
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

1976

Synchronized and asynchronous parallel
algorithms for multiprocessors
H. T. Kung
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Recommended Citation
, , , -

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


NOTICE W A R N I N G CONCERNING COPYRIGHT RESTRICTIONS: 
The copyright law of the United States (title 17, U.S. Code) governs the making 
of photocopies or other reproductions of copyrighted material. Any copying of this 
document without permission of its author may be prohibited by law. 



SYNCHRONIZED AND ASYNCHRONOUS PARALLEL ALGORITHMS 
FOR MULTIPROCESSORS 

H. T. Kung 

June 1976 

» s j? r ^ u r ^ lit::: * ^ t s i n a i ~ -



SYNCHRONIZED AND ASYNCHRONOUS PARALLEL ALGORITHMS 
FOR MULTIPROCESSORS 

H. T. Kung 
Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, Pa. 

2 

Abstract 

Parallel algorithms for multiprocessors are classified 
into synchronized and asynchronous algorithms. Important 
characteristics with respect to the design and analysis of 
the two types of algorithms are identified and discussed. 
Several examples of the two types of algorithms are consid­
ered in depth. 
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1. Introduction 

The multiprocessor user is currently confronted with a 
large and increasing number of processors. For efficient sys­
tem utilization and fast response to the user, it is neces­
sary to use parallel algorithms for solving a single problem. 
This paper studies parallel algorithms for multiprocessors. 

Following Flynn fs [66] classification scheme, parallel 
computers are classified into SIMD (single-instruction stream 
multiple-data stream) machines and MIMD (multiple-instruc­
tion stream-multiple-data stream) machines. With SIMD ma­
chines, one stream of instructions controls a number of syn­
chronized processors, each operating upon its own memory. 
An example of SIMD machines is the array processor such as 
ILLIAC IV (Barnes, et al. [68]). With MIMD machines, the 
processors have independent instruction counters, and operate 
in a speed independent manner on shared memories. In this 
paper, by multiprocessors we mean MIMD machines. An example 
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of multiprocessors is Cramp (Wulf and Bell [72]) at Carnegie-
Mellon University. Considerations in designing algorithms 
for SIMD machines and those for multiprocessors are quite 
different. Algorithms for SIMD machines are not dealt with 
in this paper. The reader is referred to the recent survey 
by Heller [76] for numerical SIMD algorithms, and the paper 
by Thompson and Kung [76] for an example of nonnumerical 
SIMD algorithms. For a survey of parallel computation in a 
broad sense, the reader is referred to Kuck [75]. Although 
quite a lot of research has been done on SIMD algorithms, 
there are few results available concerning the design and 
analysis of multiprocessor algorithms. As multiprocessors 
with increasing numbers of processors are becoming available, 
research on multiprocessor algorithms seems to be of ut­
most importance at this time. This is the motivation behind 
this paper. 

This paper intends to identify some of the important and 
unique issues concerning multiprocessor algorithms. They are 
illustrated by three specific examples, which are given in 
Sections 3, 4, and 5. In Section 2, multiprocessor algorithms 
are classified into synchronized and asynchronous algorithms, 
and basic concepts are introduced. Section 6 considers asyn­
chronous algorithms where processes can be interrupted, and 
Section 7 contains considerations on the optimal number of 
processes one should create for a multiprocessor algorithm. 
Summary and conclusions are given in the last section. 

Parts of this paper are summaries of results from other 
papers, in particular, results of Section 3, belong to Hyafil 
and Kung [76], and results of Section 4.2 belong to Baudet, 
Brent and Kung [76]. 
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2. Basic Concepts and Definitions 

2.1 Parallel Algorithm as a Collection of Concurrent  
Processes 
We define a parallel algorithm for multiprocessors as a 

collection of concurrent processes that may operate simul­
taneously for solving a given problem. We do not attempt to 
define formally the term "process11 here. The reader could 
read, for example, Habermann[76] for a good discussion on the 
concept of processes. For our purpose we view a process as 
the execution of a procedure in a multiprocessor operating 
system. Thus, a process is controlled by a program and at 
most one processor, which is assigned by the operating system, 
carries out this program at any given time. During the life­
time of a process, different processors may be assigned to it 
on various time intervals. It turns out that it is conveni­
ent and more useful to think that a program for solving a 
given problem is carried out by processes rather than proces­
sors. For instance, with this concept one can often regard 
a piece of the program to be carried out by one process, 
although it may actually be done by many processors. This 
is part of the motivation for our definition of a parallel 
algorithm. As the section proceeds, the reader will find that 
it is useful to have such a definition for describing many 
jother concepts. If a parallel algorithm is a collection of 
k processes, we shall often say it is a parallel algorithm  
with k processes. If k =» 1, it is called a sequential algo­ 
rithm. 

To ensure that a parallel algorithm works correctly and 
uses parallelism effectively for solving a given problem, 
it is usually necessary to have interactions among the process­
es. Hence in the program which controls a process there may be 
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some points where the process can communicate with other pro­
cesses. We call such points interaction points. The inter­
action points divide a process into stages. Thus, at the end 
of each stage a process may communicate with other processes 
before starting the next stage. 

2.2 Fluctuations in Process Speed 
The time taken by a fixed stage of a process is usually 

not a constant. The fluctuations may be due to both the 
multiprocessor system and the input to the stage. 

System 

(i) The multiprocessor may consist of processors with 
different speeds. For example, the current con­
figuration of C.mmp includes both PDP-ll/20 and 
PDP-ll/40 processors. The latter processors are 
considerably faster than the former ones. A pro­
cess may be run in a fast or slow manner, depending 
upon which processors are assigned to it during the 
stage. 

(ii) The individual processors may be asynchronous. 

(iii) A process may be delayed due to memory conflicts. 

(iv) From time to time the operating system on the multi­
processor may assign certain processors to perform 
i/o, allocate processors to processes, switch a 
processor from one process to another, and so on. 
Hence during the period when a processor is carry­
ing out a stage of a process, it could be interrupt­
ed by the operating system and start doing something 
else. In this case, a time consuming context swap 
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is performed, and the stage is either taken over by 
another processor or suspended for an indefinite 
amount of time. 

(v) In a multiple user environment, the amount of re­
sources allocated to a particular process at a 
given time is a variable, depending upon the number 
of processes the users have created and their pri­
orities. Thus, the speed of a process may be in­
fluenced by the whole user community. 

Input 
The work taken by an algorithm may depend on the in­

stances of its input. For example, the number of comparisons 
needed to sort n elements by Quicksort ranges from 0(n log n) 

2 
to 0(n ) , depending upon the ordering of the input elements. 
As another example, consider the problem of evaluating a func­
tion. Suppose that we want to evaluate the normal distribu­
tion function 

1 2 
00 t 

f (x) = -p= P e 2 dt 
at a point. To achieve good accuracy, the evaluation at a 
point in the "central area" is done by a Taylor series ap­
proximation, while that at a point in one of the "tail areas" 
is done by a continued fraction approximation. Hence the 
work needed to evaluate a function at a point may depend upon 
the position of the point. Since in general the property of 
the input to a stage of a process is unpredictable (or regard­
ed as unpredictable), so is the work performed by the stage. 
This implies that the time taken by a stage can very in an 
unpredictable way. 
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Motivated by the preceding discussion, we assume in this 
paper that in running a parallel algorithm the time taken by  
a stage of any of its processes is a random variable satisfy­ 
ing some distribution function. In a fixed computing environ­
ment the distribution function can (hopefully) be estimated. 

