
Value-Based Clock Gating and Operation
Packing: Dynamic Strategies for Improving
Processor Power and Performance

DAVID BROOKS and MARGARET MARTONOSI

Princeton University

The large address space needs of many current applications have pushed processor designs
toward 64-bit word widths. Although full 64-bit addresses and operations are indeed some-
times needed, arithmetic operations on much smaller quantities are still more common. In
fact, another instruction set trend has been the introduction of instructions geared toward
subword operations on 16-bit quantities. For example, most major processors now include
instruction set support for multimedia operations allowing parallel execution of several
subword operations in the same ALU. This article presents our observations demonstrating
that operations on “narrow-width” quantities are common not only in multimedia codes, but
also in more general workloads. In fact, across the SPECint95 benchmarks, over half the
integer operation executions require 16 bits or less. Based on this data, we propose two
hardware mechanisms that dynamically recognize and capitalize on these narrow-width
operations. The first, power-oriented optimization reduces processor power consumption by
using operand-value-based clock gating to turn off portions of arithmetic units that will be
unused by narrow-width operations. This optimization results in a 45%-60% reduction in the
integer unit’s power consumption for the SPECint95 and MediaBench benchmark suites.
Applying this optimization to SPECfp95 benchmarks results in slightly smaller power reduc-
tions, but still seems warranted. These reductions in integer unit power consumption equate
to a 5%–10% full-chip power savings. Our second, performance-oriented optimization improves
processor performance by packing together narrow-width operations so that they share a
single arithmetic unit. Conceptually similar to a dynamic form of MMX, this optimization
offers speedups of 4.3%–6.2% for SPECint95 and 8.0%–10.4% for MediaBench. Overall, these
optimizations highlight an increasing opportunity for value-based optimizations to improve
both power and performance in current microprocessors.

Categories and Subject Descriptors: B.2 [Hardware]: Arithmetic and Logic Structures; C.1.1
[Processor Architectures]: Single Data Stream Architectures—RISC/CISC, VLIW architec-

tures

General Terms: Design, Experimentation, Performance

This research was supported in part by research funds from DARPA grant DABT63-97-C-1001
and NSF grant MIP-97-08624 and a donation from Intel Corp. In addition, Margaret
Martonosi is partially supported by an NSF CAREER Award, and David Brooks is supported
by an NSF Graduate Research Fellowship.
Authors’ address: Department of Electrical Engineering, Princeton University, Princeton, NJ.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0734-2071/00/0500–0089 $5.00

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000, Pages 89–126.

Additional Key Words and Phrases: power-efficient microarchitecture, clock gating, operation
packing, multimedia instruction sets, bitwidth characterization, narrow-width operations

1. INTRODUCTION

In recent years there has been a shift toward 64-bit instruction sets in
major commercial microprocessors. The increased word widths of these
processors were largely motivated because addresses were getting larger;
however, the size of the actual data has not increased as quickly. As
high-end processor word widths have made the shift from 32 to 64 bits,
there has been an accompanying trend toward efficiently supporting sub-
word operations. Subword parallelism, in which multiple 8- or 16-bit
operations are performed in parallel by a 64-bit ALU, is supported in
current processors via instruction set and organizational extensions. These
include the Intel MMX [Peleg and Weiser 1996], HP MAX-2 [Lee 1996], and
Sun VIS [Tremblay et al. 1996] multimedia instruction sets, as well as
vector microprocessor proposals such as the T0 project [Asanovic et al.
1996].

All of these ideas provide a form of SIMD (single instruction-multiple
data) parallel processing at the word level. These instruction set extensions
are focused primarily on enhancing performance for multimedia applica-
tions. Such applications perform large amounts of arithmetic processing on
audio, speech, or image samples which typically only require 16 bits or less
per datum. The caveat to this type of processing is that thus far these new
instructions are mainly used only when programmers hand-code kernels of
their applications in assembler. Little compiler support exists to generate
them automatically, and the compiler analysis is limited to cases where
programmers have explicitly defined operands of smaller (i.e., char or
short) sizes.

This article proposes hardware mechanisms for dynamically exploiting
narrow width operations and subword parallelism without programmer
intervention or compiler support. By detecting “narrow bitwidth” opera-
tions dynamically, we can exploit them more often than with a purely static
approach. Thus, our approach will remain useful even as compiler support
improves.

In this work we explore two optimizations that take advantage of the core
“narrow width operand” detection that we propose. For both techniques, we
explore both a basic and extended version of the optimization. The basic
approach only operates in cases that it is guaranteed to succeed. In the
extended version of the proposals, we demonstrate speculative techniques
that can improve the efficiency of the optimizations.

The first optimization that we propose watches for small operand values
and exploits them to reduce the amount of power consumed by the integer
unit. This is accomplished by an aggressive form of clock gating. Clock
gating has previously been shown to significantly reduce power consump-

90 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

tion by disabling certain functional units if instruction decode indicates
that they will not be used [Gonzalez and Horowitz 1996]. The key differ-
ence of our work is to apply clock gating based on operand values. When the
full width of a functional unit is not required, we can save power by
disabling the upper bits. With this method we show that the amount of
power consumed by the integer execution unit can be reduced for the
SPECint95 suite with little additional hardware.

The second proposed optimization improves performance by dynamically
recognizing, at issue time, opportunities for packing multiple narrow
operations into a single ALU. With this method the SPECint95 benchmark
suite shows an average speedup of 4.3%–6.2% depending on the processor
configuration. The MediaBench suite showed an average speedup of 8.0%–
10.4%.

The primary contributions of this work are threefold: a detailed study of
the bitwidth requirements for a wide range of benchmarks, and two
proposals for methods to exploit narrow width data to improve processor
power consumption and performance. In Section 2 we further discuss the
motivations for our work and place it in the context of prior work in
multimedia instruction sets, power savings, and other methods of using
dynamic data. Section 3 describes the experimental methodology used to
investigate our optimizations. Section 4 details the power optimization
technique based on clock gating for operand size and presents results on its
promise. In Section 5, we describe the method for dynamically packing
narrow instructions at issue-time. In Section 6, we describe speculative
techniques to improve the benefits of the first two optimizations. Finally,
Section 7 concludes and discusses other opportunities to utilize dynamic
operand size data in processors.

2. MOTIVATION AND PAST WORK

2.1 Application Bitwidths

In this study we show that a wide range of applications are frequently
calculated using small operand values. Figure 1 illustrates this by showing
the cumulative percentage of integer instructions in SPECint95 in which
both operands have values that can be expressed using less than or equal to
the specified bitwidth. (Section 3 will discuss the Alpha compiler and
SimpleScalar simulator used to collect these results.) Roughly 50% of the
instructions had both operands less than or equal to 16 bits. We will refer
to these operands as narrow width; an instruction execution in which both
operands are narrow width is said to be a “narrow-width operation.” Since
this chart includes address calculations, there is a large jump at 33 bits.
This corresponds to heap and stack references. (Larger programs than
SPEC might have this peak at a larger bitwidth.) The data demonstrate the
potential for a wide range of applications, not just multimedia applications,
to be optimized based on narrow-width operands. While other such work,

Value-Based Clock Gating and Operation Packing • 91

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

e.g., protein-matching [Alpern et al. 1995], required algorithm or compiler
changes, we focus here on hardware-only approaches.

2.2 Observing and Optimizing Narrow Bitwidth Operands

The basic tenet behind both of the optimizations proposed here is that
when operations are performed with narrow-width operands, the upper bits
of the operation are unneeded. To decrease power dissipation, clock gating
can disable the latch for these unneeded upper bits. Alternatively, to
improve performance, we propose “operation packing,” in which we issue
and execute several of these narrow operations in parallel within the same
ALU. In either case, the crux in exploiting narrow-width operands lies in
recognizing them and modifying execution. Sections 4 and 5 will discuss
hardware approaches for tagging result operands as “narrow-width” as
they are produced, and for storing these tags along with source operands as
we stage subsequent instructions waiting for issue.

2.3 Disadvantages of Static Compiler Analysis

Part of the motivation for this work was the fact that static analysis of
input operand sizes has several disadvantages. First, RISC instruction
sets, such as the Alpha instruction set that we consider in this study,
typically do not include instructions that specify the operand size informa-
tion for each operation. For example, the Alpha ISA does not include add
instructions that operate on 8-bit or 16-bit quantities. Thus the compiler
could not embed operand size information without instruction set exten-
sions. More importantly there are many cases where it is impossible to
know what the true operand bitwidths (as opposed to the declared operand
sizes) will be until run-time. Actual operand sizes depend very much on the
input data presented. Operand sizes for particular instructions can also
vary over the program run even with the same input data, which makes the
task of the compiler even more difficult.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Bit Width

C
um

ul
at

iv
e

%
 o

cc
ur

re
nc

Fig. 1. Bitwidths for SPECint95 on 64-bit Alpha.

92 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

Figure 2 shows the percentage of PC values where operand width
changes as the instruction is executed repeatedly within a single run. In
particular, the figure shows how often an instruction fluctuates from
having less than 16-bit operands to greater than 16-bit operands as it
executes repeatedly within a single program run. Figure 2 thus demon-
strates some of the difficulty that a compiler would encounter in determin-
ing the operand-widths of operations statically. In particular, it is interest-
ing to note that with perfect branch prediction, the instruction operand
sizes are far more predictable than with realistic branch prediction. This is
because with perfect branch prediction only the true execution path is seen.
With imperfect branch prediction, uncommon paths, like error conditions,
may be executed (but not committed) if the branch predictor points that
way. Along these paths, operand statistics may be markedly different.
Compile time analysis must conservatively analyze all potential paths to
ensure that operations can truly be packed. This may include uncommon
error conditions and other extreme cases. As a result, the compiler runs
into much of the same diverse operand values as seen by imperfect branch
prediction.

