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I& h be the BeNof c~~~plex numbers, t an inter- 
d P(t-) ati nth degree polynomial 
enote the furnbez. of arithmetic 

ed to evaluate the aomalized deriva- 
, n, at an arbitrary poi&N in k. . 

I bounds on T(n). 
fpr using the standard algo&hm (iterated Homer 

algOr&m~, wecan prove that _ . 

d-m, Vn. r _ 

By wing rhe special case of the Saw-Traub family , 
d @orit?tis with parameter qf a+I 14, section 21, 
referred to here for conciseness~~l the Faw-Traub , 
Igurifun, we can prove that ’ 

~t#pqn~ +fn-1, yjL .‘;’ ., r 
I ,I, 

, _. 

These upper fxmi@ #m&i&i fii&her improi;d fat _ : 
!lqp n. (Ei4Ywver, vfae z5laimb~~U~ zllgori&. is sm . 
rthe best knopn algdthn for&M A.) Boro&n_and , 
Mm0 [Z, &hap&r 3, p2xk@xn 51 observed,that 1 

T(m) g T,(n) + T@) 9 (1) 

whim T,@j is tie mtmk~r d arithmetic operations 
n2zded tct wluate im prtlrl degree pokyn+~1&4 ali tr+l 

kts and Z”i(n) is the nun&f of ari@netic opera- 
needed to construct an nth de&e ktterpolating 

polynoorriae from Wl pairs of points. @ee also Kung 
[3) l ) Now, two nth ilep,iteepolyn&nik&c&n be multi- 
Par;& i% ($z Xog n 4 low& drder t&ms) &tbetk ’ ’ 

operations: (This can be dofie with the Vast Fourier 
TraMform tith,c =,12: All loga&thmS in this a@e 
are to base 2,) A numbei of *pople showed indepen- 
dently &at 

Te@) G O(n 163 &); T&t> G 0(n log2 n). 

(tie the ~&vey bper written by. Borodin [I] and 
Kung [3 ] .I For shi@licit$ in the {allowing we a&me 
tha1.p 2 Y- 1 for some positive integer r. Kung’~ 
algoirthm gives the best -preSlously known asymptotic 
constants: \ 

. 

Ti(H) G. OCR kg2 rt + lower order terms. 

Herice try (4 ), 

Let P(t) t IS: qtj and let to be any point in k. 
Suppose that we xvan t to evaluate P@ (t)/i!, i = 0, 
-aJ n, at Q. Pit is equivalent to compute b,, l *‘1 b, 
from tzO, l ... an and to such that 
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n n 

Note that for j = 0, l ... r- 1, 

tifl-1 21- 1 

21-l 

+ (*+to)2i E ati+i(f+tO)i. 

(2) 

(3) 

We EM computedi,; i=O, **a, 2i,j=O, l **,r-1,such 
that 

21’ 

It is easy to check that this can be dent in (cn log n + 
lower order telil;*:) arithmetic operations. Then by (2) 
and by using Fast Fourier Transform for polynomial 
multiplication, we have 

T(2fii) 6 2T(29 f c+ 21 f lower order terms, 

forj = 0, l ‘*) r- 1. Therefore we haq’e shown the fol- 
lowing 

;Iheotem 2.1. T(n) Ik; gcn 108 n + lower order terms, 
where n = 2?-1 fot uny positive integer t. 

:,4 

3. Remarks 

The above a;lgotithm is based on (3) which is ob- 
tained by +&e b@uy splitting of the summation in the 
left hand side. It is easy to see that L1\e iterated Homer 
algoriti is based on the following sp:itting: for 
j = n- 1 ;n-2, l *a, 0, 

N-1 n-j-l 

Furthermore, let Zi = biti and &- = ait; for i := C\, sm., n. 
Then by (2) 

n n 

F Ki*‘qC ;;(I :’ 
0 

1% 

and by (4), forj = D--I, n--2, ..a, 0, 
n-j m-j-l 

r ‘7 - i=“o 5+1 (t+l)i ‘3 + (ttl) ;$ uj+l+~(t+l)~. (6) 

By (5) and (6) wk krlow that Eo, w.*, &, can be com- 
puted by the iterated Horner algorithm applied to the 
polynomial Z~=O (Iit’ with to = 1. After &t has Lven 
cornpl&?d bi is computed by bi = ?;itil. This algo- 

tithm for computing b,, . . . . b, is exactly ;he Shaw- 
Traub algorithm. 
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