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A b s t r a c t .  I t  is shown that  root-finding iterations can be used in the field of power 
series. As a consequence, we obtain a class of new algorithms for computing reciprocals 
of power series. In particular, we show that  the recent Sieveking algorithm for 
computing reciprocals is just Newton iteration. Moreover, if L n is the number of non 
scalar multiplications needed to compute the first n + t terms of the reciprocal of a 
power series, we show that  

n + t ~ L  n < 4 n - - l o g z n  

and conjecture that 
L n = 4 n - -  lower order terms. 

1. Introduction 

We consider the problem of computing reciprocals of power series. This 
problem is closely related to the problems of polynomial division, evaluation and 
interpolation. (For example, see Borodin (1973).) Let L~ denote the number of 
nonscalar multiplications needed to compute the first n + I terms of the reciprocal 
of a power series. Recently Sieveking (1972) showed that 

L , < 5 n - -  2. 
I n  this paper, we show: 

(i) Root-finding iterations can be used in the field of power series. Sieveking's 
algorithm is just Newton iteration applied to the function t ( x ) = x - l - - a ,  a ~ O ,  
in the field of power series. 

(ii) By  modifying Sieveking's algorithm and analysis, Sieveking's bound is 
improved to  

L, ,  ~ 4 n  - -  logan. 

(iii) A new algorithm for computing reciprocals of power series based on 
a third order iteration, which is competitive with Sieveking's algorithm, can 
be derived. The bound in (if) is also obtained by  this new algorithm. 

(iv) L n ~ n + t for all n ~ 0. 

The idea of using Newton iteration to compute reciprocals h ~  been known for 
a long time. Newton iteration was used to compute reciprocals of real numbers 
even in early desk or  manual  computations.  See, for instance, B6hm (1955). 
Moreover, Newton iteration has been used to compute matr ix  inverses b y  Schulz 
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(t933) and to compute integer reciprocals by  S. A. Cook (see Knuth (t969, 
w 4.3~)). 

In  Section 2 we define some basic notation and also prove results (i) and (ii). 
Results (iii) and (iv) are proven in Sections 3 and 4, respectively. In Section 5 
we give a general family of algorithms for computing reciprocals of power series. 
Any algorithm in the family can compute the first n + t terms of the reciprocal 
of a power series in 0 (n) non scalar multiplications (and can also compute them 
in O(n log n) arithmetic operations if the coefficients of the power series are 
complex numbers and if the fast Fourier transform is used for polynomial 
multiplication). We conjecture that  Newton iteration and the third order iteration 
are optimal among all algorithms in the family. 

2. Newton Iteration 

We will use notation of Sieveking (t 972) and Strassen (t 973)- Let k be an infinite 
field, a~, bi, i = 0, 1 . . . . .  indeterminates over k, A an extension field of k, and t an 
indeterminate over A. Suppose that  E and F are finite subsets of A and that  we 
do computations in the field A. Let L (E rood F) denote the number of multiplica- 
tions or divisions by units which are necessary to compute E starting from k u F  
not counting multiplications by  scalars in k. In this paper, A will be taken to be 
one of k(ao, a 1 . . . .  ), k(ao, bo, al, b 1 . . . .  ) or k(ao). One should note that  all 
algorithms presented in this paper  do not require the commutat ivi ty  relation 
among ao, bo, al, b 1 . . . . .  Therefore, a~, b i could be, for example, matrices. We 
shall prove the following theorem by using Newton iteration. 

Then  

Theorem 2.1. Suppose  A = k ( a  o, a 1 . . . .  ), a o is a uni t  in  A and 

~ a i t~  bd i -  1 (t"+l). (2.t) 
o 0 

L ( b  o . . . . .  b, mod a o . . . . .  a~) =<4n --  logan /or any  n > l .  

We first use a technique of Strassen (t973) to prove the following 

Lemma 2.1. Suppose  A = k ( a  o, b o, ax, b 1 . . . .  ) and 

n m l--i n + m  

E ~,t~ X b~r = Y, c / +  Y, qtt 
0 0 0 l 

Then  

L ( C  l . . . . .  On+ m m o d  ao ,  . . . p  an ,  b 0 . . . . .  bin, c O . . . .  , e l _ l ) ~ n - [ - m - - I - q -  