Overall, compiler dataflow analysis for operand sizes must be conserva-
tive about possible operand values. Programmer hints about operand sizes
can aid the compiler. It is unrealistic, however, to assume that program-
mers will provide these hints on codes other than small multimedia
kernels.

From Figure 1 it is clear that many opportunities exist to exploit
narrow-width data for subword parallelism and aggressive clock gating.
Searching for subword parallelism in applications is somewhat analogous
to the search for instruction-level parallelism (ILP) in applications. In the
late 80’s and early 90’s, most general-purpose superscalar microprocessors

0%

5%

10%

15%

20%

25%

30%

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG
-M

B

AVG
-S

PEC

perfect
realistic

Fig. 2. Percentage of instructions whose operand precision changes from less than 16-bit to
greater than 16-bit over a single program run. Data is presented for both perfect and realistic
branch prediction.

Value-Based Clock Gating and Operation Packing • 93

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

were statically scheduled, and the compiler was responsible for uncovering
ILP in programs. Current microprocessors implement aggressive dynamic
scheduling techniques to uncover more ILP. This evolution was necessary
to feed the wider-issue capabilities of these processors. In a similar man-
ner, more subword parallelism can be uncovered with the dynamic ap-
proaches we propose than if one relies solely on compiler techniques.

2.4 Related Work

The notion of disabling the clocks to unused units to reduce power dissipa-
tion in high performance microprocessors has been discussed in Gowan et
al. [1998] and Tiwari et al. [1998b]. In the CAD community, similar
techniques have been demonstrated at the logic level of design. Guarded
evaluation seeks to dynamically detect which parts of a logic circuit are
being used and which are not [Tiwari et al. 1998a]. Logic precomputation
seeks to derive a precomputation circuit that under special conditions does
the computation for the remainder of the circuit [Alidina et al. 1994]. Both
of these techniques are analogous to conditional clocking, which can be
used at the architectural level to reduce power by disabling unused units.

There has been other work in specializing for particular operand values
at runtime. The PowerPC 603 includes hardware to count the number of
leading zeros of input operands to provide an “early out” for multicycle
integer multiply operations. This can reduce the number of cycles required
for a multiply from five for 32-bit multiplication to two for an 8-bit
multiplication [Gerosa et al. 1994]. At a higher level, value prediction seeks
to predict result values for certain operations and speculatively execute
additional instructions based on these predicted operand values [Lipasti et
al. 1996]. Memoing is another high-level technique that exploits data
redundancy to eliminate power dissipation of long-latency integer and
floating-point operations [Azam et al. 1997]. Memoing is the idea of storing
the inputs and outputs of long-latency operations and reusing the output if
the same inputs are encountered again.

Finally, there has also been other work in exploiting narrow bitwidth
operations. Razdan and Smith propose a hardware-programmable func-
tional unit which augments the base processor’s instruction set with
additional instructions that are synthesized in configurable hardware at
compile time [Razdan and Smith 1994]. Since all synthesized instructions
must complete in a single cycle, bitwidth analysis is performed at compile
time to highlight sequences of narrow-width operations that are the best
candidates for implementation.

Tong et al. [1998] have proposed sacrificing computational accuracy for
reduced power consumption. Their analysis shows that certain floating-
point programs suffer very little loss of accuracy with a significant reduc-
tion in bitwidth. They propose minimizing the bitwidth representation of
floating-point data to reduce power consumption in the floating-point unit.
Our work differs from this technique, because we include hardware struc-
tures to dynamically detect opportunities to capitalize on narrow bitwidth

94 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

operations ensuring that program will produce the same results as without
the optimization.

3. METHODOLOGY

In Sections 4, 5, and 6 of this article we present the results for the power
and performance optimizations that we propose for dynamically exploiting
small operand values. This section lays the groundwork by detailing the
experimental methodology used for obtaining those results.

3.1 Simulator

We have used a modified version of SimpleScalar’s sim-outorder to collect
our results. SimpleScalar provides a simulation environment for modern
out-of-order processors with 5-stage pipelines: fetch, decode, issue, write-
back, and commit. Speculative execution is also supported. The simulated
processor contains a unified active instruction list, issue queue, and re-
name register file in one unit called the reservation update unit (RUU)
[Sohi and Vajapeyam 1987]. The RUU is similar to the Metaflow DRIS
(deferred-scheduling, register-renaming instruction shelf) [Popescu et al.
1991] and the HP PA-8000 IRB (instruction reorder buffer) [Hunt 1995].
Separate banks of 32 integer and floating-point registers make up the
architected register file and are only written on commit. Tables I–III
summarize the important features of the simulated processor. The baseline
configuration parameters roughly match those of a modern out-of-order
processor.

Most of the changes made to the simulator for this study are localized to
the issue and decode stages. In the decode stage, bitwidths are calculated
for dynamic data and stored in the reservation station entry to be used
during the issue stage. In the issue stage, this data is used to decide if
instructions can be issued and executed in parallel based on the data from
the decode stage. While these changes reflect the simulator implementa-
tion, subsequent sections discuss how our ideas would be implemented in
an actual processor.

Table I. Baseline Configuration of Simulated Processor: Processor Core

Parameter Value

RUU (register update unit) size 80 instructions
LSQ (load store queue) size 40 instructions
Fetch Queue Size 8 instructions
Fetch width 4 instructions/cycle
Decode width 4 instructions/cycle
Issue width 4 instructions/cycle (out-of-order)
Commit width 4 instructions/cycle (in-order)
Functional Units 4 Integer ALUs (performing arithmetic, logical, shift,

memory, branch, and shift operations)
1 integer multiply/divide
1 FP add, 1 FP multiply, 1 FP divide/sqrt

Value-Based Clock Gating and Operation Packing • 95

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

3.2 Benchmark Applications

A goal of this study is to demonstrate and exploit the prevalence of
operations with narrow bitwidths even in applications outside the multime-
dia domain. For this reason we evaluate the SPECint95 suite of bench-
marks as well as several benchmarks from the MediaBench suite [Lee et al.
1997]. For the power optimization we also consider eight of the SPECfp95
benchmarks.

We have compiled the benchmarks using the DEC/Compaq cc compiler
with the following optimization options as specified by the SPEC Makefile:
-migrate -std1 -O5 -ifo -non_shared. In particular, the -O5 setting, along
with numerous other optimizations, provides vectorization of some loops on
8-bit and 16-bit data (char and short).

For this study we used the reference inputs for the SPEC95 suite. We did
not want to use the test or training inputs because our data-specific
optimizations might be unfairly helped by smaller data sets. Using the
reference inputs, the SPEC95 benchmarks run for billions of instructions,
which, if simulated fully, would lead to excessively long execution times.
Thus we have adopted a methodology similar to that described in Skadron
et al. [1999]. We warm up the architectural state using a fast-mode
cycle-level simulation that updates only the caches and branch predictors
during each cycle. The warmup period also avoids the effects of smaller
operand sizes that are prevalent within program initialization. Using the
results of Skadron et al. [1999] to identify representative sections of the
program run based on cache and branch prediction statistics, we then
simulate a 100 million instruction window using the detailed simulator.
Table IV lists the reference input that we have chosen for the SPEC95
benchmarks, and the number of instructions for which we warm up the
caches and branch predictor. Table IV also describes the applications
chosen from the MediaBench suite. For the MediaBench suite, gsm, g721,

Table II. Baseline Configuration of Simulated Processor: Branch Prediction

Parameter Value

Branch Predictor Combined, Bimodal 4K table, 2-Level 1K table, 10-bit history
4K chooser

BTB 2048-entry, 2-way
Return-address stack 32-entry
Mispredict penalty 2 cycles

Table III. Baseline Configuration of Simulated Processor: Memory Hierarchy

Parameter Value

L1 data-cache 64K, 2-way (LRU), 32B blocks, 1 cycle latency
L1 instruction-cache 64K, 2-way (LRU), 32B blocks, 1 cycle latency
L2 Unified, 8M, 4-way (LRU), 32B blocks, 12-cycle latency
Memory 100 cycles
TLBs 128 entry, fully associative, 30-cycle miss latency

96 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

and mpeg2-decode were run to completion while mpeg2-encode was simu-
lated for 100 million instructions after a 500M-instruction warmup period.

4. POWER OPTIMIZATIONS

4.1 Clock Gating

Dynamic power dissipation is the primary source of power consumption in
CMOS circuits. In CMOS circuits, dynamic power dissipation occurs when
changing input values cause their corresponding output values to change.
Only small leakage currents exist as long as inputs are held constant.
Clock gating has been used to reduce power by disabling the clock and
thereby disabling value changes on unneeded functional units. In static
CMOS circuits, disabling the clock on the latch that feeds the input
operands to functional units essentially eliminates dynamic power dissipa-
tion. Power consumption on the critical clock lines is also saved because the
latch itself is disabled. In dynamic or domino CMOS circuits, the same
effect can be obtained by disabling the clocks that control the precharge
and evaluate phases of the circuit. The use of clock gating may introduce
additional clock skew and can complicate timing analysis which provide
challenges for circuit designers performing the implementation. Despite
these difficulties, conditional clocking is commonly used in current micro-
processors [Gowan et al. 1998].

Currently most work on clock gating has focused on using the decoded
opcode to decide which units can be disabled for a particular instruction.

