomes difficult to load constants into memory or
registers, but the instruction width reduces dramatically, especially in archi-
tectures that have high DATAPATH WIDTH. They can be allowed, which comes at
a high cost associated with a large instruction width. A hybrid approach allows
immediate values, but restricts their values to half the bitwidth this provides
an interesting compromise between the two extremes and is often a path toward
a more efficient architecture.

One should note that all the parameters are orthogonal; that is, any param-
eter can be changed independently of the other ones, and any configuration
yields a valid architecture.

3.2 Instruction Set Architecture and Translations

The instruction set defined in this article consists of the following classes of in-
structions: arithmetic instructions (featuring, depending on COMPLEX UNIT, just

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:10 • L. Strozek and D. Brooks

simple logical operations, shifts, or even a multiplier and a divider), immediate
arithmetic instructions (provided that IMM WIDTH is nonzero), branches, jumps
and loads, and stores.

We now discuss some of the key parameter reduction techniques. Since trans-
lations are lossless and complete, there must exist a way to fully express the
capabilities of one ISA in terms of another. A special class of instructions is
introduced to facilitate those reductions. In particular,

—REGISTER COUNT is reduced using a standard register reallocation algorithm
featuring a linear scan algorithm [Poletto and Sarkar 1999]. The objective
function is to minimize the number of spills to memory (since memory opera-
tions are much more costly). When a spill does occur, two of the registers are
used as temporary registers for memory operations. Additional four registers
(r0 through r4 are fixed) to accommodate jumps to variable addresses.

—Converting between different architecture types is somewhat easier. Instruc-
tions sacc (set the accumulator pointer) and ssp (set stack pointer) have been
introduced to easily convert between accumulator and stack architecture and
other architectures. sdp (set data pointer) is introduced to convert offset ar-
chitectures to register offset ones.

—Converting between different values of COMPLEX UNIT requires software em-
ulation. To convert from COMPLEX SHIFT to a simpler architecture, a routine
is included in the code that performs the shift. Similarly, a multiplier and
a divider are included, if necessary. Note that while the software-emulated
divide operation takes many more cycles than a built-in divide if the division
happens rarely, it might be advantageous to eliminate this module from the
architecture.

—Converting between THREE SOURCES is trivial—an instruction that requires
three source registers can be written in terms of two other instructions.

—Converting between values of IMMEDIATE WIDTH needs software emulation of
the immediate operand. When converted to half-size, any operation that
requires an immediate operand is rewritten using two immediate loads
and a shift. When converted to no immediates, any immediate must be
reconstructed with a sequence of logical operations such as shift and nor.
This is obviously very costly if a large number of immediates are used,
but it significantly reduces instruction size and thus the size of instruction
memory.

If the translation featured only reductions, then there would never be any
reason to translate from a simpler architecture to a more complicated one.
For this reason, translation also features certain optimizations that may make
it advantageous to increase the complexity of the architecture for particular
applications. The optimizations include:

—Implicit accumulator used as source—if a load is immediately followed by an
operation that uses the loaded data as one of the sources, and if the data is
not used later, the two instructions are reduced to one operation that uses
accumulator as a source register.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:11

—Similarly, if implicit stack or implicit accumulator are used as destination,
the instructions can be optimized.

—Implicit offset-based loads and stores—often, loads and stores are local, that
is they operate within a variable offset from a fixed base (which is the value
of a register). In such cases, it is advantageous to implement the program
using an offset-based load-store architecture.

—If a certain routine is used instead of a missing arithemtic unit (such as a
multipler), the entire runtime call can now be replaced with a simple in-
struction. The translator locates such instances and simplifies the code by
collapsing multiple instructions. This is often the source of most substantial
savings.

—Immediate value loading—often, on architectures that are missing immedi-
ate values, programs load very small immediate values, such as 1, 2, or −1,
by performing a sequence of bit shifts. The translator can identify such cases
and replace series of operations with a single operation with an immediate
operand.

The opcodes for each instruction are selected so as to minimize the length
of the longest instruction. Hence, the opcodes are variable-width, but the in-
structions are fixed-width to simplify the PC logic. The bit-width of instruction
memory depends most significantly on IMM WIDTH and DATAPATH WIDTH.

3.3 ISA Generation

The chip area is highly sensitive to the width of the instruction bus. Hence, any
generated architecture must include an optimized instruction encoding that
does not waste bits. A major component of this is the determination of opcodes
for the instructions included in the architecture. Because the instruction set is a
function of the configuration chosen, an efficient method of generating opcodes
is required.

The architectural model was chosen to support fixed-length instructions
with variable-length opcodes. Fixed-length instructions offer fast jumps and
fetches, and variable-length opcodes offer dramatically reduced instruction
widths based on a simple observation that some instructions require fewer
operands than others, and so we can afford to assign long opcodes to instruc-
tions that have few operands.

The problem can be stated as follows: Given a set of instructions I where
the operands of an i-th instruction are a total of Li bits wide, determine a set
of opcodes O , where the size of the i-th opcode is Oi, such that the worst-case
total instruction width is minimized, that is, determine

arg min
O

max
i

Li + Oi (1)

It is tempting to look at the relative frequencies of the operations used in
applications and use a variation of Huffman codes [Huffman 1952] to solve
this problem. However, in this case, Huffman does not produce optimal op-
codes. Since instructions are fixed in width, the hardware cost is given by the
worst-case instruction length, not the amortized case length, which Huffman

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:12 • L. Strozek and D. Brooks

is designed to address. In fact, we prove that a remarkably simple greedy algo-
rithm generates opcodes that yield provably shortest total instruction width.
The idea behind the algorithm is to assign the shortest possible code to an
otherwise longest instruction and then continue assigning codes that have a
prefix property. If we are successful in assigning a code to every instruction,
we have found an optimal assignment (up to isometries), since the longest
instruction has the shortest possible opcode. The running time of this algo-
rithm is O(n log n), where n = |I |.

It is important to note the trade-off between the instruction width and decode
complexity—simpler opcodes require less hardware to decode. It can be shown,
however, that the chip area benefits from decreasing the instruction width by
one bit far outweigh the benefits resulting from creating a simpler decode logic.
This can be briefly justified if one realizes that a more complicated decode logic
affects just the instruction decoder, while a longer instruction affects the entire
microcontroller.