2.3 Synchronized Parallel Algorithms 
A synchronized parallel algorithm is a parallel algorithm 

consisting of processes with the following property: There 
exists a process such that some stage of the process is not 
activated until another process has finished a certain portion 
of its program. The needed timing can be achieved by using 
various synchronization primitives. For example, suppose 
that we want to compute (AxB) + (CxDxE) by two processes. We 
may construct a parallel algorithm by creating process P̂  
consisting of only one stage, X «- AxB, and process P^ consist­
ing of two stages, Y <- CxDxE and S X+Y. Clearly, the acti­
vation of the second stage of process P^ is subject to the 
condition that process P̂  is complete. Thus, this is a syn­
chronized parallel algorithm. More examples will be present­
ed later in the paper. If we use notation in Habermann [76], 
then a parallel algorithm consisting of "cooperating pro­
cesses" is a synchronized parallel algorithm. For conveni­
ence, we shall often say synchronized algorithms instead of 
synchronized parallel algorithms. 

Since the time taken by a stage of a process is a random 
variable, synchronized algorithms have the drawback that some 
processes may be blocked at a given time, so the performance 
of the algorithm is degraded. To be more precise, consider a 
synchronized algorithm with k processes. Assume that 
this algorithm is run on a multiprocessor system which con­
sists of k identical processors and the algorithm takes time 
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U. During the time U let denote the total time that i 
processes are active, i.e., k-i processes are blocked. Note 
that U = u. 4- u, + ... + u, and that the algorithm can be run 0 1 k k 

on a single processor of the system in time at most ^ ^ u±* 
i=l 

Thus, by using k processors, the algorithm is sped up at most 
by a factor of 

k k 

i=l i=l 

which is ^ k as one might expect. may be computed if the 
û . are known. For example, if we know that at most k/2 pro­
cesses are active 50 percent of tha time, 

k/2 k 
i.e.-, £ ut £ ^ u±, then 

i=1 i= (k/2)+l 

i=(k/2)+l i=l 
* 4 * 

Hence in this case the speed up is at most 3/4 of what one 

would hope. 
The degradation of performance can be made even clearer 

by considering the class of synchronized parallel algo­
rithms, where only identical stages of processes are syn­
chronized. In general, the synchronized parallel algorithms 
adapted from algorithms for SIMD machines are of this type. 
Suppose that we want to synchronize k identical stages and 
that the time taken by the ith stage is a random variable t^. 
Since the stages are all identical, ^'•••> ti c

 a r e identically 
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distributed random variables with mean, say, t. Synchronizing 
the stages means that until all stages are complete a new 
stage of any process can not be activated. Therefore the ex­
pected time taken by the synchronized stage of any process is 
the mean T of the random variable T =* max(t l f... 9ty) rather 
than t. In general, T is larger than t. We define the ratio 

» T/t to be the penalty factor of synchronizing the k 
identical stages. Clearly if the penalty factor is large, 
then the performance of the synchronized algorithm is largely 
degraded. G. Baudet has made an interesting observation that 
if the t^ are identical and independent exponentially distri­
buted random variables, then the penalty factor is the kth 
ha.rmonic number H^. Note that grows like In k as k in­
creases. 

Both the speed up bound and the penalty factor dis­
cussed above give us some indications of the average perfor­
mance of synchronized algorithms. But in the worst cases, 
synchronized algorithms may take an unacceptably long time, 
since it is possible that a process is blocked while waiting 
for a signal which is supposed to be issued by some "dead" 
process. Finally, we note that the execution time of the 
needed synchronization primitives in synchronized algorithms 
is often non-negligible in practice (see Section 7). 

2.4 Asynchronous Parallel Algorithms 
An asynchronous parallel algorithm is a parallel algo­

rithm with the following properties: 

(i) There is a set of global variables accessible to 
all processes. 

(ii) When a stage of a process is complete, the process 
first reads some global variables. Then based on 
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the values of the variables together with the re­
sults just obtained from the last stage, the pro­
cess modifies some global variables, and then acti­
vates the next stage or terminates itself. In many 
cases, to ensure logic correctness, the operations 
on global variables are programmed as critical sec­
tions (cf. Dijkstra [68]). 

Thus in an asynchronous parallel algorithm, the communi­
cations between processes are achieved through the global 
variables, or shared data. There is no explicit dependency 
between processes, as found in synchronized parallel algo­
rithms. The main characteristic of an asynchronous parallel 
algorithm is that its processes never wait for inputs at any 
time but continue or terminate according to whatever informa­
tion is currently contained in the global variables. It is 
called an "asynchronous" parallel algorithm because synchroni­
zations are not needed for ensuring that specific inputs are 
available for processes at various times. However, one should 
note that processes may be blocked from entering crit­
ical sections, which are needed in many algorithms. We shall 
often say asynchronous algorithms for short, instead of asyn­
chronous parallel algorithms. 

2.5 The Time Taken by a Parallel Algorithm 
The time taken by a parallel algorithm is defined to be 

the elapsed time of the process in the algorithm which finish­
es last. The elapsed time of a process is the sum of the fol­
lowing three quantities: 

(i) Basic Processing Time 

Recall that a process consists of consecutive stages and 
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that the time taken by a stage is a random variable. The 
basic processing time of a process is the sum of the times 
taken by its stages. In this paper, it is always assumed 
that the random variable associated with each stage is known, 

(ii) Blocked Time 

A process may be blocked at the end of a stage because 
it waits for inputs in a synchronized algorithm, or for the 
entering of a critical section in an asynchronous algorithm. 
The blocking time of a process is the total time that the 
process is blocked. 

(iii) Execution Time of Synchronization Primit lves 

Synchronization primitives are needed for synchronizing 
processes and implementing critical sections. The execution 
time of these primitives is often non-negligible in practice. 

We assume that the random variable associated with a 
stage of a process is invariant under the addition of another 
process to the multiprocessor system, as long as the total 
number of processes having been created is no more than the 
number of processors in the system. In other words, we as­
sume that the basic processing time of a process is not af­
fected by the presence of other processes in the system when 
the system is not "over-saturated11. This assumption seems to 
hold for most plausible multiprocessor systems. Throughout 
the paper, when we compare the times taken by parallel algo­
rithms consisting of different numbers of processes, it is 
always assumed that the system is not over-saturated as any 
of the algorithms is running. Thus, in the analysis, the 
time taken by a stage of a process in a parallel algorithm is 
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a random variable, which is defined independently of how many 
processes the algorithm consists of. However, when we compare 
two parallel algorithms with the same number of processes, we 
can allow the situation where the system is over-saturated. 
In this case, we just imagine that each process is run by a 
virtual processor which has only a fraction of the processing 
power of a real processor. 

3. The First Example: Search for Zeros 

In this section we consider the classical problem of 
locating a zero of a function, which is defined as follows: 
Given a continuous function f having opposite signs at the 
endpoints of an interval of length L, locate a zero of f with­
in a unit interval. One should note that the algorithms pre­
sented in this section can be easily modified to deal with dis­
crete f, so they can, for example, be used for searching an 
ordered list for a desired item in the list. Furthermore, 
our asynchronous zero-searching parallel algorithms can also 
be modified to locate the maximum of a unimodal function 
(see the end of Section 3.4). 

