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Abstract. It is shown that root-finding iterations can be used in the field of power
series. As a consequence, we obtain a class of new algorithms for computing reciprocals
of power series. In particular, we show that the recent Sieveking algorithm for
computing reciprocals is just Newton iteration. Moreover, if L, is the number of non
scalar multiplications needed to compute the first » + 1 terms of the reciprocal of a
power series, we show that

n-+1=L,<4n —log,n
and conjecture that
= 4n — lower order terms.

1, Introduction

We consider the problem of computing reciprocals of power series. This
problem is closely related to the problems of polynomial division, evaluation and
interpolation. (For example, see Borodin (1973).) Let L, denote the number of
nonscalar multiplications needed to compute the first # + 1 terms of the reciprocal
of a power series. Recently Sieveking (1972) showed that

<5%n— 2.
In this paper, we show:

(i) Root-finding iterations can be used in the field of power series. Sieveking’s
algorithm is just Newton iteration applied to the function f(x) =x"?—a, ¢3-0,
in the field of power series.

(ii) By modifying Sieveking’s algorithm and analysis, Sieveking’s bound is
improved to

L,=4n —logyn.

(iii) A new algorithm for computing reciprocals of power series based on
a third order iteration, which is competitive with Sieveking’s algorithm, can
be derived. The bound in (ii) is also obtained by this new algonthm

(iv) L,=n+1 for all n =0.

The idea of using Newton iteration to compute reciprocals has been known for
a long time. Newton iteration was used to compute rec1procals of real numbers
even in early desk or manual computations. See, for instance, Bshm (1955).
Moreover, Newton iteration has been used to compute matrix inverses by Schulz
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(1933) and to compute integer reciprocals by S.A.Cook (see Knuth (1969,
§433)).

In Section 2 we define some basic notation and also prove results (i) and (ii).
Results (iii) and (iv) are proven in Sections 3 and 4, respectively. In Section §
we give a general family of algorithms for computing reciprocals of power series.
Any algorithm in the family can compute the first # -1 terms of the reciprocal
of a power series in O (n) non scalar multiplications (and can also compute them
in O{nlogn) arithmetic operations if the coefficients of the power series are
complex numbers and if the fast Fourier transform is used for polynomial
multiplication). We conjecture that Newton iteration and the third order iteration
are optimal among all algorithms in the family.

2. Newton Iteration

We will use notation of Sieveking (1972) and Strassen (1973). Let & be an infinite
field, «,, b,,£=0, 1, ..., indeterminates over %, A an extension field of £, and f an
indeterminate over 4. Suppose that E and F are finite subsets of 4 and that we
do computations in the field 4. Let L (E mod F) denote the number of multiplica-
tions or divisions by units which are necessary to compute E starting from A uF
not counting multiplications by scalars in %. In this paper, 4 will be taken to be
one of k(ay, ay,...), k(ag by ay, by, ...) or k(ay). One should note that all
algorithms presented in this paper do not require the commutativity relation
among da,, by, ay, b;, ... . Therefore, a;, b, could be, for example, matrices. We
shall prove the following theorem by using Newton iteration.

Theorem 2.1. Suppose A =k(ay, a;, ...), ay ts a unit in A and

i a;t ﬁ bitt=1 (r+Y). (2.1)
Then ’ ’
L(by, ..., b,moda,,...,a,)<4n —log,n forany n=1.
We first use a technique of Strassen (1973} to prove the following
Lemma 2.1. Suppose A =k (ay, by, 4y, by, ...) and

” m X -1 I
Da;t D bt = c;ti+ Xt
0 0 0 1]
Then
Ley ..., cppmmodag, ..., @y, by, oo, by Cou vy gy St +m—141

-1
for any, n, m =0 such that n +m =1. (Z is assumed to be zero.)
0
Proof of Lemma 2.1. Let A,1<j<n-+m—Il-+1, be any n+m—I+1
distinct nonzero elements in &. Observe that
ntm—1I

) ” m -1
S e di= (S £ 04— o) (22)

4=
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for § =1,...,n+m —1+41, and det (l;:) +0. Hence ¢;,.;, 0=t<n+m—!, can
be obtained by solving the linear system (2.2). Therefore,

Lc, ..., ch mmodag, ..., a4, bq,...,0,,¢ ..., C_y)
» .m .

gL(Z a; X 2 b7 =1,..., n+m—I+1, mod a,,,...,a,,,bo,...,b,,,)
i=0  i=o0

=n+m—I+1. |
Proof of Theorem 2.1. Denote Z a;t' by a and Z b;# by b. Suppose that (2.1)

holds for all #. Then & is the remprocal of a with respect to the field 4 (£).
Define the function f:4 (¢) —{0}->A(¢) by f(x) =2 —a. Thus b is just the
zero of f. Applying Newton 1terat10n to f, we obtain the iteration function

p(x)=x—f (#)7f(x) =2x—ax (2.3)

