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ABSTRACT 

Let [xi} be a sequence approximating an alge- 

braic number ~ of degree r, and let xi+ I 

= ~(xi,xi_],...,Xi_d+]) , for some rational func- 

tion ~ with integral coefficients. Let M denote 

the number of multiplications or divisions needed 

to compute ~ and let M denote the number of multi- 

plications or divisions, except by constants, 

needed to compute ~. Define the multiplication 
log2P 

efficiency measure of [xi} as E([x~) = M or as 

log2P 
E({xi} ) = ---~--, where p is the order of conver- 

gence of [xi}. Kung []] showed that E([xi}) ~ I 

or equivalently, M ~ log2p. In this paper we show 

that (i) M ~ log2[r([p]-]) + ]] - ]; (ii) if 

E([xi} ) = I then ~ is a rational number; (iii) if 

E(~xi~) = I then ~ is a rational or quadratic ir- 

rational number. This settles the question of when 

the multiplication efficiency E([xi]) or E(~xi~) 

achieves its optimal value of unity. 

1. INTRODUCTION 

The effort required to approximate an alge- 

braic number should increase with its degree. In 

this paper we prove this assertion in a precise 

sense. We also show that the optimal efficiency 
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of approximation can be achieved only for alge- 

braic numbers which have very low degrees; in fact 3 

degree one or degree two. 

Let [xi~ be a convergent sequence generated by 

xi+ I = ~ (xi,xi_1,.o.,xi_d+ I) for some rational 

function ~ with integral coefficients. Let M de- 

note the number of multiplications or divisions 

needed to compute ~ and let M denote the number of 

multiplications or divisions, except by constants, 

needed to compute ~. Define the multiplication 

log2P 
efficiency measure of [xi] as E([xi~ ) = M or as 

log2P 
E([xi)) = 7-, where p is the order of conver- 

gence of [xi~. Of course, E([xi] ) ~ E([xi} ). 

Kung [1] showed that E([xi] ) ~ ], that is, 

~ log2p. In this paper we show that, if [xi) is 

a sequence approximating an algebraic number ~ of 

degree r, then 

(i) M ~ log2[r([p]-]) + 1] - ], 

-1) 
(ii) E([xi] ) = 0([log2r ] as r ~ ~, pro- 

vided that we only consider sequences 

[xi~ of order of convergence p ~ U, for 

some constant U, 

(iii) if E([xi~ ) = ] then ~ is a rational 

number, 

(iv) if E([xi] ) = ] then ~ is a rational or 

quadratic irrational number. 

log2P 
Another efficiency measure defined as 
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where A is the number of arithmetic operations 

needed to compute W has been studied by Kung and 

Traub [2]. 

denote the values of DiP and Di,jW at (yl,...,yd) 

respectively. The symbol x is also used as an in- 

determinant over I. 

2. NOTATION 

We work over either the field of real numbers 

or the field of complex numbers. If we work over 

the field of real numbers, we define the integers 

~o be the rational integers, for example, I, -2, 3, 

while if we work over the field of complex numbers, 

we define the integers to be the Gaussian integers, 

for example, 1+3i, l-i, 3-2i. Hence the word 

"integers" in the rest of the paper will refer to 

either the rational integers or the Gaussian inte- 

gers depended upon whether the base field is the 

field of real numbers or the field of complex num- 

bers. 

Let I be the integral domain of integers and 

let Yl"'''Yd be indeterminants over I. Define 

l[yl,...,yd](l(yl,...,yd)) to be the ring (field) 

of polynomials (rational functions) in yl,...,y d 

with coefficients in I. 

Let ~(yl,..o,Yd) E l(yl,...,yd). Define 

M(~)(M(~)) to be the number of multiplications or 

divisions (respectively, except by constants) 

needed to compute the value of ~(yl,...,yd ) from an 

arbitrary point (yl,...,yd). 

For every ~(yl,...,yd ) E I(Yl,...,Y d) define 

~i(yl,...,yd ), i=1,2, to be those two relatively 

prime polynomials in l[yl,...,yd] such that 

~i(Yl .... ,Yd ) 
¢0(y I .... ,Yd ) ~2(yl .... ,Yd ) 

and define the degree of ~(yl,..,,yd ), deg ~, to 

be max(deg Wl~deg W2 ). To indicate partial deriva- 

tives of tp, we write DiW for ~- for ~-__L, 
~Yi' Di'j~ ~Yi~Yj 

etc., and let Di~(y I ..... yd ) and Di,j~(y I ..... yd ) 

Let ~ be an algebraic number. ~ is called an 

a lsebraic number of desree r if 

r = min~deg sis(x) E l[x] and s(~) = 0}. 