In the following definitions we assume that a single pro­
cess is used. Let the time needed to evaluate f at a point in 
the interval be a random variable t with mean t, and, follow­
ing each function evaluation, the time needed to calculate 
the position of the next evaluation point and to check the 
stopping criteria be another random variable c with mean c. 
In this section we assume that t is much larger than c so 
that c can be ignored in the analysis. We also assume that 
execution time of synchronization primitives can be ignored. 
These assumptions will be dropped in Section 7. 
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Binary search is probably the best known search method. 
It takes at most Tlog2 Ll function evaluations and is optimal 
in the minimax sense. The expected running time is Tlog^Ll^t. 
The method is inherently sequential, since only one function 
evaluation can be done at any given time. In the following 
we consider some parallel algorithms. 

3 .1 Synchronized Zero-Searching Algorithms 
The obvious parallel zero-searching algorithm consisting 

of k processes is defined as follows. At each "iteration11 

each process evaluates f at one of the k points which divide 
the current interval of uncertainty into k+1 sub intervals of 
equal length. The evaluation is considered as a stage of 
the process. The k identical stages are synchronized in the 
sense that when all of them are complete, one of the processes 
(Computes a new interval of uncertainty. Clearly, every itera­
tion reduces the length of the interval of uncertainty by a fac­
tor of k+1. Hence the algorithm uses Tlog^^ Ll iterations. 
As far as the number of iterations is concerned, the algorithm 
is clearly optimal in the minimax sense, among all synchroniz­
ed parallel algorithms with k processes. However, the expect­
ed time for each iteration is X^t rather than t, where \^ *-s 

the penalty factor of synchronizing k function evaluations. 
Thus the expected running time of the algorithm is 
flogk_hl Ll • X kt. The synchronized parallel algorithm can be 
inefficient when \^ is large, which usually happens when k is 
large. 

3.2 An Asynchronous Zero-Searching Algorithm with Two Pro­ 
cesses - Algorithm AZ^ 
We shall introduce a natural asynchronous zero-searching 

algorithm with two processes, which is based on a Fibonacci 
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law. The algorithm, called Algorithm AZ £, will be defined by 
its transitions between various states. There are two types 
of states, A, (A) and A^Jl), which are defined by the follow-
ing graphs: 

A 2 U ) 

2 
where 9 +9 = 1, i.e., 9 = .618 ... is the reciprocal of the 
golden ratio (j). The first graph indicates that state ( 
is the state for which the interval of uncertainty is of 
length I and f is evaluated simultaneously at the point n o , f 

inside the interval and another point outside the interval, 
which is net shown in the graph. Similarly, the second graph 
indicates that state A^(l) is the state for which the inter­
val of uncertainty is of length I and f is evaluated simul­
taneously at two points, denoted by V , both inside the in­
terval. Suppose that we are at state A^CjJ) and that without 
loss of generality the evaluation at the left point will 
finish first. Then after the evaluation at the left point 
is complete, the new interval of uncertainty is either 
E o or o o ], depending upon the sign of 
the outcome. (Here we assume that the outcome is nonzero, 
for otherwise a zero is found and we are done.) If the first 
case occurs, then the process which just finished the evalua­
tion at the left point activates a new evaluation at the 
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point "A", which is defined by the following graph: 

Hence state A 1 (9 I) is obtained. Similarly, state A2(9jj) can 
arise from the second case, as depicted by the graph: 

el 
2 

Hence state A
2(i) is transited to either state A^ (9 i) or 

A 2(9£). This transition is denoted by 

(3.1) A2(jg) - A ^ G 2 * ) V A 2(9A). 

It is not difficult to see that the corresponding rule for 
state A^(4) is : 

(3.2) A^A) -k^ifl) VA 1(9i) V A 2 ( A ) . 

In fact, transition rules (3.1) and (3.2) completely define 
Algorithm AZ 2. Suppose that the algorithm starts from state 
A^(L). Then it associates with the following transition tree 
(assume that f does not vanish at any of the evaluation 
points) : 
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Figure 3.1 

The algorithm passes through all the states on one of the 
paths in the tree. The particular path taken by the algorithm 
depends upon the input function f and the relative speeds of 
tjie two processes. 

Formally we can define Algorithm kZ^ as an asynchronous 
algorithm consisting of two identical concurrent processes 
P., i - 1,2, which are Controlled by the following program: 

process P. x L 

begin 
while the length of the interval of uncertainty > 1 do  

begin 

(3.3) compute the position of the next evaluation point 11 A11; 

(3.4) evaluate f at the point "A"; 

(3.5) read and update the global variables 
end; 

end 

The global variables in the program consist of the type of 
the current state and the positions of the endpoints of the 
current interval of uncertainty. By examining the global 
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variables, the position of the next evaluation point 11 A11 can 
be computed at step (3.3). After the function evaluation at 
step (3.4) is complete, the global variables are updated at 
step (3.5). To guarantee that transition rules (3.1) and 
(3.2) are satisfied it is necessary that steps (3.3) and (3.5) 
be programmed within a critical section. 

An important property of Algorithm AZ^ is that it associ­ 
ates with a very simple transition tree (Figure 3.1), so it  
can be analyzed. Let N be the number of function evaluations 
completed by the algorithm. Since the evaluations are done 
by two concurrent processes, the expected time taken by the 
algorithm is ~ Nt/2 as N 00. (A rigorous proof of this, in 
fact, will be given later in Section 5 in a rather different 
context.) Thus, the speed-up ratio between the expected time 
taken by binary search and that by Algorithm kZ^ is 

(log L)t 2 log L 
S 2 N= = N ' " N -

2t 

Therefore we are interested in determining the value of N. 
Note that the value of N in the worst case is given by the 
length of a longest path in the transition tree, in the best 
case by the length of a shortest path, and in the average 
case by the average path length. 

Let p be the probability that two consecutive evaluations  
are executed by the same process. Some of the results in 
Hyafil and Kung [76] are summarized in the following:. 

(i) In the worst case: 
N ~ log^ L, S 2 ~ 1.388. 

Algorithm AZ^ is optimal in the minimax sense, as 
far as the number of required function evaluations 
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is concerned. Algorithm A Z 2 beats the synchronized 
algorithm with two processes, when the penalty fac­
tor 1.142. 

(ii) In the best case: 
N ~ (log^ L)/2 , S 2 ~ 2.777. 

(iii) In the average case: 
N -w a(p)-log^ L, S 2 ~ 1 .388^ y , 

Algorithm A Z 2 beats the synchronized algorithm with 
two processes, when X 2> 1.142»a(p)f where a(p) is a 
function of p defined as follows: 

Case 1: If the zero: is uniformly distributed in 
the original interval of uncertainty, then 

a f D N = 2.236-1.618p 
K P ) 2.236-1.382P * 

Case 2; If the sign of the function value at any 
point inside the original interval of un­
certainty is equally likely to be positive 
or negative, then 

/ \ 6-4p 

Note that in both cases, a(p) decreases as p in­
creases. This means that the algorithm is better 
when the variances in the evaluation time are large. 
The value of p can be derived from a formula in 
Baudet, Brent and Kung [76], as long as, for example, 
the probability density function of the random vari­
able t is known. 
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3 * 3 Asynchronous Zero-Searching Algorithms with Three or 
More Processes " ~" 

AZ 2 is 
The basic pattern for defining the states in Algorithm 

9£ 

which is state A 2 (A) as it stands and becomes state A ] (A) if 
the right middle point is deleted. An asynchronous algorithm 
with three processes can be similarly defined by using the 
following two patterns: 

and 

Figure 3.2 

In general, !Jt/2J+l patterns are sufficient for defining an 
asynchronous algorithm with k processes. If k is odd, the 
algorithm is optimal in the minimax sense. No similar result 
is known if k is even. In particular, we do not know whether 
or not an asynchronous algorithm with four processes can be 
constructed by using two patterns. This is an interesting 
open problem. 