Table IV. Characteristics of the SPEC95 and MediaBench Benchmarks Studied

Number of Warmup
Benchmark Family Instructions or Description Input Data

cc1 SPECint 221M cccp.i
perl SPECint 601M scrabble game
ijpeg SPECint 824M vigo.ppm
compress SPECint 2576M bigtest.in
m88ksim SPECint 26M dhrystone
li SPECint 271M All inputs
vortex SPECint 2451M persons.1k
go SPECint 926M 9stone21
applu SPECfp 1410M applu.in
apsi SPECfp 1400M apsi.in
fpppp SPECfp 1000M natoms.in
hydro2d SPECfp 375M hydro2d.in
mgrid SPECfp 1410M mgrid.in
su2cor SPECfp 2500M su2cor.in
turb3d SPECfp 1000M turb3d.in
wave5 SPECfp 1410M wave5.in
adpcm Media 16 bit PCM , 2 . 4-bit ADPCM coder clinton.pcm
mpeg2 Media MPEG digital compressed format encoding rec%d
gsm Media Audio and speech encoding with GSM std. clinton.pcm
g721 Media Voice compression using the G.721 standard clinton.pcm

Value-Based Clock Gating and Operation Packing • 97

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

For example, nop’s allow most of the units to be disabled since no result is
being computed. As another example of opcode-based clock gating, consider
an “add byte” instruction. Since the opcode guarantees that only the lower
portion of the adder is needed, the top part of the functional unit can be
disabled.

4.1.1 Proposed Architecture. Our approach proposes a more aggressive
clock gating approach and quantifies its benefits. At run-time, it deter-
mines instances when, based on the input operands, the upper bits of an
operation are not needed; in those cases, it disables the upper portion of the
functional unit. The key differences from prior approaches are that (1) our
approach is operand-based, not opcode-based, and (2) our approach is
dynamic, not static. (One could, of course, use our method in addition to

prior opcode-based approaches.) Different runs of the program, or even
different executions of the same instruction, can dissipate different
amounts of power depending on the operands seen.

There are several different possible hardware implementations for this
technique. Figure 3 is a diagram of one possible implementation. This unit
recognizes that the upper bits of both input operands are zeros. For
example, in an addition operation, if both input operands have all zeros in
their top 48 bits, these bits do not have to be latched and sent to the

Integer
Functional

Unit

clk

Gated Clock

A63-16

A15-0

6464

clk

Gated Clock

B63-16

B15-0

6464

64

Result63-0

Result63-16

48

Zero
Detect

1

zero48

Bypass
Result

Operand B
from

registers

A
Latch
high

A
Latch
low

B
Latch
high

B
Latch
low

M
U
X

0

Result16-0

48

Operand B
from

bypass

Operand A
from

registers

Operand A
from

bypass

Gating
Logic

clk

Zero48_Bypass

Zero48_RegA

Zero48_RegB

Fig. 3. Clock gating architecture.

98 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

functional units. We already know that the result of this part of the
addition will be zero, and thus zeros can be multiplexed onto the top 48 bits
of the result bus, rather than computed via the adder. In this architecture
the low 16 bits are always latched normally. The high 48 bits are selec-
tively latched based on a signal that accompanies the input operand from
the reservation stations or the bypass network. This signal, called zero48 in
Figure 3, denotes that the upper 48 bits are all zeros and is created by zero
detection logic when the result was computed. Since some operands come
directly from the cache, there must also be a zero-check during load
instructions. We believe such zero-detect hardware and corresponding flags
within the reservation stations are already present in some processors; for
example, to recognize divide-by-zero exceptions early. However, in some
processors it may not be possible to perform zero-detects on incoming loads,
and in these cases the hardware will not recognize an opportunity to gate
the clock. For the SPECint95 suite, 13.1% of power saving instructions
have one or more operands that come directly from a load instruction; these
are the instructions that would be missed if zero-detect were omitted on
loads. The percentages for the media benchmarks are much lower at 1.5%.

The gated clock signal used to disable the upper 48 bits of the functional
unit is generated based on the zero48 signals of the respective operands
and is combined with an AND gate in parallel with data bypass muxing. In
the case of functional units designed with static logic this signal can be
used to disable the upper 48 bits of the preceding latches thus effectively
reducing the switching activity to zero. For functional units design with
dynamic logic, the zero48 signal would be placed into the latches and used
in the next cycle to disable the clock on the upper 48 bits of the functional
unit.

In Figure 3 the zero48 signal is generated after the functional unit
completes the specified operation. In processors with architecturally visible
zero-flags such as the Intel x86, Motorola 68K, and IBM/Motorola PowerPC
architectures, this approach would be feasible because there would be no
additional serial delay introduced. However, in other architectures in
which adding a zero-detect in the execute stage would affect cycle time,
another implementation is possible. This implementation relies on the fact
that if we know that the two source operands of an operation are 16 bits or
less, then it is relatively easy to determine whether or not the result will be
16 bits or less. For example, with an arithmetic operation, if the carry-out
signal of the 16th bit is zero and the two source operands are 16 bits or less,
then we know that the result will be 16 bits or less. Thus, the zero48 signal
can be computed after the carry-out of the 16th bit is generated, well before
the final adder result is finished. Finally, in some cases a designer might
not want to insert the zero48 signal into the register file or reservation
stations. In this case, the 48-bit zero-detects could be inserted after register
fetch while waiting for the bypass results to be returned. This relies on the
fact that register read generally takes place in the first half the cycle and
writeback occurs in the second half of the cycle.

Value-Based Clock Gating and Operation Packing • 99

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

In order for any power saving technique to be useful, it must save more
power than it consumes. In our technique, the new power dissipated is
mainly in the zero-detection logic and in widening the mux onto the result
bus. The primary power savings stems from selectively clock-gating the
functional units based on the results of the zero-detection logic. In the
following subsections we evaluate these costs and benefits in more detail.

4.1.2 Bitwidth Analysis of Benchmarks. The success of our approach
relies on the frequent occurrence of narrow bitwidth operands. Figure 4
shows, for each benchmark, the percentage and type of operations whose
input operands are both less than or equal to 16 bits. (Both operands must
be small in order for the clock gating to be allowed.) The breakdown by
operation type is another important metric. Intuitively, disabling the upper
bits on an adder or multiplier will save more power than turning off the
upper bits on the less power-hungry logical functions. Figure 4 shows that
for most benchmarks arithmetic and logical operations dominate the num-
ber of narrow-width operations. In most of the benchmarks multiplies are
rather infrequent although they do account for 6% of the narrow-width
operations in gsm.

Recall that Figure 1 illustrated how address calculations result in many
operations with bitwidths of 33. Roughly 94% of SPECint95 compute
operations had bitwidth requirements of 33 or less with 37% occurring at
the 33-bit mark. From this data it makes sense to include a second control
signal for clock gating of operands that are 33 bits or less. The zero detect
logic can be shared so that the extra hardware requirements are minimal.
This modification is also useful for optimizing the multiplication of two
16-bit numbers. In these cases a 32-bit result can occur, so the 33-bit mux
onto the result bus would be used as shown in Figure 5. Figure 5 also shows
the expanded clock gating architecture with clock gating at the 16-bit and
33-bit boundaries. The operand latches have been further partitioned and

0

10

20

30

40

50

60

70

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AV
G-M

B

AV
G-S

PEC

%
 n

ar
ro

w
-w

id
th

Arith Logic Shift Mult Compare byte-manip

Fig. 4. Operations with both operands 16 bits or less.

100 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

an additional clock gating signal is generated. In Sections 4.3 and 4.4 we
discuss the choice of the bitwidths to clock gate in more detail.

Negative numbers provide another source of narrow-width data for
operand-based clock gating to exploit. In the Alpha architecture that we
considered in this study, the fundamental datum is the 64-bit quadword.
Quadword integers are represented with a sign bit occupying the most
significant bit [Bhandarkar 1996]. Numbers are expressed in two’s comple-
ment form which simplifies arithmetic operations. The techniques pre-
sented in this article rely on determining when data requires less than the
full word width of the machine. For positive numbers, this can be accom-
plished by performing a zero detect on the high order bits. For negative
numbers in the two’s complement representation, leading 1’s signify the
same thing that leading 0’s do for positive number—essentially unneeded
data. Thus a ones detect computation (simply an AND of the high-order
bits) must be performed in parallel with the zero detect computation to
detect narrow bitwidth negative numbers. An additional signal does not
need to be stored in the register file because this information can be
derived by sampling one of the higher order bits. Figure 5 shows the zero

Integer
Functional

Unit

clk

Gated Clk63-34

A63-34

A15-0

6464

clk

Gated Clk63-34

B63-34

B15-0

6464

64

Result63-0

Result63-16

48

Zero/
Ones
Detect

2

narrow48, narrow31

Bypass
Result

Operand B
from

registers

B
Latch
63-34

B
Latch
15-0

M
U
X

0

Result33-0

48

Operand B
from

bypass

Operand A
from

registers

Operand A
from

bypass

Gating
Logic

clk

Narrow48_Bypass

Narrow48_RegA

Narrow48_RegB

0
31

Narrow31_Bypass

Narrow31_RegA

Narrow31_RegB

B33-16
B

Latch
33-16

Gated Clk33-16

A
Latch
63-34

A
Latch
15-0

A
Latch
33-16

Gated Clk33-16

Fig. 5. Expanded clock gating architecture with 33-bit gating.

Value-Based Clock Gating and Operation Packing • 101

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

and ones-detect logic which creates the signals narrow31 and narrow48

(analogous to the zero48 from Figure 3).

4.2 Power Results: Overview

The amount of power that is saved by our approach depends on both the
type and frequency of narrow-width operations. In order to quantify the
amount of power saved, we use previously reported research to estimate
the amount of power that various functional units use [Borah et al. 1996;
Ng et al. 1996; Zimmermann and Fichtner 1997; Callaway and Swartz-
lander 1997]. From these sources we obtain power estimates assuming
dynamic logic and relatively fast carry look-ahead adders. We assume that
the power scales linearly with the number of bits of the units based
[Nagendra et al. 1996]. We assume that the multiplier is pipelined with its
power usage scaling linearly with the operand size. Again, the zero-detect
for 33 bits can be computed within the 48-bit zero-detect so no additional
power is consumed. Table V summarizes the values that we have assumed
for different size devices. The functional units in current high-end micro-
processors are likely to use even more power, but detailed numbers are not
yet available in the literature. For this analysis though, the important
factor is the ratio of the respective functional units to each other.