3.4 Existing Architectures Embraced by the Model

In theory, any RISC-like architecture should be easily portable to one of the sub-
architectures described above. In practice, different commercial architectures
have features specific to the particular architecture (such as the existence of
special instructions or registers, the handling of exceptions and system calls)
that make it difficult to proceed with the port. However, with minor changes,
programs written for MIPS and TI MSP 430 are supported by the model.

—MIPS R2000 programs can easily be converted into programs that run on a
subarchitecture with the following configuration: 32 registers; Register-offset
load-store architecture type, a shifter, a multiplier, and a divider included;
three source registers included, instructions with half-width immediate val-
ues included; and a 32-bit data path with no extended addressing. Since the
universal instruction set is inspired by MIPS, it is no surprise that MIPS pro-
grams can be run by one of the subarchitectures. However, MIPS programs
are modified so that they do not use system calls or rely on exceptions to work
(except overflow and division by zero)

—Texas Instruments MSP 430, used widely in sensor network applications,
features a small instruction set with a number of special features. Programs
written for the MSP 430 can be run by a subarchitecture with the following
configuration: 16 registers, indirect load-store architecture type, no complex
arithmetic circuits, no three source registers, instructions with half-width im-
mediate values included, and a 16-bit data path with no extended addressing.
A program must be modified to not rely on interrupt vectors, data from pe-
ripherals (however, some functionality can be emulated), or status register
bits beyond Carry, Overflow, and Zero

4. RESULTS AND ANALYSIS

The process described in this article can be used to analyze various applications
and determine optimal architectures for single programs, or entire classes of
applications. In this section, various benchmarks are used to validate our claim.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:13

First, for three popular benchmarks, a Pareto optimal family of architec-
tures is determined. Given this family, the user can then apply a utility func-
tion to determine an optimal architecture that satisfies a particular condition.
Specifically, we pick an ED2 P utility metric and applies it to the family, thus
determining the architecture that maximizes this utility. This architecture is
then compared to the original architecture (MSP430) with respect to perfor-
mance and energy.

Since having a custom architecture for each application is impractical, the
set of all benchmarks is partitioned into clusters, that is, groups with similar
performance for a particular architecture (called the optimal cluster architec-
ture). The optimal cluster architecture is assigned so that it maximizes the total
utility (in terms of ED2 P) of all applications in the cluster.

Finally, we attempt to determine whether using heterogeneous multicores
is advantageous by looking at the relationship between the number of optimal
architectures allowed for an entire class of benchmarks and the performance
benefits. We find that for each class, a small number of architectures offers ben-
efits nearly as large as the extreme, one-architecture-per-application solution.

4.1 Experimental Setup

The following experiments use benchmarks from four sources: MiBench
[Guthaus et al. 2001], a freely available embedded benchmark suite; RAW [Babb
et al. 1997], a suite for general purpose computing; and standalone applications
and portions of the TinyOS kernel and user program code [Hill 2003]. Table II
describes all the benchmarks used. The benchmarks have been compiled for two
architectures (MIPS and MSP430) using the MIPS gcc-2.6.3 cross-compiler
and the GCC toolchain MSPGCC, respectively. Most of the results presented
in this article use the MSP430 as a reference architecture, though for valida-
tion purposes, we compile the benchmarks for MIPS and rerun the process to
see how sensitive our results are to the initial conditions. Three application
classes are identified: sensor network applications, multimedia applications,
and general-purpose applications.

Most of the benchmarks we focus on are very appropriate for sensor net-
works. Since many of these applications are fairly simple, we also investigate
the impact of more complex workloads. Benchmarks such as perl or gcc are
used to show the Pareto optimal family of architectures depends on the com-
plexity of the application. While we do not expect users to run gcc on sensor
systems, we chose gcc as a representative of more complex application. We
found heuristically that portions of gcc had characteristics that were similar to
complex embedded applications, such as advanced network routing protocols
with fail-over and efficient routing.

Note that since the model does not support every single instruction in the
base architecture, the applications that we experimented on required some
tweaking. While this is relatively straightforward to do for simple applications,
for complex applications, this process becomes infeasible. Hence, complex appli-
cations (especially applications requiring support for operations unsupported
in our model, such as input/output or interrupts/exception handling) were not

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:14 • L. Strozek and D. Brooks

Table II. Benchmarks Used

Application Class Benchmark Source Description

Sensor Network dijkstra MiBench Shortest Path algorithm

patricia MiBench Trees with sparse leaf nodes

rijndael MiBench 192-bit key Block cipher

TEA Standalone Tiny Encryption Algorithm

TinyDB Standalone A Query Engine Application

surge Standalone A multihop routing application

kinit TinyOS Kernel Initialization Routines

queue TinyOS Queue control mechanism

Multimedia jpeg MiBench JPEG encoder and decoder

lame MiBench MP3 encoder

mad MiBench High-quality MPEG audio decoder

tiffdither MiBench Dithers B&W image

tiffmedian MiBench Reduces Color Palette of Image

mp4enc Standalone MP4 encryption algorithm

bicubic Standalone Bicubic resize algorithm

pngdec Standalone PNG decode algorithm

General Purpose FFT MiBench Integer Fast Fourier Transform

CRC32 MiBench Cyclic Redundancy Check

stringsearch MiBench Case Insensitive Comparison

newton Standalone Newton’s Approximation of Roots

qsort Standalone Quicksort algorithm

life RAW Conway’s Game of Life

matmult RAW Integer Matrix Multiply

jacobi RAW Jacobi Relaxation

Three classes of applications are identified: sensor network, multimedia, and general purpose. All bench-

marks come from four sources: MiBench, TinyOS, RAW, and applications not part of a standard suite.

executed end-to-end. Instead, we sampled instructions from the trace of the
application. Specifically, perl and gcc are complex SPEC benchmarks that re-
quired sampling.

To determine a Pareto curve, we use the following metrics:

—machine performance (measured in microseconds), that is, the time it takes
a particular machine to execute a particular benchmark (or part of a bench-
mark)

—energy (or power) consumed by the machine while executing the application

The energy-delay-squared product (ED2 P) is used as the utility function
throughout the experiment [Brooks et al. 2000]. This has the advantage of pro-
viding a voltage-invariant view of machine performance. Hence, in Section 4.2,
we determine the Pareto optimal architectures by trading off performance and
energy (power) and applying the ED2 P utility function to focus on a particu-
lar architecture. Similarly, in Sections 4.3 and 4.4, we use the ED2 P metric to
determine optimal architectures for a group of applications.