An asynchronous zero-searching algorithm with k process­
es corresponds, in a natural way, to an asynchronous algo­
rithm with k-1 processes for locating the maximum of a uni-
modal function. For example, if k = 2, the pattern used for 
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Algorithm AZ 2 is exactly that used in the well-known Fibonacci 
search for the maximum (Kiefer [53])* The patterns in Figure 
3.2 give us an asynchronous algorithm with two processes for 
locating the maximum of a unimodal function, which turns out 
to be always faster than the optimal synchronized algorithm 
with two processes (Avriel and Wilde [66] and Karp and 
Miranker [68]) as long as the penalty factor is greater than 
one. The details of the results mentioned above can be found 
in Hyafil and Kung [76]. 

4. The Second Example: Iterative Algorithms 

Many problems in practice are solved by iterative methods. 
For example, zeros of functions f may be computed by the 
Newton iteration: 

(4.1) x 1 + 1 - x. - f»(x i)" 1f(x.), 

and solutions of linear systems by iterations of the form 

(4.2) x. + 1 = Ax. + b, 

where the x^, b are n-vectors and A is an nxn matrix. Assume 
that we are given a general iterative method, 

(4.3) x i + 1 = c o ^ . x . ^ , . . . ^ ^ ) , 

and are interested in designing algorithms for which multipro­
cessors can be employed to speed up the computation of the 
iterative process (4.3). Several types of algorithms will 
be presented in this section. All of them are based on the 
following two strategies or a combination: 

(i) The first strategy is to exploit parallelism within 
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the iteration function co* For example, one may ob­
serve that in the iteration (4.1) the evaluations 
of f and f 1 at x, can be done in parallel, and in 
the matrix iteration (4.2) all the components of 
the vector x^ +<| c a n be computed simultaneously. 

(ii) The second strategy is to exploit the fluctuations 
in process speed (cf. Section 2.2). The idea is to 
use more than one process to compute the same func­
tion in parallel, and expect that the process which 
obtains the result first takes less than the average 
time. 

Iterations (4.1) and (4.2) will often be used for illus­
trating the algorithms. 

4.1 Synchronized Iterative Algorithms 
* n a synchronized iterative algorithm, the iteration 

function is decomposed so that each iteration step is done by 
more than one process, and the processes are synchronized at 
the end of each iteration. Essentially, the algorithm gen­
erates the iterates by (4.3) just as the sequential algorithm 
does, except that within each iteration parallel computation 
is used. Thus, the algorithm differs from the sequential 
algorithm in the time taken by each iteration. 

There is a natural synchronized iterative algorithm with 
two processes for performing the Newton iteration (4.1). At 
each iteration of the algorithm, f(x^) and ff(x^) are comput­
ed in parallel, and only after both evaluations are complete 
the computation for x ^ is allowed to start (this is the 
place where synchronization is needed). Since f and f are 
not the sane function in general, the times needed for evalu­
ating f and f1 are probably different. In fact, when f is a 
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vector function consisting of n components, a good approxima­
tion to f1(x^) will need n+1 evaluations of f. Hence, if n 
is large, then the process which evaluates f probably wastes 
much of its time in waiting at each iteration for the other 
process to finish the evaluation of f 1. This certainly de­
grades the performance of the algorithm. This example illus­
trates the fact that synchronized iterative algorithms are 
not suitable for those iteration functions which cannot be 
decomposed into mutually independent tasks of the same complex­
ity. 

Synchronized iterative methods which do not suffer from 
the drawback mentioned in the preceding remark can be easily 
constructed for the matrix iteration (4.2). For simplicity, 
let us assume that we are interested in constructing a paral­
lel algorithm consisting of two concurrent processes. Per­
haps the most natural approach (especially for SIMD machines) 

- -01 A -(2) 
is to decompose each vector x^ into two segments x i and x^ 
each of size n/2, and update them by two parallel processes 
as follows: 

(4.4) 

- O ) 
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xi+1 

M l "12 
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A 9 x . + b + That is, at an iteration step, each process 
updates half of the components and starts the next iteration 
only after both processes have finished the updating. Since 
the computations for x^j^ and involve the same amount of 
work (here we do nDt assume any sparsity structure on the 
matrix A ) , one might be tempted to conclude that this is the 
best scheme using two processors. This is not necessarily 
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true! Note that, though the amounts of work for computing 
x £ j ^ and for x^ 2^ are the same, the actual times for 
computing them could still differ significantly due to vari­
ous reasons as discussed in Section 2.2. Thus, it is possible 
that the penalty factor of synchronizing two processes at the 
end of each iteration is very large, which is certainly un­
desirable. One general solution to this kind of problem will 
be introduced in Section 5. 

4*2 Asynchronous Iterative Algorithms 
Asynchronous iterative algorithms are parallel iterative 

algorithms consisting of parallel processes which are not 
synchronized at any time. In particular, by removing all 
the synchronization restrictions from a synchronized itera­
tive algorithm an asynchronous iterative algorithm will be 
obtained. For illustration, we first show an asynchronous 
iterative algorithm corresponding to the Newton iteration 
(4.1). It is convenient to suppose that each iteration step 
updates the three variables f(x), f ?(x), x, rather than x 
alone. For example, after the iteration step (4.1), f(x^«|) f 

f'(x^ ^ , x^ are updated as f(x^), f'(x^), x^ +j» Suppose 
that the evaluation of f 1 is more expensive than that of f. 
Then a reasonable asynchronous iterative algorithm consist­
ing of two processes and ?^ can be defined as follows. 
Let v ^ be global variables which are accessible to 
both processes and contain the current values of f(x), f f(x), 
x, respectively. In the algorithm, v^ are updated by P̂  
and by P^ in parallel. More precisely, processes P̂  and 
P 2 are controlled by the following programs: 
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process  
begin 

while condition S is not satisfied do  
begin 

(4.5) v 3 v 3 . v 2 v 
end; 

end 

process ?2 
begin 

while condition S is not satisfied dio 
v 2 - ^(v 3) 

end 

(In this paper, Condition S always stands for some global 
criterion for stopping a process.) Thus, as soon as a pro­
cess finishes updating a global variable, it starts the 
next updating by using the current values of the relevant 
variables, without any delay. Suppose that the iterates are 
labeled in the order they are computed by step (4.5) of pro­
cess P.j . Then in general they do not satisfy the recurrence 
(4.1). For example, suppose that v

1
 3 f(x Q), v^ ~ f f( xo^» 

V g =* x-| are given initially and that the time lines of the 
processes are as follows: 

f(x ) x f(x ) x f(x~) x A P, | 3—I—2| L +_4j 

P 2 
f(x.) f'(x) f( X) f 

2 1 —=—i -H-

where the subdivisions on each line give the sequence of 
tasks executed by the corresponding process. Then 
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X 2 = Xl " fl<xo>"1f(xl)» 
x - x 9 - f'(x )" 1f(x 0), 2 2 ]} K 2 

x 4 - x 3 - f ,(x 2)" 1f(x Q). 