Figure 6 summarizes the amount of power saved and expended by the
integer execution units. We arrived at these numbers by determining the
amount of power saved and expended per operation executed and multiply-
ing by the average issue rate. These results include all loads, stores,
branches, and other integer execution unit instructions that are not part of
the set of instructions that our optimization applies to. Among the
SPECint95 benchmarks, our technique saves the most power for ijpeg and
go. Ijpeg has a large number of narrow-width arithmetic operations. Go

includes a large number of address calculations and is helped the most by
adding the extra signal to detect 33-bit operations. The media benchmarks
tend to save even more power than the SPECint95 benchmarks. This is
primarily because of the larger number of arithmetic operations. GSM, in
particular, has a relatively large number of narrow bitwidth multiply
operations. The amount of power used by the zero detection circuitry is
small and nearly constant for all benchmarks. In no case does the amount
of power used for zero detection exceed the amount of power saved.

Table V. Estimated Power Consumption of Functional Units at 3.3V and 500MHz (mW)

Device 32-bit 48-bit 64-bit

Adder (CLA) 105 158 210
Booth Multiplier 1050 1580 2100
Bitwise Logic 5.8 8.7 11.7
Shifter 4.4 6.6 8.8
Zero-Detect — 4.2 —
Additional Muxes — 3.2 —

102 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

Figure 7 shows the total amount of power that is saved by the integer
unit with our optimization. For the baseline system, we assume that all
operations use the amount of power that a 64-bit device would use. (We
assume basic clock gating in which, for example, multipliers are turned off
for add instructions and vice versa.) For the SPECint95 benchmark suite,
the average power consumption of the integer unit was reduced by 54.1%.
For the media benchmarks, the reduction was 57.9%.

While a 50–60% power reduction seems exceptional, it is important to
note that the integer unit’s contribution to total power varies depending on
the CPU. In some high-end CPUs much of the power is spent on clock
distribution and control logic, and thus the integer unit represents only

0

50

100

150

200

250

300

350

400

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

m
W

Total Saved: 16 bit result

Total Saved: 33 bit result

Total Extra Power Used

Fig. 6. Net power saved by clock gating at 16 and 33 bits. Total extra used is the amount
used by zero detection and muxing. Net savings is equal to the amount saved at 16 bits plus
the amount saved at 33 bits minus the amount used.

0

100

200

300

400

500

600

700

800

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

m
W

Baseline
Optimized

Fig. 7. Power usage of integer unit.

Value-Based Clock Gating and Operation Packing • 103

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

about 10% of the power dissipation [Gowan et al. 1998]. In such a
processor, our optimizations will lead to 5–6% power reductions on aver-
age. As control is streamlined, either in DSPs or via explicitly parallel
instruction computing (EPIC) as in future Intel processors [Dulong 1998],
the integer unit is a larger factor in the processor’s total power dissipation,
as much as 20–40% [Kojima et al. 1996]. In these cases, the total power
savings from our technique will approach 20%. In all processors, our
approach promises a relatively easy way to prune power from the integer
unit where this is important. We also note that our power savings esti-
mates are somewhat conservative. The clock gating technique also reduces
the switch capacitance seen by the clock distribution network, and this can
lead to a further power reduction. Although this effect can be significant, it
cannot be quantified without a chip floorplan.

4.3 Selection of Gating Boundaries

In the previous subsections, data has been presented for clock gating at
16-bit and 33-bit boundaries. The choice of the 33-bit mark was motivated
because the empirical data demonstrated that a large number of operations
exist with both source operands 33 bits or less, primarily due to address
calculations. The reason for choosing the 16-bit mark is more arbitrary and
reflects the need to balance two trade-offs in the selection of the boundary
at which to clock gate. First, if the boundary is chosen to be too large, the
amount of power saved will not be as significant as possible. On the other
hand, if the boundary is selected to be too small, not enough operations will
be eligible for clock gating at that boundary.

In this subsection, we systematically investigate the selection of the clock
gating boundary. In this analysis, we limit the number of boundaries that
are clock gated to one or two. We also assume that the power dissipation of
the functional units scales linearly at the bit-level. In the next section, we
investigate the potential for clock gating at more than two points with finer
granularities.

Figure 8 shows the integer unit power reduction by having one clock
gating boundary at the specified bitwidths. The data is shown as a
percentage power reduction relative to the original integer unit power.
Clearly, if we are only allowed to clock gate at one point, we should clock
gate at 33 bits. Clock gating at points beyond 33 bits does not make sense
for this set of benchmarks, because they rarely utilize the upper portion of
the functional units. Section 4.5 will discuss floating-point benchmarks in
more detail. We also note that future applications written for 64-bit CPUs
may use larger values more frequently, but we typically expect this usage
to grow slowly from the 33-bit mark as addressing needs grow.

Figure 9 shows the power savings assuming that we now are able to clock
gate at two points. One of the two points is always chosen to be 33 bits,
capturing the large number of address calculations. The second point
varies, with each bar measuring the total amount of power saved by clock
gating at that bitwidth as well as at 33 bits. Figure 9 demonstrates that

104 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

choosing the clock gating point to be anywhere from 10 to 17 results in very
little difference in the total amount of power saved. Thus our original
choice of clock gating at 16 bits was reasonable. On the other hand, certain
benchmarks display a preference for clock gating at a particular bitwidth.
This can affect the total amount of power saved significantly. For example,
the optimal selection of clock gating boundary for m88ksim is 5 bits. Clock
gating at this bitwidth would save approximately 10% more power than our
default selection of 16 bits.

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

In
t.

U
ni

t P
ow

er
 R

ed
uc

ti
on

Fig. 8. Integer unit power reduction by selecting to gate at one bitwidth.

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

In
t.

U
ni

t P
ow

er
 R

ed
uc

ti
on

Fig. 9. Integer unit power reduction by clock gating at 33 bits as well as at the specified
bitwidth.

Value-Based Clock Gating and Operation Packing • 105

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

4.4 Selecting the Number of Clock Gate Boundaries

In the previous subsection we investigate the optimal selection of clock
gating boundaries for one and two points. In this subsection, we investigate
the potential for clock gating at multiple points at finer granularities. For
example, instead of clock gating just at 16 bits and 33 bits, as in our
original proposal, another choice might be to clock gate four bitwidths: the
8-bit, 16-bit, 24-bit, and 33-bit boundaries.

Figures 10 and 11 show the percent of the integer unit power saved by
clock gating at the specified granularities for the SPECint95 and multime-
dia benchmarks. In these figures, the last bar assumes clock gating at only
the 33-bit boundary. The second to last bar is similar to our original
proposal, in which we clock gate at 16 bits and 33 bits. The remaining three
bars show the improvement by clock gating at additional, finer granulari-
ties. These figures show the diminishing marginal returns for clock gating
as we approach 1 bit of granularity. The data suggests that our original
proposal with two boundaries at 16 and 33 is close to optimal. If additional
boundaries are desired, then 8-bit boundaries provide slightly better power
savings.

4.5 Value-Based Clock Gating in Floating-Point Benchmarks

In this section we discuss value-based clock gating within floating-point
benchmarks. Here we will consider clock gating on both integer data, as in
the previous sections, and within certain types of floating-point operations.

4.5.1 Clock Gating Integer Code in Floating-Point Benchmarks. Float-
ing-point benchmarks often contain a significant percentage of integer code
in addition to floating-point operations. Integer code in floating-point
benchmarks is often used for loop index variables and address computa-

0%

10%

20%

30%

40%

50%

60%

70%

80%

ijpeg m88ksim go xlisp compress cc1 vortex perl SPECint95

In
t.

U
ni

t P
ow

er
 R

ed
uc

ti
on

1-bit 2-bit 4-bit 8-bit 16-bit 32-bit

Fig. 10. Percent of integer unit power saved with varying clock gating granularities.

106 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

tions. In the integer benchmarks that we studied, roughly 50% of the
instructions are integer computations that are available for clock gating. In
the floating-point benchmarks approximately 25% of the instructions are
integer computations. The integer computations within these benchmarks
tend to have a larger percentage of arithmetic operations which consume
more power than the other classes of instructions. Thus the power con-
sumption within the integer unit is significant within these benchmarks.

Figure 12 presents the data for functional width analysis on the integer
code within SPECfp95. This graph is similar to Figure 1 in which we
present the data for SPECint95. The main difference between the two
graphs is that the spike at 33 bits is larger, corresponding to the fact that
address calculations will be a larger percentage of the integer code than
within floating-point programs. Still, about 37% of the operations require
16 bits or less to perform their computation.

We next present data on the power saved by clock gating the floating-
point benchmarks. We assume that we will definitely want to clock gate at
33 bits. Figure 13 shows that the optimal mark for placing the second clock
gating mark is at the 11-bit mark. However, the difference between
choosing the 11-bit mark and the 16-bit mark that we chose before is only
2%, so we can use 16 bits to keep the same hardware structure as the
original proposal for the integer benchmarks.

Figure 14 shows the total power used by the integer assuming the
baseline and clock gated configurations. The percentage savings of the
clock gated configuration is still over 50%. However, as expected the total
power used and saved within the integer unit is less than before. Hence the
optimization would have less of an effect on the overall power dissipation of
the processor for these floating-point programs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

gsm-decode gsm-encode mpeg2-decode mpeg2-encode g721-decode g721-encode Mbench

In
t.

U
ni

t P
ow

er
 R

ed
uc

ti
on

1-bit 2-bit 4-bit 8-bit 16-bit 32-bit

Fig. 11. Percent of integer unit power saved with varying clock gating granularities.