4.2 Determining Pareto Optimal Architectures

We first consider the problem of determining the optimal architecture for each
benchmark. The savings we obtain yield an upper bound on how much savings
can be achieved through application-specific architectures. Figures 3 through 4

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:15

Fig. 3. Pareto optimal families of architectures. The figures show all the architectures plotted

on the performance-power graph for (a) fft and (b) lame. In this experiment, the running times of

the benchmarks have not been normalized. Different shades of data points correspond to different

numbers of registers. The circled data points are the Pareto optimal family of architectures. Two

outlined data points, connected with an arrow are the original architecture (where the arrow begins)

and the architecture that maximizes the utility function ED2 P (where the arrow ends).

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:16 • L. Strozek and D. Brooks

Fig. 4. A detailed illustration of energy savings. For graphs 3(a) and (b) respectively, these

graphs show a detailed analysis of energy savings. The bars show average savings for each of

the four optimizations listed above the graph. The step line shows cumulative savings for each

additional optimization, starting from the base architecture, and ending on an architecture that

outperforms it the most.

guide us through the entire process for three sample benchmarks, fft, lame, and
rijndael. These benchmarks have been compiled for the MSP430 and trans-
lated into every possible configuration. For each configuration, the machine
performance and power consumption are plotted on a scatter diagram. Then, a
family of architectures within 5% of the Pareto ideal curve is determined. For
reference, the architecture that corresponds to MSP430 is emphasized on the
diagram.

Figures 3(a) and 3(b) display performance-power graphs for two sample
benchmarks, fft and lame, respectively. The Pareto optimal architectures lie
on a very steep curve (it is almost vertical for small values of T and almost hor-
izontal for small values of P), which signifies that small savings in one metric
are often made at a sacrifice of large increases in another. Groups of architec-
tures so apparent in Figure 3(a) appear because the metrics are more sensitive
to some parameters than they are to others. In this case, such a parameter is
COMPLEX UNIT. It is interesting to note horizontal gaps in the graphs (e.g., in
Figure 3(a), the next fastest family of architectures is about three times slower
than the leading one), much in contrast with a rather continuous vertical streak.
This points to the fact that the execution time is much more sensitive on the
type of architecture than power/energy consumption, which is more continuous.

Note also that Figure 3(b) is less sparse than Figure 3(a). This is due to the
fact that lame performs computations which are much more complex than fft
(which is a relatively simple algorithm), at the expense of lower branching.
This complexity means more clusters of architectures, which is apparent in the
graphs.

For simplicity, we use the the ED2 P metric to constrain ourselves to one
architecture as opposed to the entire family of them. As shown in Figure 4, for

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:17

Fig. 5. Energy and ED2 P savings relative to MSP430. For each benchmark, an optimal ar-

chitecture is determined and the energy (white bars) and ED2 P (gray bars) savings are identified.

that architecture, we determine how much energy is saved each time we change
a value of one parameter of the configuration, when moving from MSP430 to the
optimal architecture. For each change, the energy savings (averaged over all
possible paths from MSP430 to the optimal architecture) are determined and
reported. Low standard errors suggest that the energy savings are nearly path-
invariant, that is, the savings are the same regardless of which path was taken
from MSP430 to the optimal architecture. The reason for this is the modular
design of the microcontroller model we presented: Each of the separate modules
(the memory, the arithmetic unit, etc.) could be replaced with a more or less
powerful one, so the energy savings are in large part due to these variations
themselves and not the interactions between the modules.

This is an important result for two reasons. For one, it means that more
meaningful analysis of the impact of various components on the total energy
savings can be performed (i.e., we can make meaningful comments on how much
energy introducing a 16-register module gives us for a particular class of ap-
plications). This consistency in savings across different configuration validates
our findings.

In general, we find that the application path length dominates clock fre-
quency in determining application performance. While power dissipation can
fluctuate by 20% to 30% across the modeled architectures, application perfor-
mance tends to dominate the total energy savings.

The total energy and ED2 P savings are evaluated for every benchmark and
plotted in Figure 5. We see that application customization can result in impres-
sive savings for many of the benchmarks that we consider; for the ED2 P metric,
often on the order of 75% to 85%.

Furthermore, more complex benchmarks were considered to determine what
happens to the Pareto optimal families as applications increase in complexity.
The Pareto family has more members, with more diverse architectures appear-
ing on the curve. This is particularly important as most real-life applications

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:18 • L. Strozek and D. Brooks

Table III. Table Comparing the Consistency of Energy Savings as a

Function of Application Complexity

Application Class Loop density Instruction complexity Variance

Sensor Network 1.0 1.0 1.0

General Purpose 6.7 3.5 12.3

Multimedia 9.5 6.8 26.0

Complex 12.4 7.4 41.0

For each of the three application classes, and a class of complex applications (SPEC

benchmarks such as gcc and perl), the relative loop density and instruction complexity

is measured and the variance of energy savings across all applications (or, in case of the

complex applications, across all samples of applications) is calculated. All numbers are

relative to the simplest application class—the sensor network benchmarks. Low variance

means that an architecture chosen as an optimal one for one application is likely to

provide energy savings for other applications in the same group. Higher variance means

that an optimal architecture is less likely to provide consistent savings when applied to

other applications within the same group.

are relatively complex and one can take advantage of that by optimizing the
diverse set of operations being performed on various architectures.

The drawback of applying these techniques to complex applications is that
the variance of energy savings increases with application complexity, that is,
architectures determined as optimal for particular complex applications are
less likely to remain so when a different but similar application is chosen.
Table III presents the result of an experiment in which efficient architectures
were found for each application. The energy savings were grouped by applica-
tion “complexity” and the variance of the resulting distributions was measured.
The complexity of an application is heuristically defined as a function of the loop
density (the number of jumps as a fraction of the length of the program trace)
and instruction complexity (the average number of instructions with distinct
operand types) used in the application. In case of more complex applications, a
large number of samples was examined from each execution trace and a distri-
bution of savings for each sample was determined.

Table III illustrates that running the process on more complex applications
provides energy savings that are less predictable—the relatively higher vari-
ance means that complex applications yield optimal architectures that are less
likely to provide energy savings for other, similar applications. A low variance
of sensor network and general purpose applications means that an architecture
found to be optimal for one application is likely to provide energy savings for
other applications within the same group.

Figure 6 presents the code size for the optimal architectures. We reiterate
that these results are derived with an optimization function purely driven by
energy considerations. Because of this, code blow-up can be relatively large for
the optimal architectures—the total running time is reduced because commonly
executed paths have been made shorter at the expense of the less commonly
used ones, often leading to an increase in the total code size. Still, the range of
program memory requirements is typical of most MSP430 configurations. As an
example, the marginal dollar cost of moving from an MSP430 configuration with
a 16KB program memory to one with 32KB is under 10% [Texas Instruments
2006].

