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AaBSTRACT. The problem is to calculate a simple zero of a nonlinear function f by iteration. There
is exhibited a family of iterations of order 27! which use n evaluations of f and no derivative evalua-
tions, as well as a second family of iterations of order 2»~1 based on n — 1 evaluations of f and one
of f'. In particular, with four evaluations an iteration of eighth order is constructed. The best pre-
vious result for four evaluations was fifth order.

It is proved that the optimal order of one general class of multipoint iterations is 2% ! and that
an upper bound on the order of a multipoint iteration based on n evaluations of f (no derivatives) is
pi

It is conjectured that a multipoint iteration without memory based on n evaluations has optimal
order 2771,
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1. Introduction

We deal with iterations for calculating simple zeros of a scalar function f. This problem is
a prototype for many nonlinear numerical problems [11]. Newton-Raphson iteration is
probably the most widely used algorithm for dealing with such problems. It is of second
order and requires the evaluation of f and f', that is, it uses two evaluations. Consider an
iteration consisting of two successive Newton-Raphson iterates (composition of iterates).
This iteration has fourth order and requires four evaluations, two of f and two of f'.
More generally, an iteration composed of n Newton iterates is of order 2" and requires n
evaluations of f and n evaluations of f', that is, 2n evaluations.

We shall show that an iteration of order 2" may be constructed from just n evalua-
tions of f. We exhibit a second type of iteration which requires n — 1 evaluations of f and
one evaluation of f* to achieve order 2",

In particular, with four evaluations we construct an iteration of eighth order. The best
previous result {10, p. 196] for four evaluations was fifth order.

Newton-Raphson iteration is an example of a one-point iteration. The basic optimality
theorem for one-point iteration states that an analytic one-point iteration which is based
on n evaluations is of order at most n. (This theorem was first stated by Traub [9; 10,
Sec. 5.4]; we give an improved proof here.) We conjecture that a multipoint iteration
based on n evaluations has optimal order 2"7'. We prove that the optimal order of one
important family of multipoint iterations is 2" and that an upper bound on the order of
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multipoint iteration based on n evaluations of f is 2", This upper bound is close to the con-
jectured optimal order of 2",

To compare various algorithms, we must define efficiency measures based on speed of
convergence (order), cost of evaluating f and its derivatives (problem cost), and the cost
of forming the iteration (combinatory cost). We analyze efficiency in another paper {5].
We confine ourselves here to iterations without memory, deferring the analysis of iterations
with memory to a future paper.

We summarize the results of this paper. The class of problems and algorithms studied
in this paper is defined in Section 2. Particular families of iterations are defined in Sections
3-5. The optimality theorem for one-point iterations is proven in Section 6. An optimal
order theorem for one general class of multipoint iterations and an upper bound for the
order of a second class are proven in Section 7. A general conjecture is stated in Section 8.
Section 9 contains a small numerical example. The Appendix gives ALGoL programs for
forming two families of multipoint iterations.

2. Definitions

We define the ensemble of problems and algorithms. Let D = {f| fis a real analytic func-
tion defined on an open interval I; € R which contains a simple zero oy of f and §* does
not vanish on I,.}.

Let Q denote the set of functions ¢ which maps every f € D to ¢(f) with the following
properties:

1. ¢(f) is a function mapping I'4,; C I, into I,,s for some open subinterval I 4,5 contain-
ing ay.

2. o(N(as) = ay.

3. There exists an open subinterval I3, ; © I, ; containing oy such that if i1 =
&(f) (x;) then lim;,e z; = ay whenever z € 15, .

4. For any ¢, there exist nonnegative integers k, do, - - -, di1, and functions u,41(yo;
ylo:r DY ygo+l; Tty yll: R} yfji,‘+l) Of 1 + 28 (dJ + 1) variables fOI'j = —1> DY
k — 1 such that, for all f € D,

d(N)(x) = 2, (2.1)
where

2o = up(x),

e 2.2)

i1 = uH—l(x;f(zO)y e :f(d‘))(zl)); e ;f(zi)y v yf(dj)(zj))r .7 = 0; Ty k—1

The assumption that f € D is needed for theorems dealing with a class of iterations.
Any particular ¢ can be applied to f having only a certain number of derivatives.

In (2.2) we assume u(x) = z. In another paper [6], we prove that if ¢ € Q and if up(z)
is continuous, then u(x) must be identically equal to x.