In general, we have 

(4.6) x i + 1 - x± - f ,(x j)" 1f(x i) where j £ i. 

Hence the iterates generated by the asynchronous iterative 
algorithm are different from those generated by the sequen­
tial algorithm or synchronized iterative algorithms. It 
seems difficult to derive any general theory of the properties 
of the sequence {x^}. 

To design an asynchronous iterative algorithm for a gen­
eral iterative process (4.3), we first identify some vari­
ables vi>* #*> v

m such that each iterative step can be regard­
ed as computing the new values of the v fs from their old 
values. Generally speaking, it is desirable to choose the 
v^ fs such that the updating of each v^ constitutes a signifi­
cant portion of the work involved in one iteration. For the 
Newton iteration (4.1), f , , ^ = [f(x),f1(x),x} seems to 
be a good choice for the v^ !s. For the matrix iteration 
(4.2), v^'s may be chosen as segments of equal size of the 
components in a vector iterate. After the v^'s have been 
chosen, concurrent processes which update the v^' s asynchron­
ously can be defined as follows. Note that a process can be 
specified by a permutation on some subset of [v.,...,v } in 

I m 
the following sense: the process updates the v^ !s in the 
subset sequentially according to the sequence which defines 
the permutation. Suppose that a permutation on a set of 
size s is represented by an s-tuple. Then, for example, the 
previous asynchronous iterative algorithm corresponding to 
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the Newton iteration is defined by the processes specified 
by the permutations (v^Vj) and (v 2). Hence in general we 
define a process as an s-tuple over the set fv.,...,v } for 

I m 

some s, and an asynchronous iterative algorithm is a collec­
tion of such processes which work asynchronously and have 
the property that each v^ appears in at least one of the 
tuples associated with the processes. The latter restric­
tion guarantees that every v^ is taken care of by at least 
one process. 

One can easily see that an unlimited number of asynchro­
nous iterative algorithms can be constructed, even based on a 
simple iteration such as the Newton iteration. The problem 
is how to choose an algorithm. Since the iterates generated 
by an asynchronous iterative algorithm in general do not sat­
isfy any recurrence such as (4.3), it is difficult to obtain a 
general theory concerning conditions for convergence or the 
speed of convergence. Perhaps a more fruitful approach 
here is to run experiments on multiprocessors, or on simulat­
ed multiprocessors as done in Rosenfeld and Driscoll [68]. 
Gerard Baudet of Carnegie-Mellon University has done experi­
ments on C.mmp for solving the Dirichlet problem. It is 
found that the formulas developed from the observed results 
can help us to predict with reasonable accuracy the perfor­
mance of certain asynchronous algorithms. The experiments 
also show the superiority in speed of some asynchronous itera­
tive algorithms over the synchronized counterparts. The ad­
vantage of asynchronous iterative algorithms is that process­
es are never blocked and the overheads due to the execution 
of synchronization primitives are avoided. It seems that in 
practice those asynchronous iterative algorithms which are 
carefully chosen can be very competitive to the best synchro­
nized iterative algorithms. Research on the performance of 
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asynchronous iterative algorithms is of most interest. 

4.3 Simple Asynchronous Iterative Algorithms 
In this section we give parallel algorithms for speeding 

up the iterative process (4.3), which do not use any parallel­
ism inside the iteration function cp. The algorithms are de­
rived purely from the second strategy mentioned in the begin­
ning of the section. We shall examine how much we can gain 
in speed by making use of fluctuations in the evaluation 
time* 

Consider the asynchronous parallel algorithm which con­
sists of k identical processes ,...fP each of which 
evaluates the iteration function cp by using the most 
recent iterates available at the time when the evaluation 
starts. To be more precise, P^ is controlled by the following 
program, where the i and are global variables and the vari­
able j is local to the process. 

process P^ 
begin 

while condition S is not satisfied do 
be£in 

J - 1+1 ; 
x j ^ X j - 1 , x j -2* * * * , Xj-d^' 

j 
end; 

end 

( 4 - 7 ) if i < j then i -

It is our intention that at any time the value of vari­
able i will be the index of the iterate which was most recent­
ly computed. To achieve this, statement (4.7) is assumed to 
be programmed as a critical section. The remarkable thing 
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the same sequence of iterates as the sequential algorithm  
does, no matter what cp is. Such an algorithm is called a 
simple asynchronous iterative algorithm. In the following, 
we illustrate some properties of the algorithm. For simplic­
ity, we shall only take into account the time needed for 
evaluating the iteration function cp and assume that the algo­
rithm consists of only two processes. The time lines of the 
processes in Figure 4.1 illustrate a possible outcome by 
executing the algorithm for the iteration, say, 
x i + 1 « cp(xi,x^^1 ) starting from x Q,x_ 1 : 

T 3 T 7 T8 79 T10 

X1 | X 2 (
X 3 , X 4 jX7 

T4 T5 T6 T11 

Figure 4.1 

In the figure, t \ denotes the time when the ith evaluation 
starts, and the iterate computed by a process at any time 
inside a time interval is shown above the interval. One 
should note that by the time completes its computation 
for x 2, x^ is already computed by Thus, when P̂  completes 
x^y it starts to compute x^ by using x^ and x^. This means 
that the computation for x^ is skipped by P̂  . Similarly, the 
computations for x<_ and x^ are skipped by After both 
processes have each completed five evaluations, iterate x 
rather than x<_ is computed. A speed up has been achieved1. 
Note that at any time at most one process is doing useful com­
putation. Thus the speed up is not achieved by sharing work 
in two processes, but is achieved by taking advantage of the 

P 2 
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fluctuations in the evaluation time. 
Let u^ be the index of the iterate computed by the ith 

evaluation. Then the iterate computed by the evaluation 
starting at time is x^ . For example, in Figure 4.1, we 
have u 3 =» 2, u^ = 2, u 5 « i 3 , u & = 4, u ? =»4, u g » 5, u g • 6, 

1 0 - 7 and u x l = 7 . We observe that 

u. l 

+ 1 for i « 5, 6, 8, 9, 10, 

for i - 7, 11. 

It turns out that u. = u. - + 1 should be used whenever the 
l i-1 

evaluations starting at times t . . and t , are executed by the 
1-1 l J 

same process; otherwise, u^ = u^ ^ + 1 should be used. Let 
p be the probability that two consecutive evaluations are 
executed by one process. (Note that the same p was used in 
Section 3.2.) Then we have 

+ 1 with probability p, 
(4.8) 

j 2 + 1 with probability 1-p. 

It follows that the expected value of u is 
i 

For computing x , we expect to evaluate CD j times such that n 
u. =» n. This implies that j ~ (2-p)n. For large n, (2-p)n/2 
evaluations are expected to be executed by each process. 
Hence the speed-up ratio between the expected time taken by 
the sequential algorithm and that by the simple asynchronous 
iterative algorithm with two processes is 
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b 2 " (2-p)n 2-p' 
2 

as n 0 0 (here the blocked time and the execution time of 
synchronization primitives due to critical sections are ig­
nored) • Note that increases as p increases. When p 3 8 0, 
i.e., when the t ^ ' s on the time lines of the two orocesses are 
interleaved, the algorithm has its worst performance. Suppose 
that we are given the probability density function of the ran­
dom variable t, which is the time needed for one evaluation of 
the iteration cp by one process. In Baudet, Brent ^nd.Kung 
[76] a closed form for computing p is derived. Some of the 
results reported there concerning the speed-up factor are 
summarized in the following: 

If t may be approximated by a random variable nor­
mally distributed with mean t and standard deviation 
a> t h e n S

2 " 2-(l/J)(a/t) * 
(ii) If t is exponentially distributed, then S = 4/3, 

(iii) If t is Erlang-2 distributed, then S 2 = 16/13 

(iv) If t is uniformly distributed in the interval 

(a,b), then 
= 6(b+a) 

^2 5b+7a 
which approaches its maximum 1.2 as — > »• 

(v) If a simple asynchronous iterative algorithm with 
k processes is used and if t is exponentially dis­
tributed, then the speed-up factor is 
jlfa • Jk * .798*£. 