We say ~ is a rational number if r =1 and ~ is a 

quadratic irrational number if r=2. m(x) E I[x] is 

called the minimal polynomial associated with ~ if 

m(~) = 0, deg m = r and m(K) is monic. 

Let [xi~ be a sequence converging to ~ such 

that e. := Ixi-~I ~ 0 for all i. The sequence 
i 

[xi] is of order of convergence p (or [xi] is a 

th 
p order sequence) if 

ei+l 
lim 
i ~= e. P-¢ 

i 

= 0 and lim el+----J-- ~ 0 

i ~= e. p+c 
/ 

I 

for any e > 0. 

For each algebraic number ~, define G(~) to 

be the class of all sequences [xi] with the follow- 

ing properties: 

(i) lim x. = ~ and x i ~ ~ for all i, 
i 

i~ 

(ii) [xi} has order p > I, 

(iii) [xi] is generated by the iteration ~, 

that is, for some ~(yl,...,yd ) 

E l(yl,...,yd), xi+ I = ~(xi,...,Xi_d+ |) 

for i ~ d, with ~ = ~(~,...,~). 

For any sequence [xi] in G(~) generated by 

the iteration ~, the multiplication efficiency of 

~xi] is defined as 

log2P 
E([xi]) = " M 

by Kung []], or as 

log2P 
E( {xi] ) = 

by Paterson [3], where M = M(~), M = M(~) and p is 
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the order of convergence of [xi]. Obviously, we 

have E([xi]) ~ E([xi)). Define 

E(r) = sup { sup E({xi]) ] 
~EA(r) [xi]EG(~) 

where A(r) is the set of all algebraic numbers of 

degree r. 

3. STATEMENT OF RESULTS 

It follows from the results in Kung [7] that 

(3.7) E([xi} ) ~ ] 

(hence, E([xi]) ~ 7) for any [xi] E G(~) and for any 

algebraic number ~. 

Theorem 7. 

If ~ is an al$ebraic number of degree r a 2, 

then for any sequence [xi] in G(~) generated by 

the iteration ~, 

(3.2) M ~ log2[r([p]-]) + 7] - ] 

or equivalently, 

(3.3) E([xi} ) K (log2p)/[log2[r([p]-]) + ]]-]], 

where M = M(<0) and p is the order of convergence of 

[Xi)" 

Since (log2p)/(log2[r([p]-]) + 1] - ]} < ] 

whenever r > 2 and p > 2, (3.3) is a stronger re- 

suit than (3.1). Moreover, (3.2) implies that if 

we fix p then M a log2r + c for constant c. 

This means that to achieve the same order of con- 

vergence we have to use more multiplications or 

divisions, except by constants, in each itera- 

tion stage when the degree r of the algebraic num- 

ber is higher. 

Suppose that we only consider sequences [xi] 

of order of convergence p ~ U for some constant 

U > 0. (This is the case in practice.) Then 

(3.3) implies that 

E(r) = 0[(log r) -]] as r ~ =. 

However, Paterson [3] showed that 

~(r )  ~ .82# . 7  

and c o n j e c t u r e d  t h a t  

~(r) = 0(r "~) as r ~ ~. 

It is still an open problem to find how fast 

E(r) drops as r ~ ~. 

Will E([xi~) or E([xi}) achieve its upper 

bound of unity? Paterson [3] observed that for 

any quadratic irrational number ~, there exists 

ix i] E G(~) such that E([xi]) = 7. Kung [1] ob- 

] 
served that for the rational number -~ there 

exists [xi} E G(-½) such that E([xi} ) = ]. 

Theorem 2. 

L__gt ~ be an algebraic number of de$ree r and 

let [xi } E G(~). Then 

(3.4) r = ] if E([xi}) = 1; 

(3.5) r = ] or 2 if E([xi]) = 7. 

Corollary 2.]. 

(1) ~ is a rational number if and only if 

there exists [xi] C G(~) with E([xi] ) =7. 

(ii) ~ is a quadratic irrational number i__f 

and only if there exists {xi] E G(~) 

with E([xi]) = ] and there exists no 

Ix i} E G(~) with E([xi~ ) = 1. 

Proof of Corollary 2.]. 