If ¢ € Q, ¢ is called an steration without memory, since if the sequence {z.} is generated
by xi1 = o(f)(x:), T is computed using information only at the current point x;. In
this paper we limit ourselves to iterations without memory.

We classify iterations without memory. If k is the nonnegative integer in (2.1), then we
say ¢ is a k-point iteration. In particular, if k = 1, we call ¢ a one-point iteration and if
k > 1 and the value of k is not important, we call ¢ a multipoint iteration. (Similar defini-
tions of one-point and multipoint iteration are given in [9; 10, Sec. 1.22].)

If there exists p(¢) such that for any f € D,

lim [(#(N)(2) — an)/ (@ = )™®) = (&, )

exists for a constant S(¢, f) and S(¢, f) # 0 for at least one f € D, then ¢ is said to
have order of convergence (order) p(¢) and asymptotic error constant S(¢, f).
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This is perhaps the simplest definition of order of convergence. The results of this paper
hold, with suitable modifications, for weaker definitions of order [7], but we feel that use
of these definitions would obscure the proofs without substantially strengthening the re-
sults.

Let v(¢) denote the number of evaluations of /' used to compute ¢(f)(x). Then
v(@) = Y. i>0v:i(¢) is the total number of evaluations required by ¢(f) (z) per step.

To simplify notation, we often use o, ¢, p, v;, v instead of a,, ¢(F)(x), p(P), v:(P),
v(¢), if there is no ambiguity.

The following two examples illustrate the definitions.

Example 2.1. (Newton-Raphson Iteration) ¢(f)(x) = & — f(z)/f (z). This is a one-
point iteration with oy = 1, = 1,v = 2, and p = 2.

Example 2.2. 20 = x, 2 = 20 — f(2) /f (20),
(N (x) = 2 = 21 — {f(2)f(20)/[f(22) — f(20)} - [f(20) /F (20)).

This is a two-point iteration with v, = 2, v, = 1, » = 3, and p = 4. (See Section 5.)

3. A Famaily of One-Point Iterations

For f € D, let F be the inverse function to f. For every n, define y;(f):I; > R, 7 = 1,
-, m, as follows: y1(f) (z) = zand forn > 1,

vy (@) =¥ @) + (=17 ) FO(f(z)) (3.1)
forj =1, ---,n — 1. Note that F*(f(z)) can be expressed in terms of f¥(z) for i = 1,
2, - -+, j. It is easy to show that, for example,

nm=2z n=n-[)/f @), 1n="m— " @/2 @/ (T

The family {v.} has been thoroughly studied [10, Sec. 5.1]. Its essential properties are
summarized in

THEOREM 3.1. Let v, be defined by (3.1). Then for n > 1, (1) v. € Q, and v, s a one-
point dteration; (2) p(¥a) =0, ) v:i(va) =1, =0, -+, n — 1, vi(y.) = 0,7 >
n — 1. Hence v(vy.) = n.

Thus vy, requires the evaluation of f and its first » — 1 derivatives. In Section 6 we shall
show that, under a mild smoothness condition on the iteration, every one-point iteration
of order n requires the evaluation of at least f and its first » — 1 derivatives.

4. A Family of Multipoint Iterations

We construct a family of multipoint iterations, {{.}, which require the evaluation of f at n
points, no evaluation of derivatives of f, and for which p(¢,) = 2"\
For every n, define ¥;(f):Iy;s C I; = Iy, 7 =0, -+, n, as follows: Yo(f)(z) = =

and for n > 0,

I

h(f) (@)
Vi) (z) = @0),

forj =1, -+, n — 1, where Q;(y) is the inverse interpolatory polynomial for f at
F(e(f)(x)), k=0, ---,7. Thatis, @;(y) is the polynomial of degree at most j such that
Q;i(f(¥u(N(2))). = u(f)(x), k=0, ---,J.
The ¥,;(f),7 = 1, -- -, n, are well defined if
Vi) Lu;0) S Ly, §=1,--+, 0 (4.2)

That (4.2) holds for Iy, .; sufficiently small will be part of the proof of Theorem 4.1.

z + Bf(z), B a nonzero constant,
: (4.1)
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1t is easy to show that, for example,

Yo=2, 1=+ B(¥), ¥ =1 — Bf(Y)f(Y0)/[f(¥1) — f(¥o)],
¥ = o — () f(¥0) /[f(¥2) — f(¥o)]
A = )/ f() — F(¥e)] — (Y2 — )/ (¥2) — fF(¥O1-

An ArcoL program (Program 1) is given in the Appendix for computing ¢, for n > 4.

