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ABSTRACT. The problem is to calculate a simple zero of a nonlinear function f by iteration. There 
is exhibited a family of iterations of order 2 "-1 which use n evaluations of f and no derivative evalua- 
tions, as well as a second family of iterations of order 2 "-1 based on n - 1 evaluations of f and one 
of f ' .  In particular, with four evaluations an iteration of eighth order is constructed. The best pre- 
vious result for four evaluations was fifth order. 

I t  is proved that the optimal order of one general class of multipoint iterations is 2 "-t and that 
an upper bound on the order of a multipoint iteration based on n evaluations of ] (no derivatives) is 
2 n . 

I t  is conjectured that a multipoint iteration without memory based on n evaluations has optimal 
order 2 "-1 . 
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I. Introduction 

We deal wi th  i terat ions  for calculat ing simple zeros of a scalar funct ion f. This  problem is 
a p ro to type  for m a n y  nonl inear  numerica l  problems [11]. N e w t o n - R a p h s o n  i te ra t ion  is 
probably  the  most  widely used a lgor i thm for dealing with  such problems. I t  is of second 
order and requires the  eva lua t ion  of f and f ' ,  t ha t  is, i t  uses two evaluat ions.  Consider  an 
i te ra t ion  consisting of two successive Newton -Raphson  i terates  (composi t ion  of i te ra tes) .  
This  i te ra t ion  has four th  order  and requires four evaluat ions,  two of f and two of f ' .  
More  generally,  an i tera t ion composed of n Newton  i terates  is of order 2" and requires n 
evaluat ions  of f and n evaluat ions  of f ' ,  t ha t  is, 2n evaluat ions.  

We shall show tha t  an i te ra t ion  of order  2 n-1 m a y  be const ructed f rom just  n evalua-  
t ions of f.  We exhibi t  a second type  of i tera t ion which requires n --  1 evMuat ions  of f and 
one evaluat ion of f '  to achieve order 2 ~-1. 

In  part icular ,  wi th  four evaluat ions  we const ruct  an i te ra t ion  of e ighth  order. The  best  
previous result  [10, p. 196] for four evaluat ions  was fifth order. 

Newton -Raphson  i te ra t ion  is an example of a one-point  i terat ion.  The  basic op t imal i ty  
theorem for one-point  i terat ion states tha t  an analyt ic  one-point  i tera t ion which is based 
on n evaluat ions  is of order at  most  n. (This  theorem was first s ta ted  by T raub  [9; 10, 
Sec. 5.4]; we give an  improved  proof here.) We conjecture t ha t  a mul t ipo in t  i te ra t ion  
based on n evaluat ions  has op t imal  order 2 n-1. We  prove  t h a t  the  op t imal  order of one 
impor t an t  family  of mul t ipo in t  i terat ions is 2 ~-~ and tha t  an upper  bound  on the  order  of 
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multipoint iteration based on n evaluations of f is 2L This upper bound is close to the con- 
jectured optimal order of 2 "-~. 

To compare various algorithms, we must define efficiency measures based on speed of 
convergence (order), cost of evaluating f and its derivatives (problem cost), and the cost 
of forming the iteration (combinatory cost). We analyze efficiency in another paper [5]. 
We confine ourselves here to iterations without memory, deferring the analysis of iterations 
with memory to a future paper. 

We summarize the results of this paper. The class of problems and algorithms studied 
in this paper is defined in Section 2. Particular families of iterations are defined in Sections 
3-5. The optimality theorem for one-point iterations is proven in Section 6. An optimal 
order theorem for one general class of multipoint iterations and an upper bound for the 
order of a second class are proven in Section 7. A general conjecture is stated in Section 8. 
Section 9 contains a small numerical example. The Appendix gives AL6O~ programs for 
forming two families of multipoint iterations. 

2. Definitions 

We define the ensemble of problems and algorithms. Let D = {f I f is a real analytic func- 
tion defined on an open interval I s C R which contains a simple zero o~f of f and f '  does 
not vanish on Is.I. 

Let ~ denote the set of functions ¢ which maps every f E D to ¢( f )  with the following 
properties: 

1. ~b(f) is a function mapping I~,j C I f  into I~, I for some open subinterval I~,f contain- 
ing o~]. 