,o.:y =o) 
Proof o I L e m m a  2.1. Let ai, t < i < n + m - - l + t ,  be any n + m - - l + l  

distinct nonzero elements in k. Observe that  

(k k ,1 n+m-- l  n m 
- t  ~ i (2.2~ 

i : O  " :  "= 0 I 
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for j ----- t . . . . .  n + rn - -  l + t, and det (;t~) 4= 0. Hence ct+i, 0 =< i < n + m --  l, can 
be obtained by  solving the linear system (2.2). Therefore, 

L (cz . . . . .  cn+ m mod a o . . . . .  an, b o . . . . .  bin, c o . . . . .  ct_l) 

) _ bi~. # f -----t . . . . .  n + m  - - I - - F t ,  mod a . . . . . .  %, bo . . . . .  br,, 

= n + m - - l + t .  I 

P oo! o/Theorem 2.1. Denote by and b,t i by b. Suppose that 
0 0 

holds for all n. Then b is the reciprocal of a with respect to the field A (0. 
Define the f u n c t i o n / : A  (t) --{0}-->A (t) by  ](x) = x  - 1 - a .  Thus b is just  the 

zero o f / .  Applying Newton iteration t o / ,  we obtain the iteration function 

( x )  = x - 1' ( x ) - ~ l  ( x )  = 2 x - a x ' .  ( 2 . 3 )  

(In this paper, derivatives of l are defined by  purely algebraic methods without  
employing any  limit concept. For  example, see van der Waerden (t953, w 65).) 
I t  follows from (2.3) tha t  

(x) --  b = a (x - -  b) 2. (2.4) 

For  notational simplicity, let L ,  denote L (b 0 . . . . .  b n mod a o . . . . .  an). To prove 
the theorem it suffices to show tha t  

L , n + x < L n + 4 n + 2  for n>--0, (2.5) 

L 2 n < = L , + 4 n - - I  for n > t .  (2.6) 

Suppose that  b o . . . . .  b n have already been computed.  In  (2.4) let x be taken to 

be ~. bi t (  Then 
0 

or  
2n+1 [ n )3 2n+1 

bi t i -  Z ai ti ( Z  biti -~ Z bi ti ( f "+ ' ) .  (2.7) 
0 0 \ 0 .+1  

Note tha t  

0 0 

We define e~+ x . . . . .  ein+x by  

2n+l n 2n+1 
Z a i t i Z  bi t i - t  + X ei ti 
0 0 n + l  

Then b y  (2.7) and (2.8), 

(r+l). 

( t2"+~) .  

- -  ~, en+l+it i ~ bit i=- ~, 3n+1+i ti (tn+l).  
o o o 

Therefore, by  the t ransi t ivi ty  principle of Strassen, 

L2.+1 ~ L  n + L  (e.+l . . . . .  e2n+l rood a o . . . . .  a~n+x, b o . . . . .  bn) 

+ L (b.+l . . . . .  b~n+l rood en+l . . . . .  e~.+l, b o . . . . .  b.). 

(2.8) 

(2.9) 

25* 
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By Lemma 2.t, 
L ~ , + x ~ _ L , , + ( 2 n + t )  + ( 2 n  + t )  = L ,  + 4 n  + 2 .  

We have shown (2.5). From (2.7) we also have 

b, / ' -  (2.to) 
0 0 n + l  

In the same way (2.6) follows by starting with (2.t0) instead of (2.7). | 

One can easily check that  the algorithm proposed by Sieveking (t972) is just 
the Newton iteration stated above. However, because of (2.8), Lemma 2A, and 
careful estimation of L,  from (2.5) and (2.5) we are able to obtain 

L.<--_4n--log2n for n > t  
rather than 

L . ~ S n - - 2  for n > t  

which is obtained by Sieveking (1972). Newton iteration is a second order iteration. 
In the next  section we propose a new algorithm for computing reciprocals of power 
series, which is based on a third order iteration, and which is competitive with 
Sieveking's algorithm. 

3. Another Algorithm for Reciprocals 

We use notation defined in the previous section. Applying the third order 
iteration (Traub (1964)), 

(x) = x - 1' (x) -V (x) - �89 [1' (~)-~P l "  (x) I (x)~, 

to the function / ( x ) =  x - 1 -  a, we get 

~(x) = x ( 3  - -3 . x  + (a~)'). (3.t) 
I t  is easy to show that  

~(x) --b =a~(x --b) 8. (3.2) 

We shall now use ~ to prove Theorem 2.t for n >3 .  Let L,  denote 

L (b o . . . . .  b. mod a o . . . . .  a.) 

as before. Note that L a < 3 and L 2 =< 6. I t  is not difficult to check that it suffices 
to prove that for n > t,  