Our interest in the family of iterations {y,} is due to the properties proved in

THEOREM 4.1. Let . be defined by (4.1). Then for n > 1, (1) ¢ € Q, and ¥, is an
n-point tteration, (2) p(¥n) = 275, (3) vo(¥n) = 0, v:(¥n) = 0,7 > 0. Hence v(,) = n.

Proor. We want to show that, for f € D,

m (n — @)/(z = @) = S(Wnf), n=1,2," (43)

for constants Sy, f). The proof is by induction on ». Since lim,., (Y1 — a)/{(z — a) =
1 4 Bf (), (4.3) holds for n = 1. Assume that (4.3) holds forn = 1, -+, m — 1.
From general interpolatory iteration theory [10, Ch. 4], we know that

lim [(fm — a)/0<I"I<m(% —a)] = Yalf), (4.4)

where Y ,(f) = (=1)""F™(0)/(m![F’'(0)]") and F is the inverse function of f. From
(4.4) and the induction hypothesis,

lim (¢ — @)/ (z — )™ = },12 [(¥m — a)/0<InI<m(\Pn - &)} (Yo — @)/ (z — )]
: 1<I,.I<m [(¥n — @)/(z — )™
= Ym(f) II S("’mf)
1<a<m

Hence S(¥m f) = Yulf) [ L1cncm S(¥a, f) and this completes the induction.

From (4.3) one can easily show that ¥;(f),7 = 2, - - , n, satisfies (4.2) for I,,,; suffi-
ciently small and hence is well defined. It can be verified that ¥, € €.

It is not difficult to show that S(¥a, f) # 0 for some f € D. Therefore, p(¥,) = 2"
The fact that vo(¢¥n) = n, vi(¥n) = 0,7 > 0 follows from the definition of ¥».. Q.E.D.

The iteration y¥» is second order and is based on evaluations of f at 2 and 2 + Bf(x).
This iteration is given by Traub [10, Sec. 8.4]. The iteration ¥, uses n evaluations of f
and is of order 2. For n > 2, no iterations with these properties were previously known.

5. A Second Family of Multipoint Iterations

We now construct a second family of multipoint iterations, {ws} , such that p(w,) = 2"

and v(w,) = n. However, w, requires the evaluation of f at n — 1 points and the evaluation
of f at one poind.
For every n, define w;(f) : L.,y C Iy > I.y,5 =1, -+, n, as follows: wi(f)(x) = =

and forn > 1,
@(f)(@) =z - f_(x)/f'(x),}

win(f)(z) = RBi(0),
forj = 2,---,n — 1, where B;(y) is the inverse Hermite interpolatory polynomial of
degree at most j such that

Ri(f(z)) =z, B/(j(x)) = /7 (), Ri(f(ax(f)(2))) = wn(x), b =2,---,5. (52)

One can prove that w;(f),7 = 2, - - -, n, are well defined for I, sufficiently small. It is
easy to show that, for example,

o=, w=w — f(w)/f(w),
ws = wp — {f(@)f(w)/[f(@r) — flw)} -[f(wr)/f ()]

An ArgoL program ( Program 2) is given in the Appendix for computing w, for n > 4.

(5.1)
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The basic properties of the family of iterations {w,} is stated in the following theorem.
The proof is omitted since it is similar to the proof of Theorem 4.1.

TaeorReEM 5.1. Let w, be defined by (5.1). Then for n 2 2, (1) w. € Q, and w, is an
(n — 1)-point steration, {2) p(w,) = 275 (3) vo(w,) =1 — 1, »{wn) = 1, v:( o) =
0,7 > 1. Hence v(w,) = n.

It is straightforward to show that

S(¥n, 1)/8(wn, ) = L+ B ()] (5.3)

If ¥, is used, 8 should be chosen if possible so that 1 4 8f'(«) is small.