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:19

Fig. 6. Code size relative to the MSP430. For each benchmark, the initial code size (white bars)

and the code size for the optimal architecture (gray bars) are reported.

Fig. 7. ED2 P savings when the amount of code increase is capped. As shown in Figure 6,

the optimal architecture comes at a sacrifice of code size. When the average code size for generated

applications is capped at a particular value (represented here as the percentage of the original

average code size), the savings are smaller.

If one were area constrained, one could incorporate this constraint into
the objective function. Figure 7 shows the ED2 P savings, averaged over all
benchmarks, when the code bloat is capped at a particular value. As shown in
Figure 6, to achieve maximum ED2 P savings, one must face a code increase
to about 280% of its previous size. When this is capped at a lower value, the
ED2 P savings also decrease—at first gradually, and then fairly significantly.
As a result, when the area cap is 160%, the ED2 P savings are only half of their
best values. Interestingly, when area is capped at 100% (meaning that the code
size, on average, is not allowed to increase), we still maintain ED2 P savings
of about 10% relative to the base architecture. This is because for a majority
of benchmarks, an implementation can be found that is more energy efficient
but does not achieve the savings at a cost of bloated code. Only when the area

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:20 • L. Strozek and D. Brooks

Fig. 8. The code size increase when average case capped at 160%. The code increase is

given for an architecture whose code size increase is capped at 160%.

is capped at 80% do we begin to see ED2 P losses. Figure 8 shows the itemized
energy and ED2 P savings when the area cap is 160% (i.e., when the savings
are about half of their ideal values).

In reality, most high-volume computing architectures will need to execute
more than one application. In such cases, architectures that may be optimal for
one application will be far from it for another. The next section considers these
situations.

4.3 Determining Architecture-Efficient Application Clusters

It is impractical to assume that we have a custom architecture for each applica-
tion we run. However, it might be advantageous to identify clusters of applica-
tions that run efficiently on a particular architecture. This is particularly useful
if the applications that a machine is executing share their characteristics with
mostly one of the clusters. In such a case, a custom architecture will perform
better for every application.

We first perform a similar analysis to one presented in Section 4.2. On a
performance-power graph, we plot each architecture that maximizes the util-
ity function (ED2 P) for a particular benchmark. We want to partition the set of
benchmarks into “clusters” and assign an architecture to each cluster. Assuming
that all benchmarks within a cluster will be executed on that assigned archi-
tecture, we want to maximize the total utility across all benchmarks. However,
to penalize the creation of small clusters, we adjust the maximization func-
tion by including a term that increases with cluster size. In other words, our
maximization function is of the form

α
∑
Ci

|Ci|τ + β
∑
Ci

∑
Bij ∈Ci

U (Ai, Bij) (2)

where Ci is the i-th cluster, Bij is a benchmark included in the i-th cluster, Ai is

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:21

Fig. 9. Benchmark clusters and optimal cluster architectures. (a) For each benchmark, an

architecture that maximizes the utility function is plotted on the performance-power graph. Bench-

marks are combined in clusters and an optimal architecture for each cluster (also marked on the

graph with a solid dot) is selected. The optimal cluster architecture executes all the benchmarks

in sequence. Same-shape data points belong to the same cluster. Architectures A through E corre-

spond to clusters A through E in Table IV. (b) A visualization of differences between optimal cluster

architecture and MSP430—this is a synthetic graph where the axes carry no particular meaning,

but the distances between all pairs of architectures are preserved. ti is the reference architecture,

the MSP430. The distance can be thought of as the weighted number of optimization changes that

need to be made to the MSP430 in order to arrive at the given architecture.

the cluster architecture, and U is the utility function. τ , α, and β are determined
empirically.

Figure 9(a) shows the optimal architecture for each benchmark, the partition
of architectures into clusters, and the optimal architecture for each cluster.
Table IV details the configurations for each of the cluster architectures. Note
that while this architecture is not optimal for all the applications, it is the best
compromise configuration to execute all the applications in one cluster on the
machine.

It is interesting to note that some parameter values are rarely included in the
efficient architectures for a cluster. For instance, ARCH ACCUMULATOR or full-width
immediate instructions are not well represented. It is tempting to preclude
such values from the search. However, there are specific benchmarks that favor
architectures whose parameters take those values—in such cases, the savings
are significant. Hence, even if no cluster includes a particular parameter value,
it is possible that for a different set of representative applications, the resulting
clusters might include those less popular parameter values.

The configuration of the optimal architecture for each of the clusters can tell
us something about the applications belonging to the cluster. For instance, ap-
plications that use implicit stack (e.g., portions of queue and surge), should
take advantage of a stack architecture—what takes two instructions (per-
forming a load, and decrementing the pointer) can be compressed to one in-
struction. Moreover, the architecture for cluster E uses eight registers and an
accumulator—life, for example, does not use much parallelism and does not
require a large amount of local immediate memory. Finally, stringsearch rarely
requires immediate operands (or, if it does, they are usually small numbers or

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:22 • L. Strozek and D. Brooks

Table IV. Optimal Architectures for Each Benchmark Cluster

Savings

Cluster Sample Benchmarks Performance Energy ED2 P

A rijndael, TEA, lame, tiffmedian, ... 14.5% 17.4% 39.6%

B dijkstra, bicubic, fft, jpeg, ... 11.7% 13.1% 32.2%

C TinyDB, stringsearch, qsort, matmult 17.2% 19.3% 44.7%

D queue, surge 11.5% 18.4% 36.1%

E kinit, life 8.8% 13.2% 27.8%

Optimal Architecture

Cl. regs ARCH COMPLEX IMM d (A) d (B) d (C) d (D) d (E) d (ti)

A 16 OFFSET DIVIDE HALF — 2.28 4.16 5.52 5.95 5.77

B 32 OFFSET MUL HALF 2.28 — 2.44 4.16 5.16 4.49

C 32 REGOFS SHIFT NONE 4.16 2.44 — 3.31 5.11 2.85

D 16 STACK NONE NONE 5.52 4.16 3.31 — 2.24 3.79

E 8 ACC NONE HALF 5.95 5.16 5.11 2.24 — 5.02

For each of the five benchmark clusters, an optimal architecture is determined and reported, together with

the performance benefits and energy and ED2 P savings. The savings are reported as a fraction of original

architecture (MSP430). d () represents the weighted Euclidean distance between two architectures. d (ti) is the

distance between each architecture and the MSP430. The optimal architectures for each cluster feature two

source registers.

powers of 2), so it is best implemented with an architecture with the IMM NONE
setting.