Ls.+~ =<L. + 8 n  + 5, (3.3) 

L3.+x ~ L. + 8n + t,  (3.4) 

L s . < L .  + 8 n - - 3 .  (3.5) 

Suppose that b o . . . . .  b. have already been computed. In (3.2) let x be taken to 
n 

be ~ b~t i then 
0 

~ b~t ~ --b =--0 (P"+*), 
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O r  

b,t' 3 - 3  Z , , /  b , t '+[  X ,,,t'Zb,t' ---- Z ~, 
0 0 k 0 0 0 

Note tha t  

~. a~t i ~, bd ~-~ 1 (t"+l). 
0 0 

We define e,,+x . . . . .  es,~+ , b y  

8n+2  8n+2  

Z a , t ' ~  b , t ' ~ t  + Z ei #(p.+3).  
0 0 ~+1  

Moreover, define d o . . . . . .  d, by  

e.+l+i -= dit ~ 
0 

(t"+~). 

t~(t~"+~). 

Then define ]o . . . . .  /2,,+x by  

3n+~ / 3 n + 2  ~)2 

3-3 x "'" l o  Y 
2~+1  2 n + l  . 

==_3 tn+x ~, en+l+iti + t + 2 t n + l  ~ e.+x+iti +t2"+2~,di t  i 
0 0 0 

2 n + l  
-=t +t-+l  >2, k t  ~ (t~-+3), 

0 

Define go . . . . .  g2,,+I b y  
I t t + l  2 n + l  ~ b,t' X/,t '-= X g,~' (t~"+'). 

0 0 0 

Then by  (3.6), (3.7), and  (3.8), 

2tt+l g~+X 
Z gi ti=- X b,,+l+~ ti (t2"+l) �9 
0 3 

Therefore 

Ls.+z =Ln  +L(en+x . . . . .  es,~+ s modao  . . . . .  as.+~, bo . . . . .  b.) 

+ L (d o . . . . .  d. mod  e,,+l . . . . .  e2,~+1) 

+ L  (go . . . . .  g3,,+1 mod  e,,+~ . . . . .  en.+ ~, d o . . . . .  d., b o . . . . .  b.). 
By L e m m a  2.t .  

Ls,,+ 2 _<L,~ + ( 3 n  + 2 )  + (2n + t )  + (3n + 2 )  

= L , ~ + 8 n + 5 .  

We have  shown (3.3). F rom (3.6) we also have 

b,t 3 - 3  Y a /  y b,t' + a~t' b~t ~ =-- Y. b ~  
0 0 3 0 

hip 3 - -3  ai t~ bi t i+ ai t~ b~ t~ -= ~' bi ti 
0 0 

(t~"+'), 

(t~-+l). 

(3.6) 

(t~"+3) 

(3.7) 

(3,8) 

(3.9) 

(3.to) 
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I n  the  same w a y  (3.4) and  (3.5) follow b y  s ta r t ing  with  (3.9) and  (3.t 0), respect ive ly  
i n s t ead  of (3.6). 

4. A Lower Bound 

Under  the  hypotheses  of Theorem 2.1, we show tha t  

L(b  o . . . . .  b, rood a o . . . . .  a~) ~ n  + 1 .  (4.1) 

Suppose  t ha t  a x = 1 and  a i = O, i = 2 . . . . .  n. Then i t  is clear t ha t  b i = (--  l )i ao(r l), 
i = 0  . . . . .  n. (4.t) follows from the  following 

Lemma 4.1. Suppose A = k (ao), a o is unit in A and 

b ~ = ( - - l ) ~ a o  (~+~), i = 0  . . . . .  n. 
Then 

L (b o . . . . .  b, rood ao) ~ n + t .  

Proo]. Consider an a r b i t r a r y  a lgor i thm which requires m non scalar  mul t ip l ica-  
t ions  or  divisions.  Let  R 1 . . . . .  R,~ denote  the  results  of these mul t ip l ica t ions  or  
divisions.  Then  there  exis t  p c i E k, qi E {k 0 a o + ka [k o, k 1 E k} i = 0 . . . . .  n, i = 1 . . . . .  m 
such t h a t  

~.Pi,  iR i  +q i  =hi ,  i = 0  . . . . .  n. 
i = 1  

Suppose  t ha t  m < n  + t .  Then there  exis t  riEk, i ~ 0 . . . . .  n, such tha t  r l  + 0  for 
some i and  

ri  (hi - -  qi) ----- 0, 
0 

o r  

~o ( - - l ) ' r ia~- '~ -  (~o riqi) a~+l. 