The iteration w; uses two evaluations of f and one of f’ and p(ws) = 4. Another iteration
with these properties is defined by Ostrowski [8, App. G] and a geometrical interpretation
is given by Traub [10, Sec. 8.5]. King [3] gives a family of fourth-order methods based on
two evaluations of f and one of f’. Jarratt [2] constructs a fourth-order iteration based on
one evaluation of f and two of f'. The iteration w, uses n — 1 evaluations of f and one of
f and p(w,) = 2"'. For n > 3, no iterations with these properties were previously
known.

6. The Optimal Order of One-Point Iferations

By imposing a mild smoothness condition we can prove that one-point iterations of order
n require the evaluation of f and at least its first n — 1 derivatives. No such requirement
holds for multipoint iterations. For example, the multipoint iteration ¢, defined in
Section 4 has order 2" but requires no derivative evaluation.

Let ¢ be a one-point iteration. Then from (2.1) and (2.2),

¢(f)(x) = ul(x: f((l:), o ,f(dO)(x)),

where i (yo, ¥, * -+ , Y3,+1) is a multivariate function of dy 4 2 variables. In this section
we drop the superscript on y;.

The following theorem was first given by Traub [9; 10, Sec. 5.4]. We regard the proof
given here as an improvement of Traub’s proof.

THEOREM 6.1. Let ¢ be a one-point iteration of order p(@) and let wy(yo, 41, - - 5 Yap+1)
be analytic with respect to yrat th = 0. Thenvi(¢) 2 1,7 =0, --- , p(¢) — 1, and hence
p(¢) < v(4).

Proor. For f € D, define

T(f)(z) = [vs(f)(z) — o) (@))/f"(2), (6.1)

where v, is a member of the family of iterations defined in Section 3. To simplify nota-
tion, we write f for f(x).

Define a; by v, = 2% o' where ¢; depends explicitly on f'(z), -+, () (10,
Sec. 5.1]. By the analyticity condition on ¢, ¢ = D i=o Nif". Therefore from (6.1),

-1 . g A
T = ;ﬁ (6: = NP — g‘, Wi (6.2)
Since ¢ and v, are of order p, (6.1) implies that
im T(f)(z) = [8(vp ) — 8(¢, NV/If () <
I"a,

for all f € D. Hence it follows from (6.2) that

0',-=)\1-,1l=0,---,p—1,VfED. (63)

Consider o,_1 = A,_1. We know that ¢, _; depends explicitly on ), -, f Dy
and that the same must be true for A,_;. Assume v;{¢) = 0, forsome j, 0 < j < p — L
Then wi(yo, Y1, * -+, Yap+t1) does not depend on yj;+i. This implies that CavEas

(Yo, Y1, -+ » Yapra) is independent of yu and that (87 /3y ™) w(z, 0, f'(z), -+,
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§9(2)) is independent of f’ (). Hence
Nt = (1/(p — 1)) (3" /oy™ ") ul=, 0, f (), -+, f(x))

is independent of f*” (z), which is a contradiction. Therefore vi(¢) > 1,5=1, --- ,p — 1.

Next we show v9(¢) > 1. Suppose this is false. Then A; = 0, ¢ > 0 and from (6.3),
6;:=0,2=1,:-- p — 1, which is a contradiction. Q.E.D.

CoROLLARY 6.1. Let v, be defined by (3.1). Then v. achieves the optimal order of any
one-point iteration ¢ for which v(p) = n and which satisfies the analyticity condition of the
theorem.

Remark. The analyticity condition is not restrictive. For example, it includes all
rational iterations and all iterations defined by simple zeros of polynomials with analytic
coefficients.

7. Two Optimal Order Theorems for Multipoint Iteraiions

We prove an optimal order theorem for one important class of iterations and prove a
fairly tight upper bound for the maximal order of a second class of iterations.