Value-Based Clock Gating and Operation Packing • 107

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

4.5.2 Clock Gating Floating-Point Operations. Applications with float-
ing-point code tend to have higher overall power dissipation. This is
because floating-point operations are much more complex and hence use
more power. For example, floating-point programs tend to have a larger
number of power hungry multiplication operations. We will focus on these
multiplication operations in this section for two reasons. First, in floating-
point arithmetic, multiplication is simpler than addition and subtractions
in that it does not require shifting an operand to align them before
performing the computation. Essentially, the mantissas of the input oper-
ands are multiplied together and the exponents of the input operands are
added together. Second, since multiplication is more expensive in terms of
power dissipation there is more potential for power savings.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Bit Width

C
um

ul
at

iv
e

%
 o

cc
ur

re
nc

e

Fig. 12. Bitwidths for integer computation in SPECfp95 on 64-bit Alpha.

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

In
t.

U
ni

t P
ow

er
 R

ed
uc

ti
on

Fig. 13. SPECfp95 integer unit power reduction by clock gating at 33 bits as well as at the
specified bitwidth.

108 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

According to IEEE Standard 754, 64-bit double-precision, floating-point
arithmetic uses a mantissa of 52 bits, an exponent of 11 bits, and one sign
bit [IEEE Standards Board 1985]. We consider clock gating on input
operands of the 52-bit integer multiplication operation that occurs in
double-precision multiplication. In single-precision operations, the lower 29
bits are all zeros. Single-precision multiplication uses the same functional
units as double-precision multiplication and would present many additional
opportunities for clock gating. However, we do not consider them here
because traditional opcode-based clock gating techniques would be suffi-
cient to capture these situations.

0

50

100

150

200

250

300

applu apsi fpppp hydro2d mgrid su2cor turb3d wave5 SPECfp95

m
W

Baseline
Optimized

Fig. 14. SPECfp95 power usage of integer unit.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Bit Width

C
um

ul
at

iv
e

%
 o

cc
ur

re
nc

e

Fig. 15. Bit width analysis of the 52-bit mantissa in double-precision floating-point multipli-
cation.

Value-Based Clock Gating and Operation Packing • 109

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

Figure 15 presents the bit width analysis for the 52-bit mantissa in
double-precision floating-point multiplication. Most often the operations
require nearly the full 52 bits of precision. However, roughly 10% of the
operations require less than 4 bits of precision. Despite the small number of
instructions that are amenable to clock gating, being able to clock gate
nearly the full width of the multiplication saves an appreciable amount of
power. Figure 16 shows the power saved by selecting one clock gating point
within the 52-bit mantissa. By selecting gating at the 4-bit boundary,
approximately 9% (18mW) can be saved. This compares to about 125mW
saved by clock gating operations in the integer benchmarks, and about
100mW saved by clock gating integer operations in the floating-point
benchmarks.

5. PERFORMANCE OPTIMIZATION: OPERATION PACKING

Section 4 discussed a power optimization based on the dynamic recognition
of small input operands. In this section, we present a technique to increase
performance by exploiting the same type of dynamic data. Both techniques
rely on dynamically recognizing zeros in the upper bits of the input
operands to take advantage of the unused upper bits in the functional
units. Since the power optimization involves clock gating functional units
and the performance optimization involves executing instructions in paral-
lel, only one technique can be used at a time. However, because the
techniques share a common hardware base, one could implement both and
choose between them. For example, one could use thermal sensory data to
have the processor switch between the two techniques, depending on
current thermal or performance concerns. This effectively allows one to

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

FP
 M

ul
t.

Po
w

er
 R

ed
uc

ti
on

Fig. 16. FP multiplier power reduction by selecting one clock gating point in the 52-bit
mantissa.

110 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

trade performance for reduced power dissipation when necessary. Related
but simpler approaches are already found in commercial processors; for
example, the IBM/Motorola PPC750 is equipped with an on-chip thermal
assist unit and an on-chip temperature sensor which responds to thermal
emergencies by controlling the instruction fetch rate through I-cache throt-
tling [Sanchez et al. 1997].

5.1 Background

Multimedia instruction sets define new instructions to perform a common
operation on several subwords in parallel. For example, the Parallel Add
instruction in HP-MAX performs four parallel additions on the 16-bit
subwords that reside in the two specified 64-bit source registers. Few
hardware changes are necessary to support these additional instructions;
only the carry chain between the 16-bit chunks must be handled differ-
ently. Figure 17 demonstrates how two add instructions in the RUU, both
with narrow operand widths, can be packed together at issue time into one
functional unit. In this example, there are three instructions in the RUU:
an add with source operand values of 17 and 2, a sub with source operands
that are larger than 16 bits, and another add with source operands of 21
and 3. In this case, the two add instructions both have narrow width
operands, so a single 64-bit adder can perform the two additions in parallel.
The hardware built into the ALUs for the multimedia instruction sets will
automatically stop the carry at 16-bit boundaries.

In machines with multimedia extensions, programmers or (less fre-
quently) compilers statically generate code using multimedia instructions.
As previously discussed, there are several shortcomings to this method. For
those reasons, this section introduces an approach that is akin to dynami-
cally generating multimedia instructions. In this study, we focus on merg-

RUU Stations

Src. Operand #1 Data Src Operand #2 Data

0000..0000000000010001 0000..0000000000000010

Zero48?

yes

RUU Op

add

0110..1011001110010101 0101..0111000010010010 nosub

0000..0000000000010101 0000..0000000000000011 yesadd

Functional Unit

 0000000000010101 0000000000010001 Operand #1

add
 0000000000000011 0000000000000010 Operand #2

Carry chain cut here

Fig. 17. Packing two add instructions with narrow operand widths.

Value-Based Clock Gating and Operation Packing • 111

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

ing narrow integer operations into parallel subword operations as currently
supported by multimedia instruction set extensions. This is a subset of the
operations that we explore in Section 4 and consists of the arithmetic,
logical, and shift operations. For example, we do not attempt to pack
multiply operations, although in some implementations this would be
possible.

5.2 Proposed Architecture

Figure 18 is a diagram of the proposed changes to the datapath. The most
notable changes to the datapath are the additional muxes which move data
from the low 16 bits of the source RUU stations onto the higher 16-bit
paths of the source operand bus. In addition, 4 extra lines are needed on
the result bus for the carry-out that could result when two 16-bit operands
are added. These additional carry-out lines are needed because most
multimedia instruction sets provide a form of saturating arithmetic which,
upon overflow of two 16-bit values, sets the result to the maximum 16-bit
value, namely 0xFFFF. Figure 19 details the internal features of the
reservation stations and necessary modifications. The additional hardware
needed here includes muxes which reverse the effect of the above; data in
the higher 16-bit subwords of the result bus are muxed into the low 16-bit
boundaries to be written back to the result reservation station. It should be

A-I63-48

A-I47-32

A-I31-16

A-I15-0

A-II15-0

A-III15-0

A-IV15-0

16

16

16

16

B-I63-48

B-I47-32

B-I31-16

B-I15-0

B-II15-0

B-III15-0

B-IV15-0

16

16

16

16

Integer
Functional

Unit

64

64

A63-0

B63-0

R63-0 + 4 Carry Outs

68

R63-16

Zero
Detect

48

Zero48

1

Result Bus
To

RUU

A and B Input Operands
from the RUU.

A-I denotes the default case
where only one 64-bit
operand is executed.

A-II, A-III, and A-IV
represent possible packed
operands in the upper bits.
In this case all operands are

16-bits or less.

Fig. 18. Datapath modifications.

112 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

noted that much of this “additional” muxing hardware may already exist in
processors with multimedia instruction sets as part of the multimedia
extensions or the standard forwarding and bypassing logic. For example,
the HP MAX-2 instruction set includes instructions to select any field in a
source register and right-align it in the target register [Lee 1996]. Instruc-
tions also exist to select a right-aligned field from the source register and
place it anywhere in the target register. In Figure 18, additional muxes in
front of the functional units are used to stage 16-bit subwords into the
upper subwords of the functional unit. In most processors, there are
already muxes in a similar position which select whether the input source
operands come from the reservation stations or from the forwarding path.
These bypassing muxes could be widened by one source input to order to
support our proposal.

Our core idea is similar to the power optimization discussed in the last
section. Each entry in the reservation update unit (RUU) stores an extra
bit for each operand indicating that the size of the operand is 16 bits or
less. These fields are updated when operands are computed and stored in
the RUU buffers. Using these fields, the issue logic can recognize opportu-
nities to pack narrow width operations together to share one integer ALU
in the same way that the multimedia instructions do. In order for two
operations to be packed, three things must occur. First, both instructions
must have satisfied their data dependencies and be ready to issue. Second,
both instructions must have narrow width operands. Finally, they must
perform the same operation.

The issue logic issues ready instructions from the RUU using its normal
algorithm. In most processors, this algorithm issues the oldest ready-to-
issue instructions in the RUU. However, when both operands are 16 bits or
less, an opportunity for packing exists. The issue logic must keep track of
which issuing instructions are available for packing. If other instructions
that perform the same operations are available to issue and have narrow-

Operation
ID

Source #1
 Data

Ready to
Issue

Issued Source #2
Data

Result
Data63-16

Result
Data15-0

Zero48
#1

Zero48
#2

Zero48
Result

64 64 48 165 1 1 1 1 1

0

R63-16

R63-48

R47-32

R31-16

R15-0

No
bits

Fig. 19. Reservation station modifications.

Value-Based Clock Gating and Operation Packing • 113

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

width operands, these instructions can be packed. The issue logic sets the
appropriate muxes to issue the packed instructions in parallel.