(i) The sufficiency of the condition is al- 

ready implied by Theorem 2o Let us therefore 

assume that ~ is a rational number. Define 

~(x) = (x-~) 2 + ~. Then clearly ~(x) 6 l(x), 
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M(~) = ] and the sequence [xi] generated by ~ is 

of order of convergence p=2. Hence E([xi)) = I. 

(ii) The sufficiency of the condition is im- 

plied by (i) and Theorem 2. The necessity of the 

condition follows from (i) and Paterson's observa- 

tion. QED 

and ~2(~) ~ 0, one can easily verify that 

t(n)(~) fl 0. Therefore w(~) = 0. This implies 

that there exists v(x) 6 l[x] such that 

w(x) = v(x) • m(x). Thus, ~1(x)=v(x).[m(x)]n+1. 

Since w(x) ~ 0, we have v(x) ~ 0. The proof by 

induction is complete. QED 

Corollary 2.1 answers completely the ques- 

tion of when E([xi~) or E([xi~) achieves its opti- 

mal value of unity. In fact, Corollary 2.1 gives 

new characterization theorems for rational and 

quadratic irrational numbers° 

4. PROOF OF THEOREM ] 

Let us first establish three lemmas. 

Lemma ]. 

If Y(x) E I(x), ~(x) ~ 0 and if T(i)(~) = 0 

for i=0,...,%-], for some algebraic number ~ of 

degree r, then 

~ ] ( x )  = q (x)  ° [m(x)]  ~ 

for some q(x) E l[x], q(x) ~ 0, where m(x) is the 

minimal polynomial associated with ~. 

Proof of Lemma I. 

well 

zero 

then 

that 

that 

tion 

w(x) 

Then 

We prove the lemma by induction on 4. It is 

known that any polynomial in fix] which has a 

at ~ is divisible by m(x). Therefore, if ~-] 

the statement of Lemma ] is true. Assume 

the statement is true for ~ ~ n. Suppose 

~(i)(~) = 0 for i=0,...,n. By the induc- 

hypothesis ~](x) = w(x) • s(x) for some 

E l[x], w(x) ~ 0, where s(x) = [m(x)] n. 

~(x) = w(x) • t(x) where t(x) = s(x) 
~2 (x)" 

Z n t(i) that ~(n)(x) = 0~i~n(i) w (n'i)(x) • (x). 

~(n)(~) = 0 and t(i)(~) = 0 for i=0 .... ,n-1. 

w(~)t(n)(~) = 0. 

Note 

But 

Thus, 

Using the fact that m'(~) ~ 0 

Lemma 2. 

Let ~(y],...,yd ) E l(y I, .... Yd ). If ~ gen- 

th 
erates a p order sequence in G(~) for some alge- 

braic number ~, then 

(4.1) deg ~p ~ [p] 

and for any k=],...,[p]-], 

(4.2) D.11,...,ik~(~,...,~) = 0 

for all I ~ il,...,i k m d. 

Proof of Lemma 2. 

Since (4.1) has been shown in Kung [1], we 

only prove (4.2). From Kung [I], we know that 

(4.3) ~](Yl .... 'Yd ) " o~P2(Y] ..... Yd ) 
Jl 

= ~ c(j I ..... jH)(Y]-~) ... 
J]+...+jd~[P] 

(yd-ff) jd 

where the constants c(j],...,j d) are independent of 

Y]'''''Yd" Since D i l , . . . , i k ~  = D . 1 ] , . . . ~ i k ( ~ - f f )  

= D .  l l ' ' ' ' ' i k  ~ ~2 ], (4 .2 )  f o l l o w s  from (4 .3) .QED 

See Kung[ l ]  f o r  t he  p r o o f  o f  t h e  f o l l o w i n g  

I emma. 

Lemma 3. 

If ~(y1,...,yd ) 6 I(Yl,...,Yd), then 

M(~) ~ log2(deg ~). 
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Proof of Theorem 1. 

th 
Let [xi] be a p order sequence in G(~) gen- 

erated by ~p. Since ~(~,...,~) = ~, there exists a 

neighborhood N(~,...,~) of (~,...,~) such that ~2 

does not vanish in N(~,...,~). Choose an open 

interval I containing ~ such that I ×...XI 

N(~,...,~). Then we define a function ~:I ~ R 

by ~(x) = ~(x,...,x). ~ is well-defined since 

~2(x,...,x) ~ 0 for x E I . Clearly, ~(x) 6 l(X) o 

Recall that Dig denotes the partial derivative of 

with respect to Yi' and that Di~(x,...,x) de- 

notes the value of Dig evaluated at (x,...,x) for 

x E I . Suppose that Di~(x,...,x) ~ 0 for all 

i=],...,d. Then by the chain rule, 

d d 
d-~ ~(x) m ~xP(X ..... x) ~ Z D.~(x ..... x) m 0 

i~i~d I 

Hence ~ is a constant on I . Since 

~(~) = ~(u,...,~) = ~, 

~1(x ..... x) 
~(x) - - 

~2(x ..... x) 

for all x E I . Choose a rational number ~ in I . 