Our first class consists of all iterations such that forj = 0, - -+ | k — 1, 2;;; appearing
in (2.2) is given by a Hermite interpolatory iteration based on the points z,, - - -, z;.
If ¢ belongs to this class, we say it is a Hermite inferpolatory k-point iteration. The
order of ¢ may be computed as follows. From Traub [10, Sec. 4.2],

d;+1 do+1]

2j+1'—0£=0[(3j—€!) "'(zo‘a)

where the d; are as in (2.2). Hence
o(f)(z) — a =z — a=0[(z — &),
where p(¢) = (do + 1) [[}=1 (d; + 2). Tt is easily verified that

k—1

w$) = L (4 +1).
o
We wish to choose k, dy, - - -, di1 such that for v(¢) fixed, p(¢) is maximized. The
choice of k and the d; are given by
TaeoreM 7.1. Let d; > 0, k > 1 be integers. Let v(¢p) = D 5=p (d; + 1) = n be
fized. Then p(¢) = (do + 1) [[%=1 (d; + 2) is maximized exactly when
k=mn d;j=0, j=0,---,n—1 (7.1)
or
k=n—-1d=14d;=0j=1--,n—2. (7.2)

Proor. Since d; + 1 < n, k < n, there are only finitely many cases and ‘the maxi-
mum exists. Let the maximum of p be achieved at d;, 7 = 0, --- , £ — 1. We show first
thatd; = 0,7 =1,---, k — 1. Assume that d, = m, m > 1, forsomer, r = 1, - -,
k- 1. Defined; j=0,--,k+m—1as

di=d;j=0,--,k—-1,j#r, d=0 d;=0j5=%k -, k+m—1.

Then we can verify that
k+m—1 k=1
2@+ =2 (d+1) =n
= =
and ) 3
kHm—1 k—1

(JO+1)I;II(Jj+2)>(&0+1)I_Il(d—j+2).

This contradiction proves that d,
used to prove dp < 1. If dy = 0,

the proof. Q.E.D.

0,j =1, -,k — 1. A similar argument may be
= n while if dy = 1, £ = n — 1, which completes

4|
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CoroLLARY 7.1. Let ¢ be a Hermite inlerpolatory iteration with v(¢) = n. Then
p(e) <2

Note that ., defined in Section 4, is an instance of (7.1) while w,, defined in Section 5,
is an instance of (7.2). (Both {{,] and {w,} are based on inverse interpolation. There
are two other families of iterations based on direct interpolation.) Thus we have

CoRroLLARY 7.2. Let Y. and w, be defined by (4.1) and (5.1), respectively. Then ¢,
and w. have optimal order for Hermite interpolatory iteration with n evaluations.

The second theorem of this section gives an upper bound on the order achievable for
any multipoint iteration using values of f only (and no derivatives).

TusorEM 7.2. Let ¢ be a multipoint dteration with vo(Pp) = n, vi(¢) = 0, ¢ > 0.
Then p(¢) < 2"

Proor. Forf € D, let 2, be a starting point such that if z.+y = ¢(f) (z;) then im,., z;

= ay. From (2.2), for each 7, denote 2, = z; and 2,uy j1 = Ui (Zin, F(2in), * - 5 F(Zing i)
forj =0,---,n — 1. Then
im Gamn ~ @)/ (20 — @) = 8(4, ). (7.3)
Hence )
lim (—~ log |2 — a| Y = p. (7.4)

Brent, Winograd, and Wolfe [1, (6.1)] show that there exist an f € D and a sequence
{z:} such that
Fm (~ log |2 — )" < 2. (7.5)
By (7.4) and (7.5) it follows that p < 2". Q.E.D.
In Section 4, we constructed an iteration Y. such that v(¥n) = n, vi(¢¥n) =0, ¢ > 0
and p(¥,) = 2" '. Hence the upper bound of Theorem 7.2 is within a factor of two of the
order of that iteration. We conjecture in the next section that p = 2" is optimal.

8. A Conjecture

ConsecTURE 8.1.  Lel ¢ be an tleration (with no memory) withv(¢) = n. Then

p(¢) < 2" (8.1)
This extends a conjecture of Traub [11] which states (8.1) forn = 2,3.!

9. Numerical Evample

Let f(z) = 2* 4+ In(1 + z) where In denotes the logarithm to the natural base. Hence
a = 0. Starting at 2, = 107" and 107%, we compute z1 by iterations ¥, and w,, n = 3, 4, 5.
For comparison we also use as many steps of the Newton-Raphson iteration as necessary
to bring the error to about 107*%. Calculations were done in double precision arithmetic
on a DEC PDP-10 computer. About 16 digits are available in double precision.