While Figure 9(a) offers a convenient visualization of the optimal architec-
tures on the performance-power graph, we would also like to compare the
cluster architectures against the original architecture (the MSP430) and see
how similar or dissimilar they are. We define a weighted Euclidean distance
E(A1, A2) between two architectures as

E(A1, A2) =
√√√√ 5∑

i=1

wi · (Ci(A1) − Ci(A2))2 (3)

where Ci(A) is the value of the i-th parameter in the configuration of architec-
ture A. We can think of this distance as a number of configuration optimizations
necessary to move between architecture A1 and architecture A2, weighted by
some constants wi.

The values of wi are the chip area savings determined for each optimization
(just as we computed the energy savings reported in Section 4.2), averaged over
all optimizations of one parameter and over all applications within one cluster.
The motivation behind this is that some optimizations require more hardware
than others, and when determining the distance between architectures, those
differences must be taken into account. The weighted Euclidean distance can,
therefore, be thought of as the number of optimizations that distinguish a par-
ticular architecture from the MSP430.

Plotting the architectures would require a five-dimensional graph, so as a
simplification, the architectures have been plotted on a synthetic diagram such
that the Euclidean (planar) distances between every pair architectures have
been (approximately) preserved. Figure 9(b) shows such a diagram. Note that

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:23

the axes have no meaning in such a diagram, only distances between the data
points. Note that all applications in a cluster have very close execution times.
This is due to the fact that a cluster is determined using ED2 P as a metric, which
weighs performance much more significantly than consumed energy. Hence
we should expect applications within a cluster to have similar (normalized)
performance times.

We see from the savings in Table IV that the MSP430 is not an optimal
architecture for any of the clusters. However, Figure 9(b) shows that each of the
cluster architectures is different, and that some architectures are more similar
to MSP430 (and one another) than others. For instance, the architecture for
cluster C shares more similarities with MSP430 than architecture A. Similarly,
architecture for cluster E is different than most other architectures.

4.4 Determining Optimal k-core Architectures

We see that while clusters give us more flexibility (we no longer require a sep-
arate architecture for each application we run), they also offer slimmer energy
savings. This motivates us to examine the relationship between the savings and
the number of heterogeneous cores provided in the microprocessor. In this con-
text, we are exploring a class of heterogeneous ISA processors designs [Kahle
et al. 2005]. Our approach is distinct from both traditional chip-multiprocessors
that execute threads in parallel to increase performance, and Kumar et al.
[2003], who proposes single-ISA heterogeneous multicores. Instead, a profil-
ing infrastructure (similar to what we have used in this study) would choose
the energy-optimal core for a particular application given and make necessary
assembly modifications to run the application on this core. While this appli-
cation runs, all other datapath cores would be put into a nonstate preserving
sleep mode. We assume that the data and instruction memory are shared across
all heterogeneous cores; since only one core is active at any time, this does not
require significant design complexity.

So far, we identified two extreme cases of architectures—every benchmark
has its own architecture, or there is one architecture—in this case MSP430,
and we showed how the idea of clustering can yield a solution in between those
two cases. Now let us consider another constraint—let us limit the degree of
heterogeneity to application classes.

Figure 10 shows the average ED2 P savings when we are allowed to optimally
choose n architectures for the eight benchmarks in each application class. When
n = 1, we must choose one architecture for all eight benchmarks—the savings
will naturally be lowest. When n = 8, the case reduces to that examined in
Figure 5, and each, application has its own energy-optimal core. We see that
after about four architectures, any additional architectures present decreasing
marginal benefits. This inflection point might mean that when contrasted with
the costs of extra processors, there is an optimal number of processors that
ought to be used.

This means that a multicore system where exactly one core is allowed to be
turned on will do significantly better than a single-core system. The reason for
this is that if one is constrained to pick one core for all applications within a

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:24 • L. Strozek and D. Brooks

Fig. 10. Savings (in terms of ED2 P) as a function of the number of processors we are
allowed to include in the machine. The architectures are found using a similar maximization

problem as one described in Section 4.3. Every data point denotes one additional architecture.

Note that for individual application classes, the savings are close to optimal after the number of

architectures reaches 5, and when the partition is unrestricted (“clustering” is a special case of

this), 7 architectures and more achieve satisfactory savings.

class, the variability in the applications’ profiles will translate into high vari-
ance of energy and power consumed by the selected architecture. If we provide
the microcontroller with a choice of a core to use, the best metric will be used
for each application and the high variance will average out.

Note that if all benchmarks are used (i.e., if applications are not separated
into classes), the savings are relatively lower than for each individual applica-
tion class. This makes sense—the commonalities between applications in each
application class mean that the optimal architectures are better catered to the
common use case, while if we consider all applications, the commonalities dis-
appear. More generally, if we know how similar (or dissimilar) our applications
will be, we can determine a priori the number of cores that achieve given energy
savings. Figure 11 presents the ED2 P savings as a function of how similar the
applications in a set are, and how many cores are included. The coefficient h is
a measure of homogeneity of the applications (i.e., the probability that two ran-
domly selected applications will belong to the same application class). Higher
values of h indicate that the applications are more similar to one another. The
special cases h = 1.00 and h = 0.00 are illustrated in Figure 12, as the av-
erage of the three specific class savings and the savings for all benchmarks,
respectively.

The problem with heterogeneous ISA processors, however, is that extra cores
require hardware. This cost can be evaluated quantitatively. Assuming that
the memory is shared across all cores, we can determine the total (including
memory) chip area as a function of n. Figure 12 shows this relationship. Since
the memory is shared, the area of the chip increases only slightly for each
additional core. With four or five additional cores, the total chip area is only
50% greater than the area of a one-core chip. Hence, the energy and performance
benefits likely outweigh the cost of four to five cores.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:25

Fig. 11. Savings in percent as a function of the number of cores and the homogeneity
of the applications. Homogeneity h of the applications is defined as the probability that two

randomly selected applications will belong to the same class.

Fig. 12. Total chip area as a function of the number of processors we are allowed to
include in the machine. Assuming that the memory is shared, each additional core increases

the area by a small amount.