This c lear ly  implies  t h a t  r l  = 0 for all i ~-0 . . . . .  n which is a contradict ion.  | 

5. A Fami ly  of Algor i thms for Reciprocals and A Conjecture 

oo co 

Suppose  a =  ~ a i t  i and b =  ~ b~t i and  t ha t  (2.t) is sat isf ied for all n. Let  
0 0 

A = k ( a  0, a 1 . . . .  ). F o r  a n y  nonnegat ive  integers  d, 1 o, 11 . . . . .  l a (not all  zero) we 
define an a lgor i thm which generates  the  sequence of i te ra tes  {x C~l} in A (t) b y  

Zo--1 
x(~+I) = x(~)O - -  a x(h-1))~... (I - -  a x(~-d)) ~ ~ (I - a x(h)) i 

i=0 
11--1 

+ X (h-l) (I -- a x(h-2))&... (I -- a x(~-d)) la ~, (I --  a x(h-1)) i 
j=o (5 .1 )  

Id--I 
~- x (h-~ Y, ( I - a x(~-~l) i. 

i=0 

Then i t  can be shown that 

x (h+~l = b - b (t  - a x(h~) ~.(1 - a x (~-1~)~1 . . .  ( t  - a x ( h - a l )  ~.  (5 .2)  
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For  all h define c h to be the  grea tes t  integer such t ha t  

xlh~ _--_ b (to*). 
Then from (5.2) i t  follows tha t  

x Ch+l) ---= b (tloch+ "" +~ch-d). 
Hence 

d 

ch§ >_- ~ l :h-~ .  (5-3) 
i = 0  

Using (5-3) we can es t imate  the  number  of i te ra t ion  s teps necessary to compute  
b 0 . . . . .  b, from a 0 . . . . .  a,, for any  given n. Note t ha t  in comput ing  x Ih+l) b y  (5.1) 

we should use ~ a i t  i for a = a~t i . 
0 

E x a m p l e  5.1.  (i) if d = 0 and l o = 2 we have 

x(h +1) = x(h) [1 + (t - -  a x (h)) ] = 2 x (h) - -  a x (h) x (h). 

This is the  Newton i te ra t ion  (see (2.3)). 

(if) I f  d = 0 and 1 o = 3 we have 

x r = xr ~) I t  + (t  - a xch)) + (t  - a xCh))~] 

= X(h) [3 - - 3  aX(h) + (a x(h))2] �9 

This is the  th i rd  order  i te ra t ion  ~p in (3A). 

(iii) If  d = t  and  l 0 = l  x -----t we have  

x Ih+l) = x Ih) (t - -  a x Ch-1)) + x (t'-1) 

~--- - -  a x Ih-  1) x(h) + x(h - 1) + x(h)  

One can check t ha t  this  is the  secant  i te ra t ion  appl ied  t o / ( x )  = x  -1 - - a .  

In  fact,  (5.t) represents  the  a lgor i thm which is ob ta ined  b y  a general  Hermi te  
in t e rpo la to ry  i te ra t ion  (Traub (t964)) appl ied to  the  function / ( x ) = x - X - - a .  

A special  case of (5.t) (i.e., d = 0 )  was po in ted  out  before b y  Rabinowi tz  (1961) 
for comput ing  reciprocals  of numbers .  By  the  same techniques used in Sections 2 
and  3 one could show tha t  L (b 0 . . . . .  b n mod  a 0 . . . . .  a~) is bounded  b y  a l inear  
funct ion of n b y  using any  a lgor i thm defined b y  (SA). However ,  we believe t ha t  
Newton  i te ra t ion  and the  th i rd  order  i te ra t ion  are op t imal  among all a lgor i thms 
defined b y  (5.t). More precisely,  we s ta te  the  following 

Conjec ture .  L ( b  o . . . . .  b n mod a o . . . . .  an) = 4 n  - -  lower  order  t e rms ,  / o r  large n .  

If  the  coefficients of a power  series are complex numbers  and  if we use the  
fast  Four i e r  t ransform for polynomial  mult ipl icat ion,  then i t  can be easi ly  shown 
b y  techniques  s imilar  to those  used in this  paper  t h a t  a n y  algor i thm def ined b y  
(SA) is able to  compute  the  first  n + t  terms of the  reciprocal  of a power  series 
in O (n log n) a r i t h m e t i c  opera t ions .  

A c k n o w l e d g m e n t .  I would like to thank Professor J. F. Traub for his comments on 
this paper. 
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