2. ~ ( f ) ( o t f )  = O~f. 
o. There exists an open subinterval 0 o I~, f C I~. f containing c~t such that  if x~+l = 

¢(f)(x~) then limi_,~ xl = vq whenever x0 E I~, l .  
4. For any ~b, there exist nonnegative integers k, do, • • • , dk_~, and functions u~+~(yo; 

o o J i Yl:, "" ,Ydo+~; " " ,  Y~, " " ,  Y~+~) of 1 + ~0/(d~ + 1) variables f o r j  ~- - 1 ,  . . . ,  
k -- 1 such that, for all f E D, 

where 

¢ ( ] ) ( x )  = z~, (2.1) 

z0 = u 0 ( x ) ,  (2 .2)  

z~+~ = u j + 1 ( x ; f ( z o ) , ' ' ' , f ( d ° ) ( z o ) ; ' ' '  ; f ( Z j ) , ' ' ' , f ( d i ) ( Z ~ )  ), j =  O , ' ' ' , k - -  1. 

The assumption that  f E D is needed for theorems dealing with a class of iterations. 
Any particular ¢ can be applied to f having only a certain number of derivatives. 

In (2.2) we assume uo(x) -: x. In another paper [6], we prove that  if ~b E ~ and if uo(x) 
is continuous, then u0(x) must be identically equal to x. 

If ~b E ~, ~ is called an iteration without memory, since if the sequence {x~] is generated 
by x~+~ = ~(f)(x~), xi+l is computed using information only at the current point x~. In 
this paper we limit ourselves to iterations without memory. 

We classify iterations without memory. If  k is the nonnegative integer in (2.1), then we 
say ¢ is a k-point iteration. In  particular, if k = 1, we call ~b a one-point iteration and if 
k > 1 and the value of k is not important, we call ¢ a multipoint iteration. (Similar defini- 
tions of one-point and multipoint iteration are given in [9; 10, Sec. 1.22].) 

If there exists p (~)  such that  for any f E D, 

l im[(~( f ) (x)  - o ~ s ) / ( x -  o~f) p(~)] = S(¢h , f )  
z~aj¢ 

exists for a constant S(¢ ,  f) and S(¢ ,  f) ~ 0 for at least one f E D, then ¢ is said to 
have order of convergence (order) p (¢ )  and asymptotic error constant S ( ~b, f) .  
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This  is perhaps the simplest  definit ion of order of convergence. The  results of this  paper  
hold, with sui table modifications, for weaker definitions of order [7], bu t  we feel t ha t  use 
of these definitions would obscure the proofs wi thout  subs tant ia l ly  s t rengthening  the  re- 
sults. 

Let  v,(~)  denote the number  of evaluat ions  of f(~) used to compute  ~ ( f ) ( x ) .  T h e n  
v(~b) = ~_>o vi(~b) is the to ta l  n u m b e r  of evaluat ions  required b y  ~b(f) (x) per step. 

To  simplify nota t ion,  we often use a, ~, p, v~, v instead of a/, ck( f ) (x) ,  p ( ~ ) ,  v i (~) ,  
v(~b), if there is no ambigui ty .  

The following two examples i l lustrate  the  definitions. 

Example  2.1. (Newton-Raphson  I te ra t ion)  ~ ( f ) ( x )  = x - f ( x ) / f ( x ) .  This  is a one- 
point  i tera t ion with v0 = 1, v~ = 1, v = 2, and p = 2. 

Example  2.2. zo -- x, zl = zo - f ( z o ) / f ( Z o ) ,  

&(f)  (x)  = z2 = Zl -- { f (zOf(zo) /[ f (zO -- f(z0)] 2} "[f(z0.)/~(Zo)]. 

This  is a two-point  i tera t ion with v0 = 2, Vl = 1, v = 3, and  p = 4. (See Section 5.) 