(In this paper, derivatives of f are defined by purely algebraic methods without
employing any limit concept. For example, see van der Waerden (1953, § 65).)
It follows from (2.3) that

p(x) —b=a(x —Db)2 2.4)

For notational simplicity, let L, denote L (b, ..., b, mod 4, ..., a,). To prove
the theorem it suffices to show that

Ly, y=L,+4n+2 for n=0, (2.5)

Ly, =L, +4n—1 for n=A1. (2.6)

Suppose that b,, ..., b, have already been computed. In (2.4) let x be taken to
be %b,—t‘. Then

o[god)-vo e
)
or
2n41 ”n 2 2n41 .
Z bit' — Tt (Z bJ‘) =2 bt (), (2.7)
[} n+1
Note that
Z ﬂ"ti Z b,'tiE'l (t”+1).
] ]
We define ¢, ,, ..., €2,11 DY
2n+1 o . 2n+1 .
Saf Db t=14 2 et (£, (2.8)
0 [} n+1

Then by (2.7) and (2.8),
kd ”» 3 ” .
— Dl D=2 0,8 (Y.
0 0 0
Therefore, by the transitivity principle of Strassen,

Loy <L, +L(tyy, ..., €anr1mod dq, ..., @apyy, bo, ..., )

+L(byyys e bopyrmod g, g, ..., €auyg, b, on,y By).
25*
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By Lemma 2.1,
Ly, =L, +@2un+1)+2r+1)=L,+4n42.

We have shown (2.5). From (2.7) we also have
” . 2n A AL 2n 3
Dbt — > att (}‘_, b,-t’) = D) b,F (1Y), (2.10)
0 [1] 0 i1

In the same way (2.6) follows by starting with (2.10) instead of (2.7). |}

One can easily check that the algorithm proposed by Sieveking (1972) is just
the Newton iteration stated above. However, because of (2.8), Lemma 2.1, and
careful estimation of L, from (2.5) and (2.6) we are able to obtain

L,=4n—logyn for n=1
rather than
L,=5n—2 for n=1

which is obtained by Sieveking (1972). Newton iteration is a second order iteration.
In the next section we propose a new algorithm for computing reciprocals of power
series, which is based on a third order iteration, and which is competitive with
Sieveking’s algorithm.

3. Another Algorithm for Reciprocals

We use notation defined in the previous section. Applying the third order
iteration (Traub (1964)),

P(x) =x—f (x)1f (%) =3 [ (%) (5) ] (%)?,
to the function f(x) =x!—a, we get

P(x)=x(3 —3ax+(ax)?). (3.1)
It is easy to show that
P(x) —b=a?(x—0b)> (3-2)

We shall now use @ to prove Theorem 2.1 for #» =3. Let L, denote
Lbgy, ..., b, moda,,...,a,)

as before. Note that L, =<3 and L, <6. It is not difficult to check that it suffices
to prove that for » =1,

Lyyya=<L,+8n+5, (3.3)
Lyys1 =L, +8n+1, (3-4)
Ly,=L,+8n—3. (3.5)

Suppose that b,, ..., b, have already been computed. In (3.2) let x be taken to
”

be 2 b,t then
0

#(20)—v=0 @),
0
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o In+2 on . 8142 o A2 Int2
(Z b, t’) [3 -3 2 at X b,-t‘—{-( > a;i Zb,»t') ] = > b, (B
[ 0 [} (1]

Note that

We define ¢,.,4, ..., €3,14 DY

3n+2 n 3n+-2

Z d‘-ti Z bitiE‘l + Z e ti(t3n+$).
0 0 #tl
Moreover, define 4, ....,d, by

(Z Cn 4147 ) Z at ().

Then define f,, ..., f3,.1 by

3n+2 o» X In+2 o . 2
3—3% Z a;t Z b,.t'+( ; a;t >, b,.t')

2n+1 2n-+1
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(3-6)

_Stn+ Z en+1+1t +1 +25n+1 Z e”+1+1t1+t2n+2zdt; (t:m-}-x)

2n+1

=1 +tn+1 Z fiti (t3”+3).
0

Define &os ---5 82n+1 by

13 2n41 2n+1

2hE Y =Y gt (BT
° ° )

Then by (3.6), (3.7), and (3.8),

2n+1 In4-1 . ant2
Z gtt = Z ﬂ+1+|t (t "t )'

Therefore

Lsnra=L,+L(¢ys1, .-, €appamod dy, ..., g, 15, b, ..., b,)
+L(dy, ..., d, mod e, q, ..., E,11)

