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ABSTR&CT. The parallel evaluation of rational expressions is considered. New algorithms which 
minimize the number of multiplication or divismn steps are given. T, hey are faster than the usual 
algorithms when multiplication or division takes more time than addition or subtraction. I t  is shown, 
for example, that x ~ can be evaluated in two steps of parallel division and flog2 nl steps of parallel 
addition, while the usual algorithm takes [log~ nl steps of parallel multiphcation. 

Lower bounds on the time required are obtained in terms of the degree of the expressions to be 
evaluated. From these bounds, the algorithms presented in the paper are shown to be asymptotically 
optimal Moreover, i t  is shown that by using parallelism the evaluation of any first-order rational 
recurrence of degree greater than 1, e.g. y,+l = ½(y, • a/y,), and any nonlinear polynomial recur- 
rence can be sped up at most by a constant factor, no matter how many processors are used and how 
large the size of the problem is. 
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1. Introduction 

In  this  paper  we consider the  parallel  eva lua t ion  of cer ta in  rat ional  expressions. W e  
assume tha t  several  processors which can perform four ar i thmet ic  operations,  + ,  - - ,  
X , / ,  are available,  and tha t  the  t ime required for accessing da t a  and communica t ing  
be tween  processors can be ignored. This  problem has been s tudied by  m a n y  people. (See 
the  surveys  wr i t t en  by  Bren t  [3] and K u c k  [12].) 

A lmos t  all papers in this field assume tha t  every  ar i thmet ic  opera t ion  takes  the  same 
a m o u n t  of t ime.  However ,  this assumption is false for two reasons. Fo r  m a n y  processors, 
f loating number  mul t ip l ica t ion takes  more t ime than  addit ion.  Fur thermore ,  if we deal  
wi th  expressions involving,  for example,  matr ices  or mult iple-precis ion numbers  then  
mul t ip l ica t ion  is l ikely to be more  expensive than  addit ion.  (He re  we in terpre t  a r i thmet ic  
operat ions as mat r ix  or mult iple-precision number  operat ions.)  I n  Section 3 of this paper, 
we assume that multiplication takes more time than add~twn. Hence,  to  get be t t e r  algorithms, 
we should avoid using mult ipl icat ions.  We der ive  new algori thms for the  paral lel  evalua-  
tions of x ' ,  {x ~, x3, - . .  , x '} ,  I I l " ( x  --t- a , ) ,  ~o"a ,x ' ,  etc.,  where the  a, are scalars. 
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Each of the algorithms minimizes the time needed for the multiplications to within a 
constant and can be shown to be faster than the best previously known algorithm for 
large n. Moreover, all the algorithms, except the one associated ~4th Theorem 3.4, have 
the following two characteristics: 

1. To run the algorithms each processor is either masked or performing the same opera- 
tion at any time. Hence the algorithm can be run on single-instruction stream-multiple- 
data stream (SIMD) machines (Flynn [4]) such as ILLIAC IV. 

2. The algorithms require a very simple interconnection pattern. All we need is a 
binary tree network between processors. 

In  Section 4 we prove lower bounds on the time needed for the parallel evaluation of 
certain rational expressions, under the assumption that  all processors can perform differ- 
ent operations at any time. This assumption corresponds to multiple-instruction stream- 
multiple-data stream ( M I M D )  machines (Flynn [4]) such as C.mmp, the multi-mini- 
processor system at Carnegie-Mellon University (Wulf and Bell [19]). I t  is clear that  
lower bounds with respect to M I M D  machines also hold with respect to S IMD machines. 
The lower bounds obtained in the paper imply that  the algorithms introduced in Section 
3 are asymptotically optimal with respect to M I M D  machines, although most of these 
algorithms can be run on S IMD machines, as noted above. 

Section 5 deals with the problem of the parallel evaluation of rational expressions 
defined by recurrences. We show that, by using parallelism, the evaluation of an expres- 
sion defined by any first-order rational recurrence of degree greater than 1 or any non- 
linear polynomial recurrence can be sped up at most by a constant factor, no matter how 
many processors are used. Consider, for example, the evaluation of the yn defined by the 
recurrence 

Y,+i = ½(y, + a /y , ) ,  i ~- O, 1, 2, . . .  , a -- 1, 

which is the well-known recurrence for approximating a t. We show that for evaluating y~ 
any parallel algorithm using any number of processors cannot be essentially faster than 
the obvious sequential algorithm for any n. Thus the theory for nonlinear recurrences is 
completely different from the theory for linear recurrences, where good speedups have 
been obtained (for example, Heller [5], Kogge [9], Kogge and Stone [10], Maruyama [13], 
Munro and Paterson [14], and Stone [15]). 

In  Section 2, we give basic definitions and an abstract formulation of the general 
evaluation problem considered in the paper. 