3. A Family  of One-Point Iterations 

For  f E D, let F be the inverse funct ion to J. For  every n, define 3'J(f) : I f  --~ R,  j = 1, 
• . .  , n, as follows: ~ l ( f )  (x) = x and  for n > 1, 

'Yj+l(f) (x) = ' ~ ( f )  (x) + [( - 1) t/j!]. [f(x)]J. F(J)( f (x))  (3.1) 

for j = 1, . . .  , n - 1. Note tha t  F (~)(f(x)) can be expressed in terms of f(i)(x) for i = 1, 
2, • • • , j .  I t  is easy to show that ,  for example, 

"rl = x, ~2 = ~ - f ( x ) / f ' ( x ) ,  "w = ~ - [ f " ( x ) / 2 [ ( x ) l [ f ( x ) / [ ( x ) l  ~. 

The family {3'=} has been thoroughly s tudied [10, Sec. 5.1]. I t s  essential properties are 
summarized in 

THEOREM 3.1. Let 3,~ be defined by (3.1). Then for n > 1, (1) 3'~ E f~, and'In is a one- 
point iteration; (2) P(3'~) = n, (3) v~(3'~) = 1, i = 0, . . . , n  -- 1, v~(3~) = 0, i > 
n -- 1. Hence v(% 0 = n. 

Thus  3'~ requires the evaluat ion of f and  its first n -- 1 derivatives.  In  Section 6 we shall 
show that ,  under  a mild smoothness condit ion on the i teration,  every one-point  i te ra t ion  
of order n requires the evaluat ion  of a t  least f and  its first n - 1 derivatives.  

4. A Family  of MuItipoint  Iterations 

W e  construct a fami ly  of multipoint iterations, { ~b~}, which require the evaluation of f at n 
points, no evaluation of derivatives o f f ,  and for which p(~b,) = 2 ~-1. 

For  every n, define ~bs(,f):I¢j,i c I f  ~ I , j , f ,  j -- O, . . .  , n, as follows: ~bo(f)(x) = x 
and  f o r n  > 0, 

¢zl(f) (x)  -- x + fir(x),  /3 a nonzero cons tan t ,}  

: : I (4.1) 
Cs+l(f)(x)  = Qs(O), 

for j = 1, . . .  , n - 1, where Qj(y)  is the inverse in terpola tory  polynomial  for f a t  
f ( ¢ k ( f )  ( x ) ) ,  k = O, . . .  , j .  T h a t  is, Qj(y)  is the polynomial  of degree at  m o s t j  such tha t  
Qj(f(~bk( f ) (x)  ) ) = ¢/k(f)(x) ,  Ic -- O, . . .  , j .  

The ~k~(f), j = 1, • - • , nn, are well defined if 

~bj ( f ) ( I~ . f )  c I , i . s ,  j = 1, . . .  , n. (4.2) 

T h a t  (4.2) holds for I~i.] sufficiently small  will be par t  of the proof of Theorem 4.1. 
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I t  is easy to show that ,  for example, 

• [(~ - ~o)/[.f(~,) - f(¢,o)] - (~ - g,~)/[f(~) - :(~)]}. 
An ALGOL program (Program 1) is given in the Appendix for computing ~b~ for n > 4. 

Our interest in the family of i terations { ~b~} is due to the properties proved in 
THEOREM 4.1. Let ~b, be defined by (4.1)• Then for  n > 1, (1) ~b. E ~, and ~b~ i s a n  

n-pointiteration, (2) p(~bn) = 2 ~-1, (3) v0(~,) = n, v,(~b~) = 0, i > 0. Hencev(~bn) = n. 
PaooF.  We want  to show that ,  for f E D, 

lim (~b~ -- cO/(x  -- c~) 2"-' = S(¢,, ,  f ) ,  n = 1, 2 , . . .  (4.3) 
x-~a 

for constants S(¢~, f ) .  The proof is by  induction on n. Since l im,~,  (~/'1 - c~)/(x - c~) = 
1 -b f i r ( a ) ,  (4.3) holds for n = 1. Assume tha t  (4.3) holds for n = 1 , . . . , m  - 1. 
F rom general interpolatory i terat ion theory [10, Ch. 4], we know tha t  

lira [ ( f f ,  - a ) /  H (~b. - a ) ]  = Y,~(f) ,  (4.4) 
x~a O(n~m 

where Y,~(f) = (-1)~+lF(m)(O)/(m![F'(O)]m) and F is the inverse function of f. F rom 
(4•4) and the induction hypothesis, 

lira [(~b,~ - c~)/(x - a )  :~- ']  = lim [(¢,~ - ~ ) /  I I  (~b~ - c~)] [(¢o - a ) / ( x  - cO] 