+L(go s 8ansr MOA € pq, oo, o009, gr v vvs By Bgy o000 B,)-

By Lemma 2.4.
Lyproa =L, +(3n+2) +(2n+1) +(3n+2)

=L, +8n45.
We have shown (3.3). From (3.6) we also have

3n+1 " . Sn+l B \2 3n+1 .
(Bot)f—sE atSoetr(Fardoe)|=Tne @,
0 0 [1] 0

3.7)

(3.8)

(3.9)

(}oj bit‘)[g —3 %} a,.tfé bt + (3%”] a,.t*é bit")z‘ = s%"] bt (A*YH.  (3.10)
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In the same way (3.4) and (3.5) follow by starting with (3.9) and (3.10), respectively
instead of (3.6).
4. A Lower Bound
Under the hypotheses of Theorem 2.1, we show that
L(by, ..., b, moday,...,a,)=n-+1. (4.1)

Suppose that @, =1 and 4, =0, s =2, ..., #. Then it is clear that b, = (—1)*ay **?,
1=0, ..., 7. (4.1) follows from the following

Lemma 4.1. Suppose A =k (ay), a, ts unit in A and

b;=(—1)'ag ™, i=o0,...,n
Then
Lbg, ..., b, mod ay) =n +1.

Proof. Consider an arbitrary algorithm which requires # non scalar multiplica-
tions or divisions. Let R,, ..., R, denote the results of these multiplications or
divisions. Then there exist p; €k, g;€{koay +ky|ko, By €R} i =0, ..., n,]=1, ..., m
such that

"
zlﬁi,jRj+qi=bi, 7:=O,..., .
f=

Suppose that m << n +1. Then there exist »;€%, =0, ..., , such that ;=0 for
some 7 and

.?_. 7i(b;—¢:) =0,
or
5 (—tyrat= (S rigs) a7
0 0

This clearly implies that 7, =0 for all 7=0, ..., » which is a contradiction.

5. A Family of Algorithms for Reciprocals and A Conjecture

o0 oo
Suppose @ = 2,4, and b= D, b,# and that (2.1) is satisfied for all n. Let
0 0

A =k(a,, @, ...). For any nonnegative integers 4, /o, },, ..., }; (not all zero) we
define an algorithm which generates the sequence of iterates {x*} in A (¢) by
fo—1
A0 = B — g xh-D)h (1 —axB-D) 3 (1 —axP)i
i=0
B0 (g x| (4 —axh-DYa Y (1 — g xbV)i
n j=0 (5.1)

: I4—1
+ xlt=4) "Z (1—axB=a).
j=0

Then it can be shown that
2D =p —p(1—axP)e(1—as®D)h (1 —qxt—D)s (5.2)
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For all % define ¢, to be the greatest integer such that

aW=p ().
Then from (5.2) it follows that
gt =p (tlo¢h+ +ldl3h—d).
Hence

d
Cria gigolich—i' : (5-3)

Using (5.3) we can estimate the number of iteration steps necessary to compute
by, .., b, from ay, ..., a, for any given x. Note that in computing x*+V by (5.1)

oA+l 0o
we should use 2, a,t for a (: > a,-t‘) .
o 0
Example 5.1. (i) if d=0 and [, =2 we have
20D — )[4 4 (1 — g 49)] =250 — g 10 4,

This is the Newton iteration (see (2.3)).
(i) If 4 =0 and [, =3 we have
) =B+ (1 —a x(h)) +(1— ax(”))zj
=xM[3 =325 4 (a2x¥)2].
This is the third order iteration @ in (3.1).
(i) If d =1 and !, =1, =1 we have
Al D — ) (4 — g 5= D) 4. 50—
= gD W gD ),

One can check that this is the secant iteration applied to f(x) =x1—a.

In fact, (5.1) represents the algorithm which is obtained by a general Hermite
interpolatory iteration (Traub (1964)) applied to the function f(x)=2x1—a.
A special case of (5.1) (i.e., d =0) was pointed out before by Rabinowitz (1961)
for computing reciprocals of numbers. By the same techniques used in Sections 2
and 3 one could show that L(b,, ..., b, moda, ..., a,) is bounded by a linear
function of # by using any algorithm defined by (5.1). However, we believe that
Newton iteration and the third order iteration are optimal among all algorithms
defined by (5.1). More precisely, we state the following

Conjecture. L(b,, ..., b, mod a,, ..., a,) =4n — lower order terms, for large u.

If the coefficients of a power series are complex numbers and if we use the
fast Fourier transform for polynomial multiplication, then it can be easily shown
by techniques similar to those used in this paper that any algorithm defined by
(5.1) is able to compute the first # 41 terms of the reciprocal of a power series
in O (n log ») arithmetic operations.
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