4.5 Determining Process Validity

Finally, we devise an experiment to justify using assembly-to-assembly
translations instead of compiler retargeting. Since the process uses
assembly-to-assembly translation as a proxy for actual source translation, it
is important to ensure that it introduces no bias in the determination of an
optimal architecture. We show that regardless of which architecture the appli-
cation is originally compiled for, the resulting family of optimal architectures
is the same (or nearly the same). By looking at the difference between fami-
lies, we also suggest that no systematic bias is introduced as a result of the
assembly-to-assembly translation.

In this experiment, the Pareto families are determined twice, once for the
benchmarks compiled for MIPS, and once again for the same benchmarks com-
piled for MSP430. Ideally, we would expect the Pareto families to be identical
in both cases. Figure 13 summarizes by how much the two families differed, as

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:26 • L. Strozek and D. Brooks

Fig. 13. The differences in Pareto families for two different targets. Each benchmark has

been compiled for MIPS and again for MSP430. The Pareto optimal families are determined for

each case. The height of the bar denotes the fraction of the entire set of architectures that differed

between the two cases (i.e., the measure 1−|F 1 ∩F 2|/|F 1|)—the ratio of the size of the symmetric

difference of the two sets to the average size of the sets.

a fraction of the size of the family. It is clear that the families are nearly iden-
tical, with the largest difference close to 8% of the entire set, and most families
differing by less than 4%.

Finally, we performed full synthesis of selected architectures and compared
them to the full synthesis of the original architecture. The energy, power,
and chip area estimates provided by Synopsys were within 7% of our model’s
estimates.

4.6 Further Optimizations

Some optimizations are possible that decrease the running time of the process
while still yielding optimal architectures. It is possible to prune the search
space of all architectures by evaluating a set of simple heuristics on the profile
of the application. Moreover, one can use the energy, execution time, and area
estimates provided by Synopsys as a good proxy for the more accurate data
from SoC Encounter.

The motivating idea behind using Synopsys as a proxy for the chip layout
data (instead of Place and Route) is that the metrics provided by Place and Route
(chip area, energy, running time) are needed only for the ordering of all archi-
tectures from most to least efficient (the actual value of the metric is not very
helpful until the user supplies his utility curve). If the ordering given by SoC
Encounter is similar to the ordering given by Synopsys, we can use Synopsys
data as a proxy for the metric values. Ideally, if the two orderings are identical,
then the resulting Pareto optimal curves will also be identical. More specifically,
the Pareto curve is preserved under monotonic metric transformations.

Finally, we noted that the exhaustive search, even if it included only sev-
eral hundred architectures, was not a particularly efficient way to determine
efficient architectures. We devised a number of optimizations, which reduced
the running time of the process significantly while providing optimal or near-
optimal results.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:27

It is clear that some architectures will definitely not lie on the Pareto op-
timal curve even before running the simulation. For instance, a program that
includes hundreds of multiplications and divisions had better be implemented
in an architecture that includes the division and multiplication instructions.
Similarly, a program that features a large number of indirect loads should be
implemented in an architecture that allows indirect loads. In such cases, the
search module can prune the search space initially by simulating the original
program in its original architecture and looking for hints that would help it
fix any parameters. Fixing one parameter reduces the search space by a fac-
tor of between 2 and 4. This reduces the running time of the process by about
the same factor. We developed heuristics linking the frequency of certain op-
erations with a particular configuration option. For example, the inclusion of
the multiplication unit is forced if a “large” number of multiplies is used. The
same applies to divides, shifts by nonconstant amounts, nonsequential memory
accesses, and immediate instructions. Those heuristics prune the search space
by a factor of 2.6 while still producing families that overlap by over 97%.

5. RELATED WORK

The question of customizing the architectures to particular applications is not
a new one, and existing solutions can be divided into three categories: those
leveraging FPGAs, those proposing full-custom solutions, and those generating
a specialized architecture from a model.

The latter is particularly relevant to this article. For example, Nazhandali
et al. [2005] attempt to optimize the energy usage of sensor network proces-
sors that all share the same ISA, but differ in the data path width, the mem-
ory architecture (Harvard versus Von Neumann), and the supported address-
ing modes. Similarly, Thumb [ARM Corporation] provides some features of an
application-specific ISA by varying bit-width [Krishnaswamy and Gupta 2003].
Moreover, Cheng and Tyson [2005] propose to replace fixed instruction and reg-
ister decoding hardware in embedded CPUs with support for programmable
decoders allowing tailoring of the instruction set to reduce code size and in-
struction cache energy. Additionally, Fisher et al. [2000] propose an entire tech-
nology platform where the instruction issue width and the various arithmetic
units have been parameterized.

The PICO project [Kathail et al. 2002] is worth pointing out as it is similar to
this article in the goals and the approach. However, there are some important
differences between the two:

—PICO focuses mainly on VLIW architectures [Aditya et al. 1999], hence the
parameter space that the authors look at is different from the space of our
architectures, except the register file size and the type of functional units.

—PICO does not seem to be integrated into the VHDL-synthesis flow as tightly
as our process. Specifically, rather than include power or cycle time informa-
tion in their analysis, PICO focuses mainly on chip area.

—PICO’s focus is not application clustering or heterogenous core analysis,
which is a major motivation of our article. However, PICO’s work is based
on a superset ISA, of which this work is a generalization.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:28 • L. Strozek and D. Brooks

Similarly, Sheldon et al. [2006] constrains itself to the FPGA space and does
not consider heterogeneous multicore processors. Finally Kumar et al. [2006]
is similar to this article in that it considers heterogeneous multicore systems
but it focuses primarily on single-ISA systems.

Related work exists that focuses on optimizing the search for an optimal ar-
chitecture. Spacewalker [Snider], for example, extends the work of Kathail et al.
[2002] but it also focuses on VLIW architectures. The article’s main contribution
are the characteristics of the “walk”—the search for an optimal architecture,
rather than the choice of the model parameters or the multicore systems. Sher-
wood et al. [2004] and Padmanabhan et al. [2006] use linear programming to
define the search more rigorously.

Furthermore, Fisher et al. [1996] design a system that uses an efficient com-
piler to generate code for a customizable architecture and shows a great vari-
ation in the running time and chip area. While closest in its objective to this
article, Fisher et al. [1996] constrain itself primarily to image processing algo-
rithms to show the drawbacks to specialized hardware. Finally, Clark and Tang
[2002] attempt to customize instruction sets of mobile and embedded applica-
tions using retargetable compilers: If the source code of an application is known,
it suffices to modify the compiler to allow a variation in the target architectures.