After the instructions issue, they execute in the same fashion as packed
instructions do in the multimedia instruction sets. When execution com-
pletes, the result operands share the result bus and are sent back to their
respective RUU station as well as to RUU stations awaiting the results as
input operands. This optimization opens up machine issue bandwidth and
integer ALUs available for certain integer executions. Much of the required
multiplexing hardware already exists within processors designed with
multimedia instruction sets. These processors also have functional units
that are designed to disable the carry chain at 16-bit intervals. The
primary hardware cost for this optimization is in the increased complexity
of the logic that decides when packed instructions can issue. Handling
negative numbers adds additional complexity to the issue logic, but Section
5.4 discusses methods to simplify the implementation.

5.3 Operation Packing Results

In this section we present speedup results for operand packing. We have
considered two configurations: the first configuration is exactly the same as
the baseline configuration discussed in Section 3. The second configuration
increases the decode bandwidth from four instructions per cycle to eight
instructions per cycle. The increased decode bandwidth causes the RUU to
fill up faster giving more opportunities for packing.

Figure 20 shows the percent speedup over the baseline system with a
decode width of four. In this chart, we include results for both perfect and
realistic branch predictors. For the SPECint95 benchmarks, moving from
perfect to realistic branch prediction shows a performance degradation,
because it reduces the number of useful instructions that are ready to issue
each cycle. We can see that go, notorious for its poor branch prediction, is

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

perfect bp
realistic bp

Fig. 20. Speedup due to operation packing.

114 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

affected the most. Ijpeg and vortex, on the other hand, see little difference
in the speedup between perfect and the realistic predictor. The average
speedup across SPECint95 was 4.4% for perfect branch prediction and 2.5%
with the realistic predictor. As one might expect, the multimedia bench-
marks performed better than SPECint95. Because the multimedia bench-
marks had very low mispredict rates, the perfect branch prediction led to
only a small difference in speedup between perfect and realistic predictors.
In fact, g721 had higher speedup with realistic branch prediction, due to
second order effects related to speculative execution. Speculative instruc-
tions that will eventually be squashed still get executed until the branch is
resolved. Packing them with other instructions may reduce their use of
functional unit resources so that when a key branch is ready to issue, it
can. This allows some mispredicted branches to resolve faster. The average
speedup for the media benchmarks was 4.1% with perfect branch prediction
and 4.2% with the combining predictor.

We have also studied the packing optimization with a decode width of
eight. These results are shown in Figure 21. As expected, the optimization
performs better with increased decode bandwidth, because the RUU is
filled with more useful instructions which have the potential to be packed,
issued, and executed in parallel. However, the additional speedup that our
method provides was only 1–2% for most of the benchmarks. The average
speedup for SPECint95 was 5.6% for perfect branch prediction and 3.4%
with the combining predictor. The multimedia benchmarks performed
better as well, but not as significantly as SPECint95. The reason for this is
that the multimedia applications have a large number of loop-oriented
arithmetic operations with few data dependencies. This gives them a larger
pool of usable instructions even with the smaller decode bandwidth. The
average speedup for the media benchmarks was 5.3% with perfect branch
prediction and 5.0% with the combining predictor.

0%

2%

4%

6%

8%

10%

12%

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

perfect
realistic

Fig. 21. Speedup due to operation packing with decode bandwidth 5 8.

Value-Based Clock Gating and Operation Packing • 115

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

While some benchmarks, such as vortex and gsm-encode, achieved im-
pressive speedups of 7–10%, others only benefited by very small amounts.
Part of the reason for the small speedups is due to the fact that there are
not enough instructions available to be packed per cycle. In Section 6, we
present a more aggressive approach for packing instructions that takes
advantage of cases where a large number is added to a small number.
These cases allow a more speculative approach that we call replay packing,
which leads to significantly better speedups.

5.4 Hardware Requirements: Discussion

In Section 5.2 we have considered a completely general architecture that
can pack up to four narrow-width instruction to be executed in parallel. In
addition, these instructions can be selected from anywhere within the
80-entry RUU. There are two main sources of additional complexity with
this scheme. First, packing four instructions requires the hardware to route
16-bit subwords from the low 16 bits of the original instruction source
operands to the upper three subwords of the multimedia source operands.
Second, the issue selection logic becomes more complicated since it must
detect when opportunities for packing exist. In many pipelined processors,
the execute cycle is often not on the critical path of the processor so it is
possible to perform some additional multiplexing without impacting the
cycle time. However, in dynamically scheduled processors, the issue logic
can be complex; adding too much additional complexity may not be feasible
without extending the processor cycle time. In this section, we will consider
two possible hardware simplifications to the packing optimization.

One approach that simplifies both the additional muxing hardware and
the issue logic is to limit the number of packed instructions to be less than
four. Figure 22 shows when the packing optimization applies, the average
number of instructions packed is much less than four. In fact the average

0

0.5

1

1.5

2

2.5

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

N
um

be
r

of
 I

ns
tr

uc
ti

on
s

Fig. 22. Average number of instructions packed per packing opportunity.

116 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

for both SPECint95 and the multimedia benchmarks is around 1.5. From
this data, it seems that by limiting the number of packed instructions to 2
or 3, similar performance benefits could be realized with simpler hardware.

The second proposed simplification limits the scope of instructions to
search for packing opportunities. Figure 23 shows the average distance
between packed instructions within the 80-entry RUU. The average dis-
tance for both sets of benchmarks was approximately 12 instructions.
Limiting the distance between packed instructions to 16 instruction blocks
would simplify the selection logic during the issue stage. This method
would fit in well with the bank selection approach that is used in HP’s
instruction reorder buffer and MIPS’ instruction queues [Gaddis et al.
1996; Vasseghi et al. 1996].

In dynamically scheduled processors that do not have a centralized
window of instructions, however, the implementation of the selection logic
would be even simpler. For example, the PowerPC architecture has a
decentralized instruction queue in which the reservation stations directly
precede the functional units [Diep et al. 1995]. In this case, the instructions
are already sorted by the type of functional unit that they require. This
would simplify the logic that needs to pack instructions of the same type.
Furthermore, this decentralized approach generally has fewer instructions
to select from, because all of the reservation stations are distributed in
front of the functional units.

Another ramification of effectively increasing the issue/execute band-
width of the machine is that it may cause other parts of the machine to
become a bottleneck. For example, by packing operands it could be possible
that the writeback/commit stages could be saturated. While it would be
possible to share result bus bandwidth with this scheme, increasing the
number of ports on the wakeup/dependency check logic can be costly.
However, in many cases the amount of instructions that writeback per
cycle is smaller than the amount that fetch, decode, and issue/execute per

0

2

4

6

8

10

12

14

16

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

N
um

be
r

of
 I

ns
tr

uc
tio

ns

Fig. 23. Average distance (in instructions) between packed instructions.

Value-Based Clock Gating and Operation Packing • 117

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

cycle due to pipeline hazards despite the fact that machines are usually
designed to writeback the same number of instructions per cycle that they
fetch and execute [Hennessy and Patterson 1996]. Thus, it is unlikely that
increasing pressure on the writeback/commit bandwidth would be a serious
problem for most benchmarks.

6. SPECULATIVE APPROACHES FOR EXPLOITING NARROW-WIDTH

OPERANDS

Both the power optimization discussed in Section 4 and the performance
optimization discussed in Section 5 require that both input source operands
be less than 16 bits to operate most efficiently. For the power optimization,
if the first input operand is less than 16 bits and the second operand is
greater than 16 bits, yet still less than 33 bits, it will be clock gated at the
33-bit mark rather than the more optimal 16-bit mark. For the perfor-
mance optimization, the instruction will be excluded from packing entirely
if one operand is larger than 16 bits.

The requirement that both input operands be less than 16 bits excludes a
large number of arithmetic operations used for memory addressing, loop
incrementing, etc. In many of these cases, one of the input operands may be
very large, while the other is quite small. When this is true, it is possible
that adding them will result in a carry that ripples into the highest bits,
but in practice, such large ripple carries occur infrequently. Based on this
observation, we present extensions here to both the power and performance
optimizations that allow the optimization to proceed speculatively assum-
ing that there will be no overflow from the 16-bit operation; the high 48 bits
of the larger source operand can be muxed onto the result bus to proceed
into the destination RUU stations. However, in the rare cases that there is
overflow from the 16-bit addition, the instruction can be squashed and
subsequently reexecuted as a full-width instruction. Such a situation could
be handled in a similar manner to “replay traps,” which are already
available for other reasons in the Alpha 21164 and other CPUs [Bowhill et
al. 1995].

6.1 Replay Clock Gating for Arithmetic Operations with Varying Operand

Sizes

In this section we investigate the benefits of speculatively clock gating
operations at the 16-bit mark when one source operand is less than 16 bits
and the other source operand is greater than 16 bits. We will call this
technique replay clock gating.

When the replay clock gate operation succeeds, the power savings are
similar to those previously presented. We must also, however, account for
the cases when the 16-bit addition has carry-out and the instruction must
be reexecuted. These replay overflows incur both a performance and a
power penalty. Because of this, we would like the percentage of instructions
that overflow the 16-bit boundary to be low. Figure 24 demonstrates that
for most of the benchmarks this is true. This figure shows the percentage of

118 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

replay clock-gated operations that overflowed the 16-bit boundary. For the
SPECint95 benchmark suite, about 9% of the speculatively clock gated
instructions did have overflow. The multimedia benchmarks, having more
regular data types and ranges, had a overflow rates of only 2%. Compress

(33%) and cc1 (18%) had the highest overflow rates.
In computing the net power saved via replay clock gating, we attempted

to charge operations with a power cost when they overflow and need to be
reexecuted. We also took into account the power cost of reissuing instruc-
tions in the previous pipeline stage that were dependent on the squashed
instruction. Computing the amount of power used when reexecuting is
fairly straightforward; we simply charge the instruction with the cost of a
second add (usually 33 bits, assuming 33-bit clock gating was valid).
Estimating the amount of additional power consumed to reissue the depen-
dent instruction is more difficult and depends heavily on the actual
implementation details of the processor. Palacharla, et al. study the com-
plexity of out-of-order processors. This work investigated the delay of the
instruction window wakeup and selection logic using parameterizable delay
models based on low-level capacitance estimates of the nodes through the
critical path of the circuits [Palacharla et al. 1997]. In a similar fashion, we
have developed detailed power models for the out-of-order issue logic. The
main differences between our work and that of Palacharla is that we have
to compute capacitance estimates for all paths through the circuits instead
of just the critical path. After computing the capacitance, we arrive at
dynamic power estimates by using Pd 5 CV dd

2 af. Using these models we
are able to estimate the power dissipation of reissuing the dependent
instructions. More details of this power modeling methodology can be found
in Brooks et al. [2000].