(i) 
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The main advantage of simple asynchronous iterative al­
gorithms is their general applicability. The algorithms are  
not restricted to numerical iterative processes only. They 
can be employed to speed up any sequence of tasks. The algo­
rithms become particularly, attractive when the decomposition 
of the tasks is difficult. There are, however, some disad­
vantages. First, we note that critical sections are needed 
in the algorithms. Second, it seems that unless fluctuations 
in computation time due to the system are large and a/t is 
large, the speed up of the algorithms is quite limited. See 
Baudet, Brent and Kung [76] for further results on this. 

4v4 Semi-Synchronized (or Semi-Asynchronous) Iterative  
Algorithms 
Synchronized iterative algorithms (cf. Section 4.1) 

have the drawback that processes may be blocked, and general 
asynchronous iterative algorithms (cf. Section 4.2) have the 
drawback that the analysis of the algorithms seems to be ex­
tremely difficult. Here we are interested in iterative al­
gorithms which are compromises between the two types of algo­
rithms. In general such algorithms can be constructed by mak­
ing use of the special features of individual iterations. In 
the following, we illustrate an idea along this line by con­
sidering iterations (4.1) and (4.2). 

Consider first the asynchronous iterative algorithm cor­
responding to the Newton iteration (4.1). We may impose a 
condition that i-j < b on (4.6) for all i,j. This condition 
implies that no update uses a value of f 1 at an iterate which 
was produced by an update more than b steps previously. Using 
this fact and the standard techniques of iteration theory, 
it is possible to deduce properties of the sequence of the 
iterates such as its order of convergence. However, to en­
force the condition i-j < b, it is necessary to synchronize 
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processes and P^, which are defined in Section 4.2. Note 
that the "strictly11 synchronized iterative algorithm con­
sidered in Section 4.1 corresponds to this scheme with b « 1. 
Thus, if b > 1, then the chance that some process is blocked 
in this scheme is not as big as if b 3 1. Furthermore, it is 
well-known that in a Newton-like iterative process, there is 
no need to update the value of f1 very often. Therefore, the 
scheme produces iterates which are guaranteed to have favor­
able rates of convergence without paying the excessive syn­
chronization penalty which might be found in the strictly syn­
chronized iterative algorithm. The optimal choice of b de­
pends on the relative speeds of P^ and P^. Its analysis will 
b*e reported in a future paper. Clearly, this idea is also 
applicable to the matrix iteration (4.2). The resulting 
scheme is called "chaotic iterative scheme11 by Chazan and 
Miranker [60]. In their paper, conditions guaranteeing con­
vergence of the scheme are given. 

In the following, we consider another semi-synchronized 
iterative algorithm, based on a different idea. In practice, 
band linear systems Bx = b are often solved by Gauss-Seidel1s 
method. Unlike Jacobi's method, Gauss-Seidel1s method seems 
inherently sequential. The components of its iterates cannot 
be computed in parallel, since they are logically dependent 
upon each other. Note, however, that if d is the band width 
of the matrix B, then components whose indices differ by more 
than d-1 are in fact independent. Thus, for solving Bx a b by 
Gauss-Seidel1s method we may use a parallel algorithm, in 
which each process performs the sequential Gauss-Seidel itera­
tion, but the processes are synchronized so that components 
whose indices differ by less than d are not allowed to be 
updated simultaneously. In other words, the synchronization 
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ensures that one process will not follow "closely" on the 
heels of another. In case the size of the linear system is 
much larger than d and than the number of processes, we may 
expect that the processes will not be blocked very often. 
Note that the iterates generated by this scheme are exactly 
the ones generated by the sequential Gauss-Seidel1s method. 

The main characteristics of a semi-synchronized itera­
tive algorithm can be summarized as follows. 

(i) The algorithm is "loosely" synchronized so that 
processes are not expected to be blocked very often, 

(ii) The synchronization, however, guarantees that the 
iterates generated by the algorithm satisfy some 
desirable properties. 

A semi-synchronized iterative algorithm is attractive 
because it reduces the drawback of synchronized iterative 
algorithms by its first characteristic and also the drawback 
of asynchronous iterative algorithms by its second character­
istic. 

5. The Third Example: Adaptive Asynchronous Algorithms 
We consider the problem of executing n independent tasks 

J^,...,J by parallel algorithms. Let the execution time of 
the task J. by one process be a random variable t.. We as-

l i 
sume that all the tasks are of the same complexity, i.e., 
t,,«..,t are identically distributed random variables, say, 
I n 

with mean t and standard deviation c. For example, may be 
the task of updating the ith component of an iterate in the 
synchronized iterative algorithm for performing the matrix 
iteration (4.2) (cf. Section 4.1). For simplicity, we mainly 
consider parallel algorithms with two processes. 
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The first algorithm is the obvious one which performs 
the first n/2 tasks by one process and the second n/2 by the 
other process. Thus the time taken by the algorithm is the 
random variable T ] - max(t1 + ... + t ^ , t ( n/ 2)+i + ••• + fc

n* 
We wish to compute the mean T^ of T^• By the central limit 
theorem, as n -> ® the distribution of tj + ... + t ^ 2 or 
t(n/2)+l + • #• + ^approaches to the normal distribution 
with mean (n/2)t and standard deviation C/n/2)a. Using a 
result from order statistics for normally distributed random 
variables (see, e.g., Gibbons [71, p.34]), we obtain that 

(5.1) f^-f . n + J = . ^ 

as n «. 
In the second algorithm, the list of tasks is made into 

a global deque (lfdouble-ended queue11, Knuth [69]), which is 
accessible to both processes of the algorithm. One process 
is allowed to remove tasks from only one end of the deque. 
In the algorithm, each process repeats the following until 
the deque becomes empty: remove a task from one end of the 
deque and execute it. Observe that the finishing times of 
the two processes can differ at most by the execution time of 
the task which finishes last. Thus, the algorithm is expect­
ed to be efficient, since the time that only one process is 
active is small. Indeed, the following analysis supports 
this argument. Consider the time line of the n tasks: 

t t t t , t 
I 1 1 2 I 1 % l I n- Xl H 

middle point 

Note that the execution time of the task which finishes last 
is the length t of subinterval containing the middle point, 

m 
since the algorithm works from both ends toward the middle. 
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By a result from renewal theory (see, for example, Kl|inrock 
[75]), we know that the expected value of t is t + ^- as 
n ®. Hence if the time taken by the algorithm is a random 
variable T 2, then its mean satisfies 

t 2 

(5.2) * 2 * ! - n + - + f - . 

Comparing (5.1) and (5.2) we conclude that the mean time of 
the second algorithm is less than that of the first one when 
n is large. 