2. Abstract Formulation and Definitions 

Let F be an algebraically closed field, e.g. F is the field e of complex numbers, and let x 
be an indeterminate over F. F[x] and F(x )  denote the ring of polynomials and the field of 
rational expressions in x over F, respectively. Our problem is to evaluate a set of poly- 
nomials in F[x], {fl(x), f~(x),  . . .  , fro(x)}, under the following assumptions: 

1. By evaluating {fl(x), . . .  , fro(X)} we mean computing the values of f l ( x ) ,  . . .  , 
f,,,(x) over F(x) ,  given F I.J {x}. The four binary operations, -b, - ,  X , / ,  associated with 
the field F(x )  are the ones we are allowed to use. 

2. The elements in F are called scalars. A multiplication of two elements in F(x )  is 
called a scalar multiplication if one of the two elements is a scalar; otherwise it is called 
a nonscalar multiplication. Scalar or nonscalar addition (subtraction) is similarly defined. 
A division whose dividend is a scalar is called a scalar division. Let M, Mo,  A, A ,  denote 
the tithe needed for one nonscalar multiplication, scalar multiphcation, nonscalar addltw~ 
(subtraction), scalar addztion (subtraction), respectively. Let D, D, denote the tithe needed 
for a di~sion whose dividend is a nonscalar, scalar, respectively. 

3. At any given time, up to k operations may be performed. This means that there are 
k processors which can perform the operations, -1-, - ,  X , / ,  at any time but some proc- 
essors may be idle. If  in some time interval all processors, except the ones masked, per- 
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form the same operation, say, addition, then we refer to that  time interval as a parallel 
step of additiorl. 

I f  the positive integer k in (3) is greater than one, we say {fl(x), - ' -  , f~(x)} is to be 
evaluated in parallel, while if k is equal to one, we say it is to be evaluated sequentially. 
We define Tk( f l (x ) ,  " "  , f ~ ( x )  ) to be the min imum time needed to evaluate {fl(x), . - -  , 
f,~(x)} with k processors. 

To illustrate our notation given in (2), we consider an example. Let F = C and let x be 
an 1 X 1 matrix A whose entries are in C. Suppose that  we use an 0 (l a) algorithm for matrix 
multiplication and inversion. (Here we interpret division as matrix inversion.) Then 
M = 0(13), M ,  = O(l~), A = O(l~), A ,  ffi O(l),  D = O(lS), D, = 0(13). 

3. New Algorithms W h w h  Use Divisions for the Parallel Evaluation of x ~, {x 2, x 3, • • • , x~}, 
I I ,  '~ (x  + a.), ~ o  "~ a,x', etc. 

In  this section we assume that M > A .  We first consider a well-known problem, that  of 
evaluating x ~. Knuth [11, §4.6.3] gives a rather detailed survey of sequential algorithms 
for solving this problem. I t  is known that  there exists a sequential algorithm which takes 
time [log n ~ O(log n/log log n)]M. ( In  this paper all logarithms are taken to base 2.) 
However, as pointed out in Borodin and Munro [1], it is easy to show the following: 

LEMMA 3.1. I f  diviswn ~s not used, |log n]M is a lower bound on the time for the parallel 
evaluation of x ~, no matter how many  processors are used. 

Hence, if division is not used, any parallel algorithm cannot be essentially faster than 
the fastest sequential algorithm. In  the proof of the following theorem we give an algo- 
rithm for the parallel evaluation of x ~ which uses divisions and which takes time less than 
|log ~]M when n is large. 

THEOaEM 3.1. I f  k >_ n, x ~ can be evaluated in two steps of parallel diviswn and 
|log n| ~ 2 steps of parallel ad&twn.  More precisely, 

T , ( x  '~) < [ logn]A "t- 2 ( A , - k  D,). (3.1) 

PROOF. We establish the theorem by exhibiting an algorithm. 

Algorithm 3.1. (An algorithm for the parallel evaluation of x".) 
1. 

2. 

3. 
4. 
5. 

Note that  

C o m p u t e  A ,  = x - r , ,  ~ ffi 1, . . .  , n ,  m paral le l ,  w h e r e  the  r, are  in F and are  the  n d i s t i n c t  
zeros  of  x ~ - r for  a n y  n on z e r o  e l e m e n t  r in F.  
C o m p u t e  B ,  ffi s,/A, , i = 1, . . . ,  n ,  in paral le l ,  w h e r e  s ,  ffi r , / ( n r ) .  
C o m p u t e  C = ~ B ,  in paral le l .  
C o m p u t e  D ffi 1 /C .  
C o m p u t e  E ffi D ÷ r. 

n n n 

C = ~ B ,  = ~ s , / A ,  = ~ r , / l n r ( x - -  r,)] = P ( x ) / [ n r ( x  '~ - r)], 
1 1 1 

where P ( x )  = ~ , ' - i  r, H e ~ ,  (x  - re). Evaluating the first derivative of x ~ -- r = 
H i "  (x - r,) a t r , ,  wehave nr$ -1 = ~Ie~, (r, -- re). Thus P(r , )  = r, I I ~ ,  (r, - re) ffi 
nr, i = 1, • . .  , n. This implies that  P ( x )  --= nr, since the degree of P ( x )  is n - 1. Hence 
C = 1 / ( x  ~ - r) and so E = D ~ r = 1/C ~ r = x ~. Therefore Algorithm 3.1 indeed 
evaluates x ". Since the number of available processors is greater than or equal to n, steps 
1, 2, 3, 4, 5 can be done in time A , ,  D , ,  [log nlA,  D , ,  A , ,  respectively. So Algorithm 3.1 
takes time |log nlA ~ 2(A, ~ D,). 