Two additional article complement our work. Clark et al. [2005] focus on
designing custom instructions and seamlessly integrating it into existing in-
struction sets. Those instructions are supported by hardware accelerators and
increase the performance of microcontrollers that take advantage of the added
custom instructions. This work can easily be used to extend the results of this
article. After an efficient instruction set is determined, hardware-accelerated
custom instructions can be attached on top of the base architecture, yielding
even higher energy savings or performance gains.

Chen et al. [1993] suggest doing optimizations using profile-based transfor-
mations of the program. Two categories of profile information (control flow and
memory dependence) are identified and used to reduce the execution time. The
findings of Chen et al. [1993] could be used to improve the transformations we
introduced in Section 3.2.

The contributions of Nazhandali et al. [2005] and Fisher et al. [2000] are
important, but compared to those findings, we:

—consider a wide range of applications, with workloads varying from sensor
network to multimedia and general purpose ones.

—look at a wider rang e of architectural issues, such as architecture type (Load-
store versus Stack versus Accumulator), the number of registers, and path
length, found to be critical in the performance analysis of the architectures.

—find that heterogeneous ISA processors offer sizeable energy and performance
savings.

Finally, Tensilica allows the programmer to extend the ISA through custom
instructions. Commonly executed instructions are grouped in clusters, and new
hybrid instructions are added to the instruction set. This article differs from
Tensilica by allowing for simplification of the baseline architecture, as well as

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:29

varying fundamental structures of the architecture (such as switching between
stack and accumulator architecture). Moreover, we find compromise architec-
tures by clustering applications and quantifying the energy-efficiency benefit
of heterogeneous processors for these embedded applications.

In terms of research on heterogeneous multiprocessors, previous work pri-
marily focused on very high-performance designs and primarily same-ISA het-
erogeneous processors [Kumar et al. 2003]. We show that it is possible to apply
principles of heterogeneity to embedded architectures with varying ISAs.

6. CONCLUSIONS AND FUTURE WORK

This article presents a simple and efficient way to provide energy and time sav-
ings by customizing the architecture on which a particular application should be
run. By determining a Pareto optimal family of architectures, the designer has a
choice of multiple architectures that execute an application optimally. Automat-
ing this design process can reduce design effort drastically. We show that the
energy savings, when compared with existing microcontrollers, such as MIPS
or TI MSP 430, are substantial. The relative energy savings, broken down into
optimization classes, can help designers better fine-tune their custom designs.

We also present a way of determining clusters of applications that execute
efficiently on similar architectures. It often happens that most applications
deployed to a sensor network belong to one cluster (e.g., they are all network
routing algorithms). In such cases, replacing the off-the-shelf microcontroller
with a custom-made one can provide significant energy savings. We attempt
to explain those differences by analyzing the applications themselves: Certain
classes of applications tend to prefer particular classes of architectures.

Most importantly, if the application clusters cannot be determined (if the
applications are not known a priori), we find that even for diverse application
classes, it is possible to find a small number of architectures that together
achieve energy and performance savings within 15% of the optimal. Together
with the fact that extra cores cost little (compared with the original core and
memory subsystem), this article points out that heterogeneous ISA processors
can be effectively used in embedded systems.

We show that there is a clear trade-off between energy consumption and chip
area: When the architectures are area-constrained, the total energy savings are
reduced from their optimal values. The savings are nonlinear: As the savings
converge to their optimal values, the code bloat increases significantly. Inter-
estingly, if the code of the translated applications is not allowed to grow in the
average, we can still achieve energy savings over the base architecture.

One area for improvement lies in the Verilog model implementation. The
model should be further optimized and pipelined. While it is currently possible
to tell how many clock cycles a pipelined design would take to execute a par-
ticular program, without actually pipelining it, nothing conclusive can be said
about the optimal model. Specifically, pipelining introduces overhead (due to
the interlocks and extra routing logic), which is difficult to estimate.

Relaxing the design of the register file can also yield interesting results:
Mixed-width registers or banked register files may provide better-performing

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

4:30 • L. Strozek and D. Brooks

architectures. However, doing this is no easy feat: Variations in register file
design yield a much more complicated space, which quickly becomes difficult to
do searches on.

It is important to note that while the configurations found in this article are
more efficient than the MSP430, the analysis presented here requires a priori
knowledge of the application workloads and different workloads might yield dif-
ferent architecture. As a general purpose microprocessor, the MSP430 makes a
good compromise solution. However, significant energy and performance bene-
fits can be gained by exploiting the application variations through customized
microcontrollers and heterogeneous ISA processor systems. Therefore, we pro-
pose that heterogeneous processors can be used to take advantage of this in
future embedded systems.

ACKNOWLEDGMENTS

Thanks to Glenn Holloway, Mark Hempstead, Gu-Yeon Wei, and the anonymous
reviewers for their invaluable comments.

REFERENCES

ADITYA, S., RAU, B. R., AND KATHAIL, V. 1999. Automatic architectural synthesis of VLIW and EPIC

processors. In Proceedings of the 12th International Symposium on System Synthesis (ISSS’99).
IEEE, Los Alamitos, CA107.

ARM CORPORATION. Thumb ISA. http://www.arm.com/products/CPUs/ARM7TDMI.html.

BABB, J., FRANK, M., LEE, V., WAINGOLD, E., BARUA, R., TAYLOR, M., KIM, J., DEVABHAKTUNI, S., AND

AGARWAL, A. 1997. The raw benchmark suite: computation structures for general purpose

computing. In Proceedings of the IEEE Symposium on Field-Programmable Custom Comput-
ing Machines. IEEE, Los Alamitos, CA, 161–171.

BERGAMASCHI, R. A., O’CONNOR, R. A., STOK, L., MORICZ, M. Z., PRAKASH, S., KUEHLMANN, A., AND RAO,

D. S. 1995. High-level synthesis in an industrial environment. IBM J. Res. Dev. 39, 1–2, 131–

148.

BROOKS, D., BOSE, P., SCHUSTER, S. E., JACOBSON, H., KUDVA, P. N., BUYUKTOSUNOGLU, A., WELLMAN,

J., ZYUBAN, V., GUPTA, M., AND COOK, P. W. 2000. Power-aware microarchitecture: design and

modeling challenges for the next generation microprocessors. IEEE Micro 20, 6, 26–44.

BUDD, G. AND MILNE, G. 1996. ARM7100—a high integration, low power microcontroller for pda

applications. In Proceedings of the 41st IEEE Computer Conference. IEEE, Los Alamitos, CA,

182.