The implementation of the second algorithm, which uses a 
deque, is of interest. For example, we can use the following 
programs to control the two processes and P f where i,j 
are global variables and initially i - 1 and j = n. 

process P^ 
begin 

while i < j do 
begin 

execute task J,; 
l 

i i+1 
end; 

execute task J. 
i 

end 
process P 2  

begin 
while i < j do 

begin 
execute task J.; 

J j - j-1 
end; 

end 
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It is not difficult to check that all the tasks J-,..., J , 
1 n 

except the one which finishes last, will be executed exactly 
once. (There is a chance that the task which finishes last 
is executed by both processes. We do not regard this as a 
serious drawback.) The point we want to make here is that 
the second algorithm can be implemented without using criti­
cal sections. The reason that we can achieve this is mainly 
due to the fact that oniy one process is allowed to operate 
at each end of the deque. (A critical section is needed if 
more than one process operates at one end of a list.) Hence 
the second algorithm essentially does not involve more over­
heads than the first one. If tasks were removed from only 
one end of the list as in the case where a queue or a stack 
is used, then the extra overheads due to critical sections 
would be involved. 

The use of a deque could be advantageous even in paral­
lel algorithms with more than two processes. We can let, say, 
half of the processes obtain their tasks from one end of the 
deque, and the other half from the other end. This is better 
than the scheme where all the processes obtain their tasks fran 
only one end of the list. The reason is that the less pro­
cesses operating at an end of a list, the less chance there 
is that processes are blocked from entering critical 
sections. However, if the tasks are of various complexities, 
it is often desirable to perform the tasks in the order of 
decreasing complexities, in order to reduce the difference 
in the finishing times of the processes. Then in this case 
a priority queue is more appropriate than a deque. Moreover, 
we note that the number of times thit critical sections are 
executed can be reduced by letting processes take more than 
one task from the list at a time. However, in this case, the 
difference in the finishing times of processes will increase. 
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Careful analysis on various techniques mentioned above will be 
reported elsewhere. 

The tasks performed by a particular process in the 
second algorithm are not specified a priori but depend upon 
the relative speeds of the two processes. Thus, it is an 
adaptive algorithm. The first algorithm is not adaptive 
because it assigns tasks to processes statically. The effici­
ency of an adaptive algorithm is obtained from the fact that 
the processes are able to adjust themselves during the com­
putation so that they can all finish in about the same time. 
The concept of adaptive algorithms seems to be fundamental 
to the design of many efficient asynchronous algorithms. For 
example, two ordered files can be merged by two asynchronous 
processes in the following way: One process merges from left 
to right and the other one from right to left, until one of 
the files is exhausted. The two subfiles merged by a partic­
ular process are unpredictable; they depend on the relative 
speeds of the processes and the orderings in the original 
files. Note that in this example, two deques are needed; one 
for each file. 

6. Asynchronous Algorithms Where Processes can be Interrupted 

The speed of an asynchronous algorithm may be improved if 
those processes which are not doing useful computations can 
be interrupted promptly and if the extra cost due to inter­
ruption is not excessive. Note that whether or not a process 
is doing useful computation at a given time may be determined 
by examining the current contents of some of the global vari­
ables. Hence interruptions may be implemented by letting the 
process check the new status of those variables as soon as it 
realizes that the value of some variable has been modified by 
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some process. The ability of a process to be interrupted 
certainly causes overheads in the time taken by the process. 
However, for a given asynchronous algorithm and a given inter­
ruption scheme, the overheads usually can be estimated. Hence 
in this case it is possible to decide whether we should allow 
processes to be interrupted in the algorithm. In the follow­
ing we briefly study two examples. 

First consider Algorithm AZ 2 in Section 3.2. It is 
clear that at state A^(l) the process which is evaluating 
the point outside the interval of uncertainty will not lead 
to any useful information. Thus, the process could be inter­
rupted and start a new evaluation at an appropriate point in 
the interval, resulting in state k2(l). Suppose that we do 
so. Then, only states of type A£(J^) will ever occur. They 
satisfy the transition rule: 

A 2(A) - A 2(94) v A 2(9 24). 

At any state, two evaluations are performed simultaneously. 
The time that the algorithm is at the state is bounded above 
by the time taken by the evaluation which finishes first. 
Because the interruption facility introduces extra overheads, 
the evaluation time by one process is a random variable t f, 
which is greater than t. Hence the expected time that the 
algorithm is at a state is bounded above by the mean T 1 of 
the random variable T f = min(t^,tp, where t^ and t 2 are in­
dependent and identically distributed random variables satis­
fying the same distribution function as t f. Let M(i) be the 
number of state transitions the algorithm encounters, if it 
starts from state A2(j£). Then the expected time of the algo­
rithm is at most M(L)-T'. Since, if t 1 is given T f can al­
ways be computed at least numerically, we assume T f is known. 



39 

It remains to compute M(L) . Assume that L -> It is easily 
seen that M(L) - log^L in the worst case and M(L) <- (log^ L)/2 
in the best case. On the average, we have the following 
(notation in Section 3.2 is assumed). 

Case 1: 
M(L) = 9M(9L) + 9 M(0 L) + 1. Thus 

^1, 
14-01 

M(L) ^ loS<j> L * - 2 7 6 l o§ (j )
 L-

Interruptions should be used when .276(log^ L)T' < & ^ • 
(log^ L)t, i.e., f f < 1.81 a(p)'t. 

Case 2: 
M(L) = - M(8L) + j M(9 2L) + 1. Thus 

M(L) ~ | log^ L. 

Interruptions should be used when —(log^ L)T! < 
^ ( l o g ^ L)t, i.e., T' < I a(p)t. 

As our second example, we consider a simple asynchronous 
iterative algorithm with two processes which is defined in 
Section 4.3. We observed that at any time at most one pro­
cess is doing useful computation. Thus, it is natural to 
consider interruptions here. Assume that interruptions are 
allowed. Let the evaluation time of the iteration function 
by one process be a random variable t f, which is presumably 
larger than t. Then the expected time of computing a new 
iteration by the algorithm is the mean T f of the random vari­
able T 1 = min(t^,tp, where the t^ are independent and iden­
tically distributed random variables satisfying the same dis­
tribution function as t. For computing x^, the expected time 
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is nT f . Hence, interruption should be used when T f <-^^t. 
We observe that the minimum of a number of random vari­

ables is concerned in the case where processes can be inter-
tupted. This is contrary to the case for synchronized algo­
rithms where the maximum of a number of random variables 
should be considered. Hence large fluctuations in process 
speed in fact will often reduce the time taken by an asyn­
chronous algorithm if processes can be interrupted. 

7. On the Optimal Number of Processes One Should Create 

To perform a given task on a multiprocessor, one has to 
decide how many processes should be created. Some considera­
tions* on choosing the optimal number of processes are given 
in this section. 

Consider synchronized parallel algorithms first. Note 
that the execution of synchronization primitives is usually 
time consuming and that the penalty factor tends to increase 
as the number of synchronized processes increases. Hence 
those synchronized parallel algorithms which are based on 
the maximal decomposition of a given problem may not be de­
sirable. For example, suppose that we have three tasks J^, 
J^> J^' where ^ have to be completed before is allowed 
to start. Assume that the time needed for or is approx­
imated by a normally distributed random variable with mean t 
and standard deviation a and that for is another random 
variable with mean t. Suppose that the time of executing 
the synchronization primitives needed for synchronizing two 
tasks is s. Consider the following two methods of performing 
the three tasks. 