Note that the polynomials ~i(x,...,x), i=1,2, have 

~l(X,...,~) 
integral coefficients. Hence ~2(~,.~.~) is a 

rational number. This implies that ~ is a ration- 

al number. This is a contradiction. Therefore, 

(4.4) Di]q0(x ..... x) ~ 0 

for some ] ~ i] ~ d. Now we define another func- 

tion ~:I~ ~ R by ~(x) = Di]¢0(x,...,x). Clearly, 

~(x) E l(x). By the chain rule, for k=2,...,[p]-], 

~(k'])(x) = E D. . ~(x ..... x). 

]~i2,...,ik~d ~]'''''~k 

Then it follows from Lemma 2 that y(i)(~) = 0 for 

i=0 .... ,[p]-2. By (4.4) ~(x) ~ 0. Hence it fol- 

lows from Lemma ] that deg ~ ~ ([p]-]).deg m 

= r(Fp]-l). But one can easily see that 

deg(Di]~) ] ~ deg Y] and 2deg ~ z deg(Di]~) ] + 1. 

Hence deg ~ ~ [r([p]-]) + ]]/2. By Lemma 3, we 

have M ~ log2[r([p]-]) + 1] - 1. QED 

5. PROOF OF THEOREM 2 

We first establish two auxiliary theorems. 

Theorem 3. 

Let ~(x) E l(x)~ and let ~ be an alsebraic 

number. If ~(~) = ~ and ~(i)(~) = 0~ i=]~...~p-], 

for p ~ 2, then 
/ / ° 

~i)(~) _ ~) (~) = 0, i=0 ..... p-~. 
{ 

Proof of Theorem 3. 

We use induction on p. If ~(~) = cl and 

~'(~) = 0, then ~1(¢~) - ~2(~) = 0 and 

~2(ol)~(Ol) - ~](Ol)~(Ol) = 0; hence 

~(ol) - cl~(o~) = 0. Therefore, the statement of 

Theorem 3 is true if p=2. Assume that the state- 

ment is true for p ~ n. Suppose that ~(~) = c~ 

and ~(i)(ol) = 0 for i=],...,n. By Lemma ] 

(5.1) ~2(x)~(x) - ~1 (x)~(x) = q(x).[m(x)]n 

for some q(x) E l[x], where m(x) is the minimal 

polynomial associated with ~. Note that 

dn-] 
(5.2) d~[~2(x)~(x)-~ 1(x)~(x)] 

= ~2 (x) ~$n) (x) -~i (x) ~n) (x) 

+ ~ (n~l)[~n-l-i)(x)~i+l)(x) 

0~i~n-2 

(n-] -i) (x) ~i+] ) 
- 91 (x) ]. 

Using the fact that m(¢l) = 0, from (5.1) and (5.2) 

we get that 

(5.3) ~2(cl)~ n)(c~)-~ 1 (ol)~ n)(c~) 
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0Kiln-2 

65n-I-l)(~)~i+I)(~)] = 0. 

But by the induction hypothesis, 

6~ i)(~) - ~6~ i)(~) = 0, i=0 ..... n-]. 

Hence 2 for i=0,...,n-2, 

~(n-]-i) ~i+]) .(n-l-i), ,=(i+] 
2 (~) (~) -~1 ~) ~2 ) (~) 

_(n-I-i) ~.(i+])(ff)_~6~i+]) 
= ~2 (~)L~1 (~)] 

= 0. 

Therefore (5.3) implies that 

~2 (~) ~$n) (~)_61 (~)~n) (~) = 0, 

and hence 

(n) (n) 
~I (~)-~62 (~) = 0. 

The proof by induction is complete. QED 

Theorem4. 

Let ~(x) 6 I(x). If M(~) = log2(deg ~), then 

deg 62 < deg 61 = 2M(~) and the leading coeffici- 

ent of 61(x) is divisible by that of ~2(x). 

Proof of Theorem 4. 

Consider the algorithm which computes ~(x) in 

M(~) = log2(deg ~) multiplications or divisions. 