I I  [ ( ~ .  - ~ ) / ( x  - ~ ) ~ " - ' ]  
l~n<ra 

= Ym(f) I I  s(~b.,f). 
1~ n~m 

Hence S(~b~, f )  = Y~(f)1~_<,<~ S(  ~b~, f) and this completes the induction. 
F rom (4.3) one can easily show tha t  ~b~(f), j = 2, • - • , n, satisfies (4.2) for I ,~, /suffi-  

ciently small and hence is well defined. I t  can be verified tha t  ~b~ ~ ~. 
]:t is not  difficult to show tha t  S(~bn, f)  ~ 0 for s o m e f  ~ D. Therefore, p(~b,) = 2 "-~. 

The fact that  v0(~bn) = n, v~(~)  = 0, i > 0 follows from the definition of ¢ , .  Q.E.D. 
The i terat ion ~b~ is second order and is based on evaluations of f a t  x and x ~ l~f(x). 

This i terat ion is given by  Traub  [10, Sec. 8.4]. The i terat ion ~ uses n evaluations of f 
and is of order 2 n-~. For  n > 2, no i terat ions with these properties were previously known. 

5. A Second Family  of Mult ipoint  Iterations 

We  now construct a second fami ly  of multipoint iterations, {con} , such that p( con) = 2 n-l 
and v( con) = n. However, con requires the evaluation of f a t  n -- 1 points and the evaluation 
of f at one point, 

For every n, define c~(f)  : I~. , i  C I / - -~  I , i , l ,  j = 1, . . .  , n, as follows: ~ l ( f ) ( x )  -- x 
and f o r n  > 1, 

~(f : )  ( x ) = x - - f . . ( x ) / f ( x ) , t  (5.1) 

~ i + ~ ( f ) ( x )  = Ri(b), ) 
for j = 2, • • • , n -- 1, where Rs(y )  is the inverse Hermite  interpolatory polynomial  of 
degree at  most j such tha t  

R j ( f ( x ) )  = z, R j ( f ( x ) )  = 1 / f ' (x ) ,  R j ( f ( w k ( f ) ( z ) ) )  = cok(x), k = 2, . . .  , j .  (5.2) 

One can prove tha t  ooj(f), j = 2, • • • , n, are well defined for I~ i 4 sufficiently small. I t  is 
easy to show that ,  for example, 

~ .  = ~ - I f ( ~ , ) f ( ~ )  A f ( ~ , )  - I ( ~ )  l ~} " I f ( w , ) / / ( ~ , )  I. 

An ALGOL program (Program 2) is given in the Appendix for computing w4 for n > 4. 
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The basic properties of the family of iterations { w~} is stated in the following theorem. 
The proof is omitted since it is similar to the proof of Theorem 4.1. 

THEOREM 5.1. Let  w ,  be defined by (5.1). T h e n f o r  n ~ 2, (1) ¢o, ~ ~t, and ¢o~ i s a n  
( n  - -  1)-point i terat ion,  (2) p ( ~ )  = 2 ~-~, (3) Vo(~,)  = n --  1, v~(w~) = 1, vi(¢o~) = 
O, i > 1. Hence  v(w~)  = n. 

I t  is straightforward to show that  

s(~, f)/s(~, f) = [1 + ~ f ( ~ ) ] ~ - ~ .  (5.3) 

If  ~b~ is used, f~ should be chosen if possible so that  1 T l ~ f ( a )  is small. 
The iteration w~ uses two evaluations o f f  and one o f f '  and p(w~) = 4. Another iteration 

with these properties is defined by Ostrowski [8, App. G] and a geometrical interpretation 
is given by Traub [10, Sec. 8.5]. King [3] gives a family of fourth-order methods based on 
two evaluations of f and one of f .  Jarrat t  [2] constructs a fourth-order iteration based on 
one evaluation of f and two of f ' .  The iteration w~ uses n - 1 evaluations of f and one of 
i V and p ( w , )  = 2 ~-~. For n > 3, no iterations with these properties were previously 
known. 