Figure 25 shows the net savings with and without replay clock gating.
The net savings with replay includes the amount of additional power saved
on replay clock gated instructions as well as an estimate for the amount of

0%

5%

10%

15%

20%

25%

30%

35%

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-e
nc

od
e

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG
-M

B

AVG
-S

PEC

O
ve

rf
lo

w
 r

at
e

Fig. 24. Percentage of replay clock gated instructions that overflow the 16-bit boundary.

Value-Based Clock Gating and Operation Packing • 119

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

extra power dissipated due to replay overflows. The amount of additional
power saved was approximately 12% for SPECint95 and 21% for the
multimedia benchmarks. However, as expected the benchmarks did not
perform uniformly. In fact, the net savings for compress was 20% lower
when using replay clock gating; its unusually large number of replay
overflows incur additional power consumption. Figure 26 shows the two
components of the additional power used when replay overflow occurs. The
power used to reexecute instruction is about 2–3 times higher.

In addition to consuming additional power, reissuing and executing
instructions can lead to performance degradation. All of the benchmarks we
considered, except compress, performed within 0.5% of the baseline system
when using replay clock gating. Compress suffered a 4% performance
degradation due to the large number of replay overflows.

0

100

200

300

400

500

600

700

800

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-e
nc

od
e

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG
-M

B

AVG
-S

PEC

m
W

Net Savings

Net Savings+Replay

Fig. 25. Net savings with and without replay clock gating.

0

10

20

30

40

50

60

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

m
W

Re-execute cost

Re-issue Cost

Fig. 26. Additional power used when replay overflow occurs.

120 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

Overall, replay clock gating has mixed results. For most of the applica-
tions in the benchmark suite, the additional power savings benefits are
attractive. However, for compress the performance degradation is notice-
able.

6.2 Replay Packing for Arithmetic Operations with Varying Operand Sizes

While speculatively applying clock gating has mixed results, speculative
approaches for operation packing are quite successful. We call this tech-
nique replay packing. Replay packing has a more significant impact than
replay clock gating because in the method for packing presented in Section
5, operations with one operand greater than 16 bits are totally excluded. In
contrast, for the power optimization discussed in Section 4, the clock gating
optimization is often still applicable at the 33-bit clock gating boundary.

In this section we present the speedup results for the replay packing
optimization. We consider the same two configurations discussed in Section
5.3. The performance simulator has been modified to perform replay
packing and to reissue and execute instructions when replay overflow
occurs.

Figure 27 shows the percent speedup that operation packing with replay
packing provides over the baseline system with a decode width of four. The
average speedup across SPECint95 was 7.1% for perfect branch prediction
and 4.3% with the realistic predictor. Again, the multimedia benchmarks
performed better than SPECint95. The average speedup for the media
benchmarks was 7.6% with perfect branch prediction and 8.0% with the
combining predictor. The replay packing technique provides nearly double
the speedup over operation packing alone. Compress and mpeg2-encode

were affected the most by the addition of replay packing. Compress went
from having one of the worst speedups without replay packing (1.46%) to
about average (4.40%) with replay packing. Mpeg2-encode benefited even
more improving, from 2.25% to 15.11%.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ijp
eg

m88
ks

im go
xl

isp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

perfect bp w/replay
realistic bp w/replay

Fig. 27. Speedup due to operation packing with replay packing.

Value-Based Clock Gating and Operation Packing • 121

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

We have also studied the packing optimization with replay packing and a
decode width of eight. The results are shown in Figure 28. The increased
decode bandwidth had a larger effect on the speedups than without replay
packing. The combination of increasing the pool of usable instructions and
using replay packing to allow more packed instructions proved to be
effective. Most of the benchmarks show a 2–3% increase in speedup with
the increased decode bandwidth. The average speedup for SPECint95 was
9.9% for perfect branch prediction and 6.2% with the combining predictor.
The average speedup for the media benchmarks was 10.3% with perfect
branch prediction and 10.4% with the combining predictor.

The addition of replay packing to the operation packing optimization was
very effective. As previously mentioned, the packing optimization increases
the effective issue bandwidth and number of integer ALUs by packing
several instructions and issuing and executing them in parallel. Thus, it is
useful to compare our optimization to a machine that simply has more issue
and execution bandwidth. Figure 29 compares the number of instructions
per cycle (IPC) for three different configurations, all with combining branch
prediction and decode width of four. The first is the baseline machine with
issue width of 4 and 4 integer ALUs. The second is the baseline machine
augmented with our operation packing optimizations (including replay
packing). The third machine is the baseline machine with an issue width of
8 and 8 integer ALUs. Note in all configurations the decode and commit
bandwidth has been held at four. We see that ijpeg and vortex, as well as
many of the multimedia benchmarks, come very close to achieving the same
IPC as the more costly 8-issue/8-ALU implementation.

6.3 Summary of Results

Overall, Sections 4, 5, and 6 have explored two optimizations that both
exploit the detection of narrow-width operations at run-time. We discussed
both speculative and nonspeculative versions of each optimization.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

perfect bp w/replay
realistic bp w/replay

Fig. 28. Speedup due to operation packing with replay packing and decode 5 8.

122 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

For the power optimization, the nonspeculative version of the clock
gating optimization seems like the best choice. While the speculative
optimization saved approximately 20% more power, performance may be
sacrificed for some applications, since instructions must be reissued after a
misspeculation.

The speculative version of operation packing was more successful. Replay
packing achieved speedups of 4.3%–6.2% for SPECint95 and 8.0%–10.4%
for the multimedia benchmarks. This is a significant improvement over the
nonspeculative version of the operation packing optimization.

Both of these techniques are most successful when the 16-bit overflow
rate is low as shown in Figure 24. Overflow confidence predictors could be
used to decrease the overflow rates by recording the 16-bit overflow history
of arithmetic operations to determine whether it is expected to be useful to
perform the replay gating/packing. This would decrease the replay overflow
rate and hence the benefits of both techniques.

7. CONCLUSIONS AND FUTURE WORK

Recently there has been increased interest in supporting operations with
operand widths smaller than the maximum supported by functional units
in microprocessors. This interest stems first from the increasing use of
multimedia applications, but also from the larger 64-bit word sizes on
current microprocessors. Most of the past research in this area has focused
on increasing performance by discerning instructions with narrow width
operands at compile time and generating code that allows such computa-
tions to occur with subword parallelism.

Compile-time analysis of operand width is constrained by the fact that
the operand range of instructions may vary over the course of a program
run depending on the input data. In addition, the compiler must conserva-
tively analyze all potential paths taken. Our work notes that certain

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ijp
eg

m88
ks

im go
xli

sp

co
mpr

es
s

cc
1

vo
rte

x
pe

rl

gs
m-d

ec
od

e

gs
m-en

co
de

mpe
g2

-d
ec

od
e

mpe
g2

-en
co

de

g7
21

-d
ec

od
e

g7
21

-en
co

de

AVG-M
B

AVG-S
PEC

IP
C

Iss 4/ALU 4
Iss 4/ALU 4 + Opt
Iss 8 /ALU 8

Fig. 29. IPC for the baseline system, the optimized system, and an 8-issue system.

Value-Based Clock Gating and Operation Packing • 123

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

uncommon paths may have markedly different operand size characteristics
than the typical path through programs.

In order to augment compile-time analysis, we present two techniques to
dynamically exploit narrow-width data. The first method reduces power in
the integer execution unit with aggressive clock gating, after determining
that the upper portion of functional unit is not needed. This results in a
45%–60% reduction in the integer unit’s power consumption for the bench-
marks that we studied. This equates to a 5%–10% full-chip power savings.
The second technique increases performance by dynamically recognizing
opportunities to issue multiple narrow width instructions to the same
functional unit to be executed in parallel. This technique provides perfor-
mance speedups of 4.3%–10.4%.

The techniques described in this article both rely on the same core
mechanism to achieve their optimization; namely they recognize that the
upper bits in the input operands are not needed to perform the computa-
tion. Another area offering opportunities for dynamic recognition of low-
precision operations is in the memory and I/O hierarchy. These opportuni-
ties include: (1) pin and bandwidth compression by recognizing that
multiple pieces of low-precision data can share the same I/O pins and
on-chip wiring, and (2) low-power caches which save power by writing 16
bits for the value and one signal bit indicating that the stored value is low
precision rather than writing the full 64 bits.

A key characteristic of our current proposals is that they require only a
small amount of hardware and no compiler intervention. Because of their
common hardware requirements, we foresee systems in which the choice of
whether to use the power or performance optimization can also be made
dynamically, based on thermal input or other mode controls. More broadly,
they represent a further step toward operand-value-based optimization
strategies throughout processors.