CADENCE INCORPORATE. SoC Encounter. http://www.cadence.com/products/digital\ ic/soc\ encounter/.

CHEN, W. Y., MAHLKE, S., WARTER, N., AND HANK, R. 1993. Using profile information to assist

advanced compiler optimization and scheduling. In Advances in Languages and Compilers for
Parallel Processing, U. Banerjee et al Ed.

CHENG, A. C. AND TYSON, G. S. 2005. An energy efficient instruction set synthesis framework for

low power embedded system designs. IEEE Trans. Comput. 54, 6, 698–713.

CLARK, N., BLOME, J., CHU, M., MAHLKE, S., BILES, S., AND FLAUTNER, K. 2005. An architecture

framework for transparent instruction set customization in embedded processors. In Proceedings
of the International Symposium on Computer Architecture. ACM, New York, 272–283.

CLARK, N. AND TANG, W. 2002. Automatically generating custom instruction set extensions. In

Proceedings of the 1st Workshop on Application-Specific Processors. ACM, New York, 94–101.

FISHER, J. A., FARABOSCHI, P., AND DESOLI, G. 1996. Custom-fit processors: Letting applications

define architectures. In Proceedings of the ACM/IEEE International Symposium on Microarchi-
tecture (MICRO-29). IEEE, Los Alamitos, CA, 324–335.

FISHER, J. A., HOMEWOOD, F., BROWN, G., DESOLI, G., AND FARABOSCHI, P. 2000. Lx: a technology

platform for customizable VLIW embedded processing. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA’00). IEEE, Los Alamitos, CA, 203–213.

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

Efficient Architectures through Application Clustering and Heterogeneity • 4:31

FOK, C.-L., ROMAN, G.-C., AND LU, C. 2005. Mobile agent middleware for sensor networks: an

application case study. In Proceedings of the International Symposium on Information Processing
in Sensor Networks. ACM, New York.

FUDENBERG, D. AND TIROLE, J. 1983. Game Theory. MIT Press, Cambridge, MA.

GUTHAUS, M., RINGENBERG, J., ERNST, D., AUSTIN, T. M., MUDGE, T., AND BROWN, R. B. 2001. MiBench:

A free, commercially representative embedded benchmark suite. In Proceedings of the IEEE
International Workshop on Workload Characterization. IEEE, Los Alamitos, CA, 3–14.

HILL, J. L. 2003. System architecture for wireless sensor networks. Ph.D. thesis, University of

California, Berkeley.

HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes. In Proceed-
ings of the Institute of Radio Engineers. IEEE, Los Alamitos, CA, 1098–1102.

KAHLE, J. A., DAY, M. N., HOFSTEE, H. P., JOHNS, C. R., MAEURER, T. R., AND SHIPPY, D. 2005. Intro-

duction to the cell multiprocessor. IBM J. Res. Dev. 49, 4/5, 589–604.

KATHAIL, V., ADITYA, S., SCHREIBER, R., RAU, B. R., CRONQUIST, D. C., AND SIVARAMAN, M. 2002. Pico:

automatically designing custom computers. IEEE Comput. 35, 9, 39–47.

KRISHNASWAMY, A. AND GUPTA, R. 2003. Mixed-width instruction sets. Comm. ACM 46, 8, 47–52.

KUMAR, R., TULLSEN, D., AND JOUPPI, N. 2006. Core architecture optimization for heterogeneous

chip multiprocessors. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’06). IEEE, Los Alamitos, CA, 23–32.

KUMAR, R., TULLSEN, D. M., RANGANATHAN, P., JOUPPI, N. P., AND FARKAS, K. I. 2003. Single-ISA

heterogeneous multi-core architectures: the potential for processor power reduction. In Proceed-
ings of the IEEE/ACM International Symposium on Microarchitecture (MICRO-36). IEEE, Los

Alamitos, CA, 81–92.

MIPS TECHNOLOGIES. Mips 4k processor core family user’s manual. http://www.mips.com/

content/Documentation/MIPSDocumentation/ProcessorCores/4KFamily/MD00016-2B-4K-

SUM-01.17.pdf.

NAZHANDALI, L., ZHAI, B., OLSON, J., REEVES, A., MINUTH, M., HELFAND, R., PANT, S., AUSTIN, T., AND

BLAAUW, D. 2005. Energy optimization of subthreshold-voltage sensor network processors. In

Proceedings of the International Symposium on Computer Architecture (ISCA’05). IEEE, Los

Alamitos, CA, 197–207.

PADMANABHAN, S., CYTRON, R. K., CHAMBERLAIN, R. D., AND LOCKWOOD, J. W. 2006. Automatic

application-specific microarchitecture reconfiguration. In Proceedings of the Reconfigurable Ar-
chitectures Workshop (RAW’06). IEEE, Los Alamitos, CA.

POLETTO, M. AND SARKAR, V. 1999. Linear scan register allocation. ACM Trans. Program. Lang.
Syst. 21, 5, 895–913.

SHELDON, D., KUMAR, R., VAHID, F., LYSECKY, R., AND TULLSEN, D. 2006. Application-specific cus-

tomization of parameterized FPGA soft-core processors. In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD’06). ACM, New York, 261–268.

SHERWOOD, T., OSKIN, M., AND CALDER, B. 2004. Balancing design options with Sherpa. In Pro-
ceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’04). ACM, New York, 57–68.

SNIDER, G. 2001. Spacewalker: Automated design space exploration for embedded computer sys-

tems. Tech. rep.t HPL-2001-220, HP Laboratories, Palo Alto, CA.

TENSILICA. Xtensa LX Processor. http://www.tensilica.com/products/xtensa\ LX.htm.

TEXAS INSTRUMENTS. 2006. TI MSP430 user guide. http://www.ti.com/litv/pdf/slau049f.

UMC FARADAY. UMC Faraday 0.13μm libraries. http://freelibrary.faraday-tech.com/ips/013library.

html.

WERNER-ALLEN, G., JOHNSON, J., RUIZ, M., LEES, J., AND WELSH, M. 2005. Monitoring volcanic erup-

tions with a wireless sensor network. In Proceedings of the 2nd European Workshop on Sensor
Networks. IEEE, Los Alamitos, CA, 108–120.

Received March 2007; revised April 2008, September 2008; accepted November 2008

ACM Transactions on Architecture and Code Optimization, Vol. 6, No. 1, Article 4, Publication date: March 2009.