6. The  Opt imal  Order of  One-Poin t  I terat ions 

By imposing a mild smoothness condition we can prove that  one-point iterations of order 
n require the evaluation of f and at least its first n - 1 derivatives. No such requirement 
holds for multipoint iterations. For example, the multipoint iteration ~bn defined in 
Section 4 has order 2 "-~ but requires no derivative evaluation. 

Let ff be a one-point iteration. Then from (2.1) and (2.2), 

¢( f ) ( z )  = u l ( z , / ( x ) ,  . . .  , f f ° ) ( x ) ) ,  

where u~(yo, yxO, . . .  , Y~0+x) is a multivariate function of do + 2 variables. In  this section 
we drop the superscript on Ys. 

The following theorem was first given by Traub [9; 10, Sec. 5.4]. We regard the proof 
given here as an improvement of Traub's  proof. 

THEOREM 6.1. Let  ~ be a one-point iteration of order p (  ~ )  and let ul(yo, yl, • • • , Yd0+l) 
be analyt ic  wi th  respect to yl at y~ = O. T h e n  vi( ~ ) > 1, i = O, . •. , P(  eh ) -- 1, and hence 
p(¢ )  < v(¢) .  

PROOF. For f E D, define 

T ( f )  ( x )  = [Tr(f) (x) - ¢ ( f ) ( x ) l / f ( x ) ,  (6.1) 

where 7p is a member of the family of iterations defined in Section 3. To simplify nota- 
tion, we write f for f ( x ) .  

Define ~r~ by 7r  = ~ - ~ 1  gill  where ¢ri depends explicitly on f ' ( x ) ,  . . .  , f(~)(x) [10, 
Sec. 5.1]. By the analyticity condition on ¢, ¢ = ~ ~?ffi0 X ji .  Therefore from (6.1), 

p--1 

T = ~ (a, -- ~,)f '-P - ~ k J  '-p. (6.2) 
i--O i--p 

Since ~ and 7p are of order p, (6.1) implies tha t  

lim T ( f )  (x) = [S(7~, f )  - S ( ~ ,  f ) ] / [ f  ( a f ) ]  P < oo 

for all f C D. Hence it follows from (6.2) that  

a i =  ~ , i =  0 , . . . , p -  1, V f E  D. (6.3) 

Consider a~-i = kp_l. We know that  ap-1 depends explicitly on f ' ( x ) ,  • • • , f ( ~ - l ) ( x )  
and that  the same must be true for Xp-1. Assume v~(¢) = 0, for some j, 0 < j ~ p -- 1. 
Then u~(yo, y~, . . .  , Yd0+l) does not depend on Y3+~. This implies tha t  (OP-~/Oy~ ~-~) 
ul(yo, yl, " "  , Ydo+l) is independent of y~+~ and that  (OP-~/Oy~ ~-~) u~(x, O, f ( x ) ,  . . .  , 
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ff(~0) (x) )  is independen t  of f(J~(x). Hence  

Xp-1 = (1 / (p  -- 1)!) (OP-1/Oyl p-l) u(x, O, f (x), . . .  ,/(d°)(x)) 

is independen t  off( i)(x) ,  which is a contradict ion.  Therefore v~(¢) >_ 1, i = 1, • • • , p - 1. 
Next  we show v0(~) >_ 1. Suppose this is false. T h e n  X~ = 0, i > 0 and  from (6.3),  

a~ = 0, i = 1, • . .  , p - 1, which is a contradict ion.  Q.E.D.  
COROLLARY 6.1. Let "y~ be defined by (3.1).  Then "I~ achieves the optimal order of any 

one-point iteration ~ for which v( ~ ) = n and which satisfies the analyticity condition of the 
tkeorem. 

Remark.  The  ana ly t ic i ty  condi t ion is n o t  restrictive. For  example, i t  includes all 
ra t ional  i terat ions and  all i terat ions  defined by  simple zeros of polynomials  with analyt ic  
coefficients. 

7. Two Optimal Order Theorems for Multipoint Iterations 

We prove an  opt imal  order theorem for one impor t an t  class of i terat ions  and  prove a 
fairly t ight  upper  boun d  for the  maximal  order of a second class of i terations.  