REFERENCES

ALIDINA, M., MONTEIRO, J., DEVADAS, S., GHOSH, A., AND PAPAEFTHYMIOU, M. 1994.
Precomputation-based sequential logic optimization for low power. IEEE Trans. Very Large

Scale Integr. Syst. 2, 4 (Dec. 1994), 426–436.
ALPERN, B., CARTER, L., AND SU GATLIN, K. 1995. Microparallelism and high-performance

protein matching. In Proceedings of the 1995 Conference on Supercomputing (CD-ROM)

(San Diego, CA, Dec. 3–8, 1995), S. Karin, Ed. ACM Press, New York, NY.
ASANOVIC, K., KINGSBURY, B., IRISSOU, B., BECK, J., AND WAWRZYNEK, J. 1996. TO: A

single-chip vector micropocessor with reconfigurable pipelines. In Proceedings of the 22nd

European Solid-State Circuits Conference,
AZAM, M., FRANZON, P., AND LIU, W. 1997. Low power data processing by elimination of

redundant computations. In Proceedings of the 1997 International Symposium on Low

Power Electronics and Design (ISLPED ’97, Monterey, CA, Aug. 18–20), B. Barton, M.
Pedram, A. Chandrakasan, and S. Kiaei, Eds. ACM Press, New York, NY, 259–264.

BHANDARKAR, D. P. 1996. Alpha Implementations and Architecture: Complete Reference and

Guide. Digital Press, Newton, MA.
BORAH, M, OWENS, R. M., AND IRWIN, M. J. 1996. Transistor sizing for low power CMOS

circuits. IEEE Trans. Comput.-Aided Des. 15 (June 1996), 665–671.
BOWHILL, W. J., BELL, S. L., BENSCHNEIDER, B. J., BLACK, A. J., BRITTON, S. M., CASTELINO, R.

W., DONCHIN, D. R., EDMONDSON, J. H., FAIR, H. R., GRONOWSKI, P. E., JAIN, A. K., KROESEN,

124 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

P. L., LAMERE, M. E., LOUGHLIN, B. J., MEHATA, S., SANTHANAM, S., SHEDD, T. A., THIERAUF, S.
C., MUELLER, R. O., PRESTON, R. P., AND SMITH, M. J. 1995. Circuit implementation of a
300-MHz 64-bit second-generation CMOS Alpha CPU. Digital Tech. J. 7, 1 (Jan. 1995),
100–118.

BROOKS, D. AND MARTONOSI, M. 1999. Dynamically exploiting narrow width operands to
improve processor power and performance. In Proceedings of the 5th International Confer-

ence/Symposium on High-Performance Computer Architecture (HPCA-5, Jan. 1999),
BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level

power analysis and optimizations. In Proceedings of the 27th International Symposium on

Computer Architecture (ISCA-27, June 2000), ACM, New York, NY.
CALLAWAY, T. AND SWARTZLANDER, E. E. 1997. Power-delay characteristics of CMOS

multipliers. In Proceedings of the 13th International Symposium on Computer Arithmetic

(July 1997), ACM, New York, NY.
DIEP, T. A., NELSON, C., AND SHEN, J. P. 1995. Performance evaluation of the PowerPC 620

micro-architecture. In Proceedings of the 22nd Annual International Symposium on

Computer Architecture (ISCA ’95, Santa Margherita Ligure, Italy, June 22–24), D. A.
Patterson, Ed. ACM Press, New York, NY, 163–174.

DULONG, C. 1998. The IA-64 architecture at work. IEEE Computer 31, 7 (July), 24–32.
GADDIS, N., BUTLER, J. R., KUMAR, A., AND QUEEN, W. J. 1996. A 56-entry instruction reorder

buffer. In Proceedings of the 1996 International Solid State Circuits Conference Digest on

Technical Papers,
GEROSA, G. 1994. A 2.2W, 80 MHz superscalar RISC microprocessor. IEEE J. Solid-State

Circuits 29, 12, 1440–1454.
GONZALEZ, R. AND HOROWITZ, M. 1996. Energy dissipation in general purpose

microprocessors. IEEE J. Solid-State Circuits 31, 9 (Sept.), 1277–1284.
GOWAN, M., BIRO, L., AND JACKSON, D. 1998. Power considerations in the design of the Alpha

21264 microprocessor. In Proceedings of the 35th Annual Conference on Design Automation

(DAC ’98, San Francisco, CA, June 15–19), B. R. Chawla, R. E. Bryant, and J. M. Rabaey,
Eds, ACM Press, New York, NY.

HENNESSY, J. L. AND PATTERSON, D. A. 1996. Computer Architecture: A Quantitative

Approach. 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA.
HUNT, D. 1995. Advanced performance features of the 64-bit PA-8000. In Proceedings of

Compcon (San Francisco, CA, Mar.), 123–128.
IEEE STANDARDS BOARD. 1985. IEEE Standards for Binary Floating-Point Arithmetic.

ANSI/IEEE Std. 754-1985. IEEE Standards Office, New York, NY.
KOJIMA, H., GORNY, D., NITTA, K., SHRIDHAR, A., AND SASAKI, K. 1996. Power analysis of a

programmable DSP for architecture and program optimization. IEICE Trans. Fundam.

Electron. Commun. Comput. Sci. E79-C, 12, 1686–1692.
LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. MediaBench: a tool for evaluating

and synthesizing multimedia and communicatons systems. In Proceedings of the 30th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 30, Research
Triangle Park, NC, Dec. 1–3), M. Smotherman and T. Conte, Eds. IEEE Computer Society
Press, Los Alamitos, CA, 330–335.

LEE, R. 1996. Subword parallelism with MAX-2. IEEE Micro 16, 4, 51–59.
LIPASTI, M. H., WILKERSON, C. B., AND SHEN, J. P. 1996. Value locality and load value

prediction. In Proceedings of the 7th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-VII, Cambridge, MA, Oct. 1–5,
1996), B. Dally and S. Eggers, Eds. ACM Press, New York, NY, 138–147.

NAGENDRA, C., IRWIN, M., AND OWENS, R. 1996. Area-time-power tradeoffs in parallel
adders. IEEE Trans. Circ. Syst. 43, 10, 689–702.

NG, P., BALSARA, P., AND STEISS, D. 1996. Performance of CMOS differential circuits. IEEE J.

Solid-State Circuits 31, 6, 841–846.
PALACHARLA, S., JOUPPI, N. P., AND SMITH, J. E. 1997. Complexity-effective superscalar

processors. In Proceedings of the 24th International Symposium on Computer Architecture

(ISCA ’97, Denver, CO, June 2–4), A. R. Pleszkun and T. Mudge, Eds. ACM Press, New
York, NY, 206–218.

Value-Based Clock Gating and Operation Packing • 125

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

PELEG, A. AND WEISER, U. 1996. MMX technology extension to the Intel architecture. IEEE

Micro 16, 4, 42–50.
POPESCU, V., SCHULTZ, M., SPRACKLEN, J., GIBSON, G., LIGHTNER, B., AND ISAMAN, D. 1991. The

Metaflow architecture. IEEE Micro 11, 3, 10–13.
RAZDAN, R. AND SMITH, M. D. 1994. A high-performance microarchitecture with hardware-

programmable functional units. In Proceedings of the 27th Annual International Sympo-

sium on Microarchitecture (MICRO 27, San Jose, CA, Nov. 30–Dec. 2), H. Mulder and M.
Farrens, Eds. ACM Press, New York, NY, 172–180.

RICHARDSON, S. E. 1992. Caching function results: Faster arithmetic by avoiding unnecessary
computation. Tech. Rep. TR-92-1 (Sept). Sun Microsystems Laboratories.

SANCHEZ, H., KUTTANNA, B., OLSON, T., ALEXANDER, M., GEROSA, G., PHILIP, R., AND ALVAREZ, J.
1997. Thermal management system for high performance PowerPC microproessors. In
Proceedings of COMPCON,

SKADRON, K., AHUJA, P. S., MARTONOSI, M., AND CLARK, D. W. 1999. Branch prediction,
instruction-window size, and cache size: Performance tradeoffs and simulation
techniques. IEEE Trans. Comput. 48, 11 (Nov.).

SOHI, G. S. AND VAJAPEYAM, S. 1987. Instruction issue logic for high-performance, interrupt-
able pipelined processors. In Proceedings of the 14th Annual International Symposium on

Computer Architecture (ISCA ’87, Pittsburgh, PA, June 2–5), D. St. Clair, Ed. ACM Press,
New York, NY, 27–34.

TIWARI, V., MALIK, S., AND ASHAR, P. 1998a. Guarded evaluation: Pushing power management
to logic synthesis/design. IEEE Trans. Comput.-Aided Des. Integr. Circuits 17, 10, 1051–
1060.

TIWARI, V., SINGH, D., RAJGOPAL, S., MEHTA, G., PATEL, R., AND BAEZ, F. 1998b. Reducing
power in high-performance microprocessors. In Proceedings of the 35th Annual Conference

on Design Automation (DAC ’98, San Francisco, CA, June 15–19), B. R. Chawla, R. E.
Bryant, and J. M. Rabaey, Eds, ACM Press, New York, NY, 732–737.

TONG, Y., RUTENBAR, R., AND NAGLE, D. 1998. Minimizing floating-point power dissipation via
bit-width reduction. In Proceedings of the 25th Annual International Symposium on

Computer Architecture (ISCA ’98, Barcelona, Spain, June 27–July 1), M. Valero, G. S. Sohi,
and D. DeGroot, Eds. IEEE Press, Piscataway, NJ.

TREMBLAY, M., O’CONNOR, J., NARAYANAN, V., AND HE, L. 1996. The visual instruction set
(VIS) in UltraSPARC. IEEE Micro 16, 4, 10–20.

VASSEGHI, N. 1996. 200MHz superscalar RISC processor circuit design issues. In Proceedings

of the 1996 International Solid State Circuits Conference Digest on Technical Papers.
ZIMMERMANN, R. AND FICHTNER, W. 1997. Low-power logic styles: CMOS versus pass-

transistor logic. IEEE J. Solid-State Circuits 32, 7, 1079–1090.

Received: February 1999; revised: December 1999; accepted: February 2000

126 • D. Brooks and M. Martonosi

ACM Transactions on Computer Systems, Vol. 18, No. 2, May 2000.