Since by Lemma 3, 

M(~) ~ M(6) ~ log2(deg 6), 

we have M(~) = M(6). That is, there are no multi- 

plications or divisions by constants in the al- 

gorithm. Note that deg ~ = 2 M(6). We prove the 

theore m by induction on M = M(6). It is easy to 

check that the statement of Theorem 4 is true if 

M-]. Assume that the statement is true for M ~ L, 

and let us prove it for M=L+]. Suppose that deg 

= 21+] and M(~) = log2(deg ~). Then ~(x) can be 

computed in (L+I) multiplications or divisions by 

some algorithm. With respect to this algorithm 

let R (x) denote the result immediately following 
n 

the n th multiplication or division for n=],...,L+]. 

Let R0(x) = x. Then for n=0,...,L either 

(5.4) Rn+](x) = (0~i~nE Mn,iRi (x) + An) 

• ( E Nn,iRi(x) + B n) 
0~i-~n 

or 

(5.5) Rn+](x) = ( E M .R.(x) + An) 
0~i~n n,l l 

/ ( ~ Nn,iRi(x) + Bn), 
0~i~n 

for some integers Mn,i, 

Bn, for i=0,...,n; and 

Nn, i and some numbers An, 

6(x) = ~ ML+],iRi(x) + AL+ ] 
0~i~L+] 

i=0, ,L+], and some for some integers ML+],i, ... 

number AL+ ]. One can show that, for n=],...,L+], 

the following is true (see Kung []]). For any 

integers K0,...,Kn, and any number C, 

Pn(X;K,C) 
E KiRi(x) + C 

0~i~n Qn (x) 

where Pn(X;K,C) is a polynomial in l[x] depending 

on K = (K0,...,K n) and on C; where Qn(X) is a 

polynomial in l[x] independent of K and of C; 

moreover~ both polynomials have degree ~ 2 n. Now 

suppose that for n=L (5.4) holds; that is, 

Then 

(5.6) RL+](x) = ( E ML, iRi(x) + A L) 
0~i~L 

• ( Z NL, iRi(x) + BL). 
0~i~L 

(5.7) 6(x) = ~ ~.+],iRi(x) + 
0~i~L+] AL+] 

= ML+]'L+]RL+](x)+0Ki~LZ M...Lt,,iRi (x)+AL+i 

PL+/(X;ML+],AL+ ] ) 

QL+i (x) 
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where 

(5.8) PL+i(X;ML+i,AL+ I) 

= ML+i,L+].PL(X;ML,AL).PL(X;NL,BL) 

+ PL(X;ML+],AL+])'QL(X) 

and 

(5.9) QL+](x) = [QL(X)] 2. 

Let r(x) be the greatest common divisor of 

PL(X;ML,AL) and QL(X). (Let r(x) ~ I if PL(X;ML,A~ 

and QL(X) are relatively prime.) Write PL(X;ML,AL) 

= r(x)'p(x) and QL(X) = r(x).q(x). Then from (5.7), 

(5.8), (5.9), 

(5.10) ~(x) 

= ML+]~L+I'P(x)'PL(X;NL'BL)+PL(X;ML+I'AL+I)'q(x) 
r(x).[q(x)] 2 

Suppose that deg( ~ ML,iRi + AL) < 2 L. Then 
0~i~L 

deg p < 2 L and deg q < 2 L. Note that if r(x) ~ 1 

then deg r.q 2 < 2 L+] and on the other hand, if 

r.q2 2 2 2 2L+1 
deg r > ] then deg < deg r .q = deg QL ~ " 

Therefore, deg r-q 2 < 2 L+I. Also note that since 

both PL(X;NL,BL) and PL(X;ML+i,AL+ ]) have degree 

2 L, ML+],L+]'p(x)'PL(X;NL,BL) + PL(X;ML+],AL+i ) 

• q(x) has degree < 2 L+]. Hence (5.10) implies 

that deg ~ < 2 L+]. This is a contradiction. 

2 L" Therefore, deg( ~ M .R. + A L) = Obviously, 
0~i~L L,~ 

M~ .R.(x) + A L can be computed in L multi- 
0~i~L ~'~ ~ 
plications or divisions. Hence by the induction 

hypothesis, deg QL < 2L' and PL(X;ML,AL) has 

degree 2 L and the leading coefficient of 

PL(X;ML,AL) is divisible by that of QL(X). Sim- 

ilarly, we can prove that PL(X;NL,BL) has the same 

property. Therefore, from (5.7), (5.8), (5.9), we 

conclude that deg ~2 < deg ~1 = 2L+I and the lead- 

ing coefficient of ~](x) is divisible by that of 

~2(x). Similarly, we can obtain the same conclusion 

if for n=L (5.5) holds; that is, 

RL+ I = ( Z M..R.(x) + AL)/( Z N iRi(x) + BL). 
0~i~L u,l i 0~i~L L, 

The proof by induction is complete. QED 

Proof of Theorem 2. 

th 
Assume that [xi] be a p order sequence gen- 

erated by ~, for some ~(y],...,yd ) C l(y],...,yd). 