Our  first class consists of all i terat ions  such tha t  for j = 0, . . .  , k - 1, z5+1 appear ing  
in (2.2) is given by  a Hermi te  in terpola tory  i tera t ion  based on the  points  z0, " "  , zs- 
If  ~ belongs to this class, we say i t  is a Hermite interpolatory k-point iteration. The  
order of ~b m a y  be computed  as follows. F r o m  T r a u b  [10, Sec. 4.2], 

Z S - b l -  OL = O [ ( z j -  OL) dj-I-I " ' "  (Z0 - -  O~) d0"bi] 

where the  d~ are as in  (2.2).  Hence  

¢h(f)(x) --  v~ = zk - o~ = 0[(x - o~)v], 

where p ( ¢ )  = (do ÷ 1) I I~= l  (d~ + 2). I t  is easily verified tha t  
k--I 

v ( ¢ )  = ~ (d5 + 1). 
5--0 

We wish to choose k, do, " "  , do-1 such tha t  for v(<.b) fixed, p(~b) is maximized.  The  
choice of k and  the  d~ are given by  

THEOREM 7.1. Let dj > O, k > 1 be integers. Let v(O) = ~ Z ~  (d~ + 1) = n be 
fixed. Then p( ~ ) = (do + 1) I ]~=l  (d 5 + 2) is maximized exactly when 

k = n, d5 = 0, j = 0 , . . . , n -  1 (7.1) 
o r  

k = n - -  1, do = 1, d5 = 0, j = 1 , " . , n - -  2. (7.2) 

].)ROOF. Since d r + 1 < n, k < n, there are only finitely m a n y  cases and  t h e  maxi-  
m u m  exists. Let  the m a x i m u m  of p be achieved at  ds, j = 0, • • - ,/~ - 1. We show first 
t h a t a 5  = 0, j = 1 , . . . , ] ~ -  1. Assume t h a t a r  = m, m > 1, for s o m e r ,  r = 1 , . . o ,  

-- 1. Define~5,  j = 0 , . . . , ] ~ + m  - l a s  

~ j = a s ,  j = O , . . . , k - l , j ~ r ,  & = 0 ,  ~ 5 = 0 ,  j = k , . . . , l ~ + m -  1. 

T h e n  we can verify t ha t  
k"4-m--I k--1 

(~5-t- 1) = ~ ( d s +  1) = n 
5-o i~o 

and 
~ + ~ - 1  ,~-1 

(~o .-k 1) I I  ((~ + 2) > (3o + 1) I I  (d5 -4- 2). 
5--1 5--1 

This  contradict ion proves t ha t  d5 = 0, j = 1, . . .  , ]~ - 1. A similar a rgumen t  m ay  be 
used to prove d0 _< 1. I f  d0 = 0, k = n while if do = 1, k = n -- 1, which completes 
the  proof. Q.E.D.  
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COROLLARY 7.1. Let ~ be a Hermite  interpolatory iteration with v(4~) -- n. Then 
p ( ¢ )  _< 2 ~-1. 

Note tha t  ¢ , ,  defined in Section 4, is an instance of (7.1) while w,, defined in Section 5, 
is an instance of (7.2). (Both {~/,,} and {w,} are based on inverse interpolation. There 
are two other families of i terat ions based on direct interpolation.)  Thus we have 

COROLLARY 7.2. Let ~b~ and w, be defined by (4.1) and (5.1), resspectively. Then ~b~ 
and w, have optimal order for Hermite interpolatory iteration with n evaluations. 

The second theorem of this section gives an upper bound on the order achievable for 
any mult ipoint  i terat ion using values of f only (and no derivatives) .  

THEOREM 7.2. Let ~ be a mult ipoint  iteration with vo(~) = n, v~(~) = O, i > O. 
Then p ( ~ )  < 2". 