Results are summarized in Examples 1-3. The parameter 8 that appears in ¥, was
chosen 8 = —.2 which makes the asymptotic error constant of ¥. for this problem near
unity. The asymptotic error constants of w,, n = 3, 4, 5, and the Newton-Raphson
iteration are also near unity for this problem. Recall that p(¥,) = p(w,) = 2" ' and
that for Newton-Raphson iteration, p = 2. We expect 1 = 2" to hold and this is numeri-
cally verified in the examples. From (5.3), we expect

Ya(0)/wn(zo) = (.8)"7, (9.1)

and (9.1) is numerically verified in the examples for zo = 107>
The examples illustrate the advantage of ¥, and w, over the repeated use of Newton-
Raphson iteration. Starting with 2, = 107", ws(xo) calculates the zero to “full accuracy”

1 Note added in proof. Kung and Traub [6] have established this conjecture for n = 2.
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at a cost of four evaluations of f and one of . Four Newton-Raphson iterations are re-
quired with a cost of four evaluations of f and four of f'. The difference is significant when
the evaluation of f is expensive. This observation takes only the cost of f into account.
A more complete analysis based on efficiency measure considerations is given by Kung
and Traub {5].

Ezample 1.
o 101 10—
z1 = ¥3(zo) .21 X 10+ .27 X 1078
zr = ya(Zo) —.80 X 10~° —.47 X 10718
2, = ¥s5(Zo) —.27 X 101s
Ezxample 2.
Zo 107! 102
zy = ws(Zo) .30 X 107+ 42 X 1078
Z1 = w(To) ~.15 X 107 —.12 X 107t
z1 = ws(To) —.24 X 1071¢

Example 3. Let xiq = ¢(x;), where ¢ denotes Newton-Raphson iteration.

Zo 10t 1072

z —.26 X 1072 ~.48 X 10~
T2 —.33 X 1078 —.11 X 1078
3 —.54 X 1071 46 X 107V
T4 —.31 X 107

Appendiz
Program 1 and Program 2, which are adapted from a result of Krogh {4], compute
Yu(f) (z) (with the parameter 8) and w,(f)(z) for n > 4.

Program 1

begin

comment This program computes ¢n(f) (z) (with parameter 8) for a given function f and a
given value z;

integer ¢, k, n; real z, h, r, psi;

real array v[0 :n — 1,0:n — 1], pi[0: n — 1];

v[0, 0] : = z;

hi=p X f=);

20, 1) := 2{0, 0] + h;

o[L, 1] == R/ ([0, 11) — f([0, O1));

ri=o[l, 1] X f(v[0, O]);

v[0, 2] := v[0, 0] — r;

v{l, 2] 1= r/(f(0, O)) — ([0, 2]));

pif2] := f([0, 0}) X f(2[0, 1});

v[2, 2] := (1, 1] — o[L, 2])/(F (0, 1]) — F([0, 2D);

pst := v[0, 2] 4+ pi[2] X v{2, 2];

fork := 3 step l untiln — 1 do

begin
v[0, k] : = psi;
for i := 0 step luntilk — 1 do
begin
ol + L k] = (0], €] — olt, KD/(FOI0, 5]} — F(I0, KD));
end;
pilk] 1= —f([0, k — 1) X pilk — 1];
psi 1= psi + pifk] X o[k, kl;
end;

end;
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Program 2

begin
comment This program computes w.(f) (z) for a given function f and a given value z;
comment f’ is denoted by fp;
integer i, k, n; real z, nll, omega, d;
real array v[0:n — 1,0: 20 — 1], pi[0 : n — 1];
v[0, 0] : = z;
v[0, 1] : = z;
nll := f(v[0, 01)/fp(»[0, 0});
v[0, 2] : = v[0, 0] — nll;
d:= f(@[0, 0) — f(v[0, 2));
v(l, 2| : = nll/d;
[2, 2) :=o(1, 2] X ([0, 2))/d;
omega : = v[0, 2] — f(»[0, 0]) X »[2, 2];
oft, 1) 1= n11/f(»[0, O));
v[2, 2] : = —2(2, 2]/f(v[0, O1);
pil2] := f(v[0, 0]) X f(v[0, O]);
for k := 3 step 1 until n» — 1 do
begin
v[0, k] : = omega;
fori:=0stepluntilk — 1de
begin
ofi + 1, k) := (i, 4] — ofi, KD/ (F@IO, 5]) — S0, kD));

end;

pilkl 1= —f(l0, k — 1) X pilk — 1;

omega : = omega + pilk}] X vk, k];

end;
end;
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