The first method is based on the maximal decomposition 
principle. J 1 and J 9 are done in parallel, and when both 
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have finished, starts. Hence, the expected time needed 
by the method is 

(See Section 5.) 
The second method is the obvious method which performs 

J-| i J2> J3 sequentially. The expected time needed by the 
method is 2t + t 1. Hence when s > t - 7̂= the sequential 
algorithm should be used even if more than one processor is 
available. This example shows that the maximal decomposition 
of a problem may not necessarily lead to the optimal number 
of processes that should be created for solving the problem. 

Now consider asynchronous parallel algorithms. As noted 
in the preceding sections, critical sections are needed in 
many asynchronous algorithms. In these algorithms, process­
es may be blocked from entering critical sections, so 
the performance of the algorithms is degraded. The amount 
of degradation can be estimated as follows. Consider an 
asynchronous algorithm with k processes, P ,...,P . Let T. 
be the total time taken by process P^ and Ĉ  the time spent 
in the critical sections of the process, under the assumption 
that the process is never blocked. Define cy. - C./t. and let 

I L L 

a be a lower bound on the ĉ ,...,̂ . In general, an estimate 
on a can be obtained by examining the programs of the processes 
a may or may not be a function of k. For example, in the 
asynchronous zero-searching algorithms considered in Section 
3, each process has to update the global variables within 
critical sections. As the number k of concurrent processes 
increases, so does the number of possible states. This im­
plies that the complexity of updating the global variables 
grows as k increases. Thus, a is an increasing function of 

2- + s + t 
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k. As another example, we consider simple asynchronous itera­
tive algorithms defined in Section 4.3. In this case, we may 
take (7 5 8 s/t where s is the execution time of the synchroni­
zation primitives needed in implementing critical sections 
and t is the evaluation time of the iteration function. Here 
a is independent of k. At any rate, we shall write a(k) 
for a. Note that the executions of critical sections in 
the parallel algorithm cannot be overlapped. Hence the speed­
up factor of the algorithm is at most 

V ' " H T k J J L n - 1 
G1 +"- + Ck x v ' - ' V " 

It is* trivial that the speed-up factor is also bounded by k. 
Therefore, an optimal choice of k exists, which is, in fact, 
bounded above by the smallest positive solution of the equa­
tion k = l/cv(k). The above arguments indicate that a large 
number of processes in an asynchronous algorithm cannot help 
unless a can be kept small. In practice, it is important to 
design algorithms which use small critical sections and to 
select the synchronization tool which takes as little time as 
possible. 

How to find out the optimal number of processes in a 
synchronized or asynchronous parallel algorithm for perform­
ing a given task is a real problem in multiprocessor program-
iii.ng. The problem, however, does not have easy solutions, as 
we have seen in this section. The good choice generally would 
require a rather involved analysis. 
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8. Summary and Conclusions 

A parallel algorithm is viewed as a collection of con­
current processes. To ensure that the algorithm works cor­
rectly and uses the parallelism effectively, processes must 
communicate with each other. However, due to various reasons 
as stated in Section 2.2, the speed of a process is unpredict­
able. Thus, orie can never be sure that an input needed by one 
process will be produced in time by another process. There 
are two approaches for solving the problem. The first one is 
to synchronize processes so that they wait for inputs when­
ever necessary. This results in a synchronized parallel algo­
rithm. The second approach is to let processes continue or 
terminate according to the information currently contained in 
some global variables, so processes never wait for inputs. 
This results in an asynchronous parallel algorithm. Several 
examples of the two types of parallel algorithm are consid­
ered in the paper. It is hoped that through these examples 
important features of each type of parallel algorithms can be 
identified. Some of them are summarized and discussed in the 
following. 

In a synchronized algorithm, a task is decomposed into 
subtasks, which, hopefully, are of the same size, so that 
each subtask is solved by one process of the algorithm. Pro­
cesses are synchronized at interaction points. At those 
points processes may be blocked while waiting for inputs. 
The loss due to waiting may be captured by the penalty factor 
defined in Section 2.3. The penalty factor increases 
as the number of synchronized processes increases. Hence syn­
chronized algorithms should be used when the fluctuations in 
process speed are small and when there are only few processes 
to be synchronized. Furthermore, the execution time of the 
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needed synchronization primitives is usually non-negligible. 
Thus, it is not always advantageous to create as many process 
es as possible according to the maximal decomposition of a 
task (cf. Section 7). In general, the analysis of a synchro­
nized algorithm is not too much different from that of its 
sequential counterpart, except that techniques of order sta­
tistics may be needed in analyzing the time taken by the syn­
chronized algorithm. 

Asynchronous parallel algorithms arise naturally in the 
use of multiprocessors, where the processors are not synchro­
nized and communication between cooperating processors is by 
means of shared data. When the fluctuations in computation 
time are large, asynchronous algorithms are in general more 
efficient than synchronized ones for the following three rea­
sons. First, the processes never waste time in waiting for 
inputs. Second, the algorithms can take advantage of process 
es which are run fast. Results produced by those processes 
can be immediately used. In particular, by making use of 
these results those "slow11 processes which are doing useless 
computations may be discovered and aborted at early times 
(cf. Section 7 ) . Third, the algorithms are "adaptive", so 
the processes can finish at about the same time (cf. Section 
6). This guarantees that the maximal parallelism is used 
during most computation times. Furthermore, we note that in 
general, asynchronous algorithms are more reliable than syn­
chronized algorithms in the following sense. Even if some 
processes are blocked forever, an asynchronous algorithm may 
still continue computing the solution of its problem, as 
long as no blocking occurs in critical sections, which are 
presumably small, and there remains at least one active pro­
cess. (One may easily verify that, for example, Algorithm AZ 
and simple asynchronous iterative algorithms indeed have 
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this nice reliability property.) For solving a given problem, 
it is almost always possible to construct a large number of 
asynchronous algorithms (cf. Section 4 .2•) • However, the 
analysis of an asynchronous algorithm seems to be always non-
trivial. But if an asynchronous algorithm is defined by few 
simple state transition rules such as (3.1), (3.2) and (4.8), 
then it can be analyzed. How to construct asynchronous algo­
rithms' which involve simple state transitions is an interest­
ing and challenging task for many problems. 

A promising direction is to design semi-synchronized (or 
semi-asynchronous) algorithms which are compromises between 
synchronized and asynchronous algorithms, and which may take 
advantage of the special features of individual problems (cf. 
Section 4 .4). 

One of the motivations for analyzing multiprocessor algo­
rithms is to determine how many processes should be created 
for solving a problem. In the analysis it is crucial to in­
clude overheads due to the execution of synchronization prim­
itives and critical sections (cf. Section 7.3). In practice, 
programming techniques, such as the use of deques as described 
in Section 5 and the selection of synchronization tools which 
take as little time as possible, are often important to the 
performance of algorithms. However, if the existence of 
some indivisible operations such as fladd to store" [x *- x +l] 
and "swap (x,local)" is assumed, then many problems due to 
critical sections can be eliminated (see Dijkstra [72]). 

In view of the parallel algorithms considered in this 
paper, it is found that there are tradeoffs among the basic 
processing time, blocking time and synchronization time of a 
process (cf. Section 2.5) in the following sense. In order 
to reduce one quantity, it is often necessary to increase one 
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or two other quantities. For example, processes in a syn­
chronized algorithm generally have smaller basic processing 
times but larger blocked times than those in its asynchronous 
counterpart. It is of interest to build abstract models 
for studying these tradeoffs. 
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