PaOOF. For  f E D, let x0 be a s tar t ing point  such tha t  if x~+l = 4,(f) (x~) then lim~.~ x~ 
= o~s. From (2.2), for each i, denote zi~ = x~ and zi,+i+l = u~+l (z~,, ](z~,),  . . .  , ](z~,+j))  
f o r j  = 0 , . . . , n -  1. Then 

lim (z(,+l)~ - -  ~ ) / ( z ~  - -  c~) p = S(4J, f ) .  (7.3) 

Hence 
lim ( - -  log] zl, -- a I ~/') = p. (7.4) 
i r a 0  

Brent, Winograd, and Wolfe [1, (6.1)] show tha t  there exist an f E D and a sequence 
{z~} such tha t  

l i - ~  ( - ~og  { z ,  - o~ I)"' <- 2.  ( 7 . 5 )  
i~ao 

By (7.4) and (7.5) i t  follows tha t  p < 2 ~. Q.E.D.. 
In  Section 4, we constructed an i terat ion ¢ ,  such tha t  Vo(~b,) = n, v~(¢,)  = O, i > 0 

and p ( ~ , )  = 2 "-1. Hence the upper bound of Theorem 7.2 is within a factor of two of the  
order of tha t  i teration. We conjecture in the next section tha t  p = 2 "-1 is optimal.  

8. A Conjecture 

CONJECTURE 8.1. Let ~ be an iteration (with no memory)  with v(¢)  = n. Then 

p( O ) _< ~.-l. 

This extends a conjecture of Traub [11] which states (8.1) for n = 2, 3.1 

(8.1) 

9. Numerical  Example  

Let f ( x )  = x ~ + ln(1 + x) where In denotes the logarithm to the natural  base. Hence 
o~ = 0. Start ing at  x0 = 10 -1 and 10 -2, we compute xl by i terations ~b, and ~0~, n = 3, 4, 5. 
For  comparison we also use as many steps of the Newton-Raphson i terat ion as necessary 
to bring the error to about 10 -18 . Calculations were done in double precision ari thmetic 
on a DEC PDP-10 computer. About  16 digits are available in double precision. 

Results are summarized in Examples 1-3. The parameter  /3 tha t  appears in ¢ ,  was 
chosen/~ = - . 2  which makes the asymptotic  error constant of ¢,~ for this problem near 
unity.  The asymptotic error constants of ¢0~, n = 3, 4, 5, and the Newton-Raphson 
i teration are also near unity for this problem. Recall tha t  p(~b,) = p(¢o~,) = 2 "-1 and 
tha t  for Newton-Raphson iteration, p = 2. We expect xl -~ xo p to hold and this is numeri- 
cally verified in the examples. F rom (5.3), we expect 

~b,(xo)/w,(xo) ~ (.8) ~"-~, (9.1) 

and (9.1) is numerically verified in the examples for xo = 10 -2. 
The examples illustrate the advantage of ~b, and w, over the repeated use of Newton- 

Raphson iteration. Start ing with xo = 10 -1, w5(xo) calculates the zero to "full accuracy" 

Note added in proof. Kung and Traub [6] have established this conjecture for n = 2. 
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a t  a c o s t  of  f o u r  e v a l u a t i o n s  of  f a n d  one  of  f .  F o u r  N e w t o n - R a p h s o n  i t e r a t i o n s  a re  re-  

q u i r e d  w i t h  a cos t  of  fou r  e v a l u a t i o n s  of  f a n d  fou r  of  f .  T h e  d i f f e rence  is s ign i f i can t  w h e n  

t h e  e v a l u a t i o n  of  f '  is expens ive .  T h i s  o b s e r v a t i o n  t a k e s  o n l y  t h e  c o s t  of  f '  i n t o  a c c o u n t .  

A n m r e  c o m p l e t e  ana ly s i s  b a s e d  on  ef f ic iency  m e a s u r e  c o n s i d e r a t i o n s  is g i v e n  b y  K u n g  
a n d  T r a u b  [5]. 