Define ~:I ~ R by ~(x) = <p(x,...,x) for some open 

interval I containing ~, as in the previous sec- 

tion. Then by the chain rule, 

~(k)(x) = Z D. ,x) 
]~i],...,ik~ d 1],''',ik~(X'''" 

for any positive integer k, Hence by Lemma 2 we have 

(5.]I) ~(k)(~) = 0, k=1 ..... [p]-]. 

We first prove (3.5). Assume that E([xi]) = 1. 

Suppose that r > 2. Since by (3.3) E([xi]) < 1 

whenever r > 2 and p > 2, we have p ~ 2. Hence 

] ~ M(~) = log2p ~ ]. This implies that M(~) = ] 

and p=2. Since M(~) = ], one can easily see that 

deg ~1 = 2 and deg ~2 ~ 1. Hence ~1(x,...,x) 

- x~2(x,...,x ) has degree at most 2. Suppose that 

~](x,...,x) - x~2(x , .... x) ~ 0. Then ~(x) ~ x and 

~'(x) ~ 1. But by (5.11) ~'(~) = 0, since p=2. 

This contradiction shows that ~1(x,...,x) 

-x~2(x ..... x) ~ 0. Note that ~(~ ..... ~) = ~, that 

is, ~1(~,.0.,~) - ¢Kp2(~,...,~) = 0. Therefore, 

is a zero of the polynomial ~](x,...,x)-x~2(x .... ,x) 

which has degree one or degree two. This implies 

that r ~ 2. Hence we get a contradiction by assum- 

ing that r > 2o Therefore r ~ 2. We have shown 

(3.5). 

Now suppose that E(ixi}) = 1. Then E([xi]) =1, 

and r=1 or 2 by (3.5). Suppose that r=2. From 

Lemma 2 and Lemma 3, 
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M(~0) ~ M(q0) ~ log2(deg ~0) >- log2[p] ~ log2P. 

But E([xi]) = I, that is, M(~) = log2p. We have 

(5.]2) M(~) = M(~) = log2(deg ~) = log2[p] 

= log2p. 

Hence p is a integer. Now consider ~. Clearly 

9(~) = ~. By Theorem 3, (5.11) implies that 

z(p-1)(~) - ~ p - 1  (5.13) ~1 )(~) = O. 

Using the proof of Theorem 2, one can show that 

deg 9 ~ 2(p7'1)+1 1 2 = p - [ .  But by (5 . 12 )  p = deg ~.  

Hence p = deg ~ e deg 9 e p - } .  Th is  i m p l i e s  t h a t  

deg % = p.  

Note that the algorithm which computes 

~(yl,...,yd ) in M(~) multiplications or divisions 

reduces to an algorithm which computes ~(x) in at 

most M(~) multiplications or divisions. Hence 

M(~) -< M(q~) = log2p = log2(deg ~). 

By Lemma 2, M(9) ~ log2(deg 9). Thus M(~) 

= log2(deg 9). Hence by Theorem 4, deg 92~ p-1 

and deg 91 = p. Now suppose that 

z(p-1) x~P-1)(x) 0 (5.14) Vl (x) - 

Then deg 92 = p-1. Let us assume that 91(x ) 

i 
a.x and ~2(x) = Z b.x i. Then by 

0~i~p l i 0~i~p-] 

= 2 M(~) Note that p ~ 2. (5.14) we have pap bp_ 1. 

This is a contradiction, since by Theorem 4 a is 
P 

divisible by bp_ I. Hence, 

9~ p-1)(x) - x~ p-1)(x) ~ 0. 

(p-l) 
xg~P-1)(x)( is a polynomial of Clearly, 91 (x) - 

degree one. Hence (5.13) implies that ~ is a root 

of the linear equation %$P-1)(x) - x~P-1)(x) = 0. 

Therefore, by assuming r=2 we have obtained r=1. 

This is a contradiction. Nevertheless, since r is 

either I or 2, we have thereby shown that r=1. QED 

[I] 

[2] 

[3] 
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