Example  1. 

xo 10 -1 10- ~ 

Example  2. 

xl = ~,(x0) .21 X 10-* .27 X 10 -s 
X l  = ~4 (X 0 )  -- .80 X 10 -9 -- .47 X 10 -16 
Xl = ~s (X0)  - - . 2 7  X 10 -x6 

xo 10-1 10 -~ 

Example 3. 

xl = w~(x0) .30 X 10- t .42 X 10 -s 
xl = ~ , ( z 0 )  -- .15 X 10 -s -- .12 X 10 -15 
Xl = ws(X0) -- .24 X 10 -15 

L e t  xi+l = ck(x~), w h e r e  ¢ d e n o t e s  N e w t o n - R a p h s o n  i t e r a t i o n .  

xo 10 -1 10 -5 

xl - . 2 6  x 10 -2 - . 4 8  x 10 -4 
x2 - . 3 3  x 10 -5 - . 1 1  x 10 -8 
x~ - . 5 4  x 10 -11 .46 x 10 -17 
x ,  - . 3 1  × 10 -16 

Appendix  
P r o g r a m  1 a n d  P r o g r a m  2, w h i c h  a re  a d a p t e d  f r o m  a r e su l t  of  K r o g h  [4], c o m p u t e  

~b~(f)(x) ( w i t h  t h e  p a r a m e t e r  f~) a n d  wn( f ) ( x )  fo r  n > 4. 

Program 1 

b e g i n  
c o m m e n t  This program computes ¢ , ( f ) (x)  (with parameter  ~) for a given function f and a 

given value x; 
i n t e g e r  i, k, n; rea l  x, h, r, psi; 
r e a l  a r r a y  riO : n - -  1, 0 : n - -  1],  pi[O : n - -  1]; 
v[0, 0] : =  x; 
h : =  B X f (z ) ;  
v[O, 1] : =  v[0, 0] + h; 
v[1, 1] : =  h/(f(v[O, 1]) - f(v[0, 0])); 
r : =  v[1, 1] X .f(v[O, 0]); 
v[0, 2] : =  v[0, 0] - r ;  
v{1, 2] : =  r/(f(v[O, 0]) - f(v[0, 2])); 
pi[2] : =  f(v[0, 0]) X f(v[0, 1]); 
v[2, 2] : =  (v[1, 1] - v[1, 2])/(f(v[O, 1]) - ](v[0, 2])); 
psi : =  v[0, 2] -F pi[2] X v[2, 2]; 
f o r  k : =  3 s t e p  1 u n t i l  n - -  1 d o  
b e g i n  

v[O, k] : =  psi; 
f o r i : =  O s t e p l u n t i l k  - -  l d o  

b e g i n  
vii + 1, k] : =  (vii, i] -- v[i, k])/(f(v[O, i]) -- f(v[0, kl)); 

e n d ;  
pi[k] : = - - f ( v [ 0 ,  k -  1]) X p i [ k -  1]; 
psi : =  psi + pi[k] X v[k, k]; 

e n d ;  
e n d ;  
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Program 2 

b e g i n  
c o m m e n t  This program computes co~(f)(x) for a given function f and a given value x; 
c o m m e n t  f '  is denoted by fp; 
i n t e g e r  i ,  k, n;  r e a l  x ,  n l l ,  omega, d; 
r e a l  a r r a y v [ 0 :  n - 1 , 0 :  n - 1 ] , p i [ 0 :  n - 1]; 
riO, O] : =  x; 
v[0, II : =  ~; 
r i l l  : =  f(v[0, O])/fp(v[O, 0]); 
v[0, 2] : =  v[0, 0] -- r i l l ;  
d : = / ( v I 0 ,  0]) - ](v[0, 2]); 
v[1, 21 : =  nll/d; 
v[2, 2] : =  v[1, 2] X f(v[0, 2])/d; 
omega : =  v[0, 2] - f(v[0, 0]) X v[2, 2]; 
v[1, 11 : =  nll/f(v[O, 0}); 
v[2, 21 : =  -v[2 ,  2]/f(v[O, 01); 
pi[2] : =  f(v[0, 0]) X f(v[0, 0]); 
f o r k : =  3 s t e p  1 u n t i l n  -- l d o  
b e g i n  

riO, k] : =  omega; 
f o r i : =  O s t e p l u n t i l k  --  1 d o  

b e g i n  
vii ÷ 1, k] : =  (vii, i] - vii, k])/(f(v[O, il) - f(v[0, k])); 

e n d ;  
pi[k] : =  --f(v[O, k -- 1]) X pi[k -- 1]; 
omega : =  omega d- pi[k] X v[k, k]; 

e n d ;  
e n d ;  
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