Note that |log nlA + 2 ( A ,  + D,)  < |log n]M when |log n| > 2 ( A ,  + D , ) / ( M  -- A ) .  
In  fact, 

lim |log n]M/Ulog n]A + 2(A, + D,)l = M / A .  
n~oo 

Hence we have sped up the evaluation of x ~ by a factor M / A  for large n. 
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Remarks on Algorithm 3.1. 
1. The choice of r in step 1 depends on the application of the algorithm. For  instance, 

if the algorithm is used to compute A" for a real matrix A then the number r should be 
chosen such tha t  A -- r J  is nonsingular for all i;  otherwise the algorithm would break 
down at  step 2, where we have to compute s ,(A - r ,I)  -1 for all i. (Note  tha t  for matr ix 
computation, in the algorithm divisions should be interpreted as matrix inversions, and 
scalars r , ,  r should be interpreted as r J ,  rI, respectively, where I is the ident i ty  matrix.)  

2. Since the constants, r , ,  s , ,  are in F and i t  is assumed in Section 2 that  elements in F 
are given as free, Theorem 3.1 does not count the time needed to compute r, and s , .  In  
practice, these constants have to be either stored in a table or computed. (We find a 
similar situation in the fast Fourier transform where certain constants, i.e. powers of an 
n th  root of unity,  are needed.) Str ic t ly  speaking, the algorithm is really a form of "pre- 
conditioning." The same remark holds for the Mgorithms below. 

3. The algorithm raises x to the nth  power without using any multiplications bu t  with 
two divisions. This may be surprising to those who are dealing only with sequential algo- 
rithms. This again demonstrates tha t  there exists an intrinsic difference between sequen- 
t ia l  and parallel computat ion (see Stone [16] for other examples). 

Using the same ideas, we can immediately obtain the following. 
THEOREM 3.2. Let al, . .  •,  an be n distinct elements in F. I f  k >_ n, then ~I1 ~ (x + a,) 

can be evaluated in two steps of parallel division and [log nl + 1 steps 0 3" parallel addition. 
More precisely, 

T , ( y ~ I  ~ (x --}- a , ) )  < Ilogn]A + A ,  + 2D~. (3.2) 

PROOF. We establish the theorem by exhibiting an algorithm. 

Algorithm 3.2. (An algorithm for the parallel evaluation of H i  (x + at) ) 

1. Compute A, = x + a , ,  i -~ 1, . . .  , n, in parallel. 
2. Compute B, = b,/A, , ~ = 1, . . .  , n, in parallel, where b, ffi [II,~, (a~ -- a,)] -t.  
3. Compute C = ~ [  B, m parallel. 
4. Compute D ffi 1/C. 

Note that  C -- ~ , ~  B, = ~ , ~  b , /A,  = l / H a "  (x + a,) .  Hence the algorithm indeed 
evaluates ]II~ ~ (x -~ a,) .  Since the algorithm clearly takes t ime [log n ] A ~  A,  -P 2D, 
with n processors, we have proven (3.2). [] 

The obvious algorithm for the parallel evaluation of I I ~ " ( x  -}- a,) is the following: 

1. Compute A, = x "-k a , ,  z = 1, - . .  , n, in parallel. 
2. Compute D = II~ A, m parallel. 

I t  takes  t ime [log nlM ~ A , .  Hence Algorithm 3.2 achieves a speedup factor M / A  for 
large n without significantly complicating the algorithm. I t  is conceivable tha t  in general 
a computer organization which is suitable for executing the obvious algorithm is also 
suitable for executing Algori thm 3.2. 

I t  should be noted tha t  Theorem 3.2 and Algorithm 3.2 can be extended to cover the  
general expression l~Ii" (x ~ a,) m, where the a, are n distinct  elements in F and the m, 
are positive integers, since partial  fraction expansions can still be used when factors are 
raised to powers greater than one. The extension is straightforward and will not  be given 
in detail  here. 

COROLLARY 3.1. I f  P(x)  is the n-th degree Ckebyshev polynomial with respect to some 
interval, then 

T ~ ( P ( z ) )  _< [log nlA + A~ -k 2D, .  (3.3) 

PROOF. Since the zeros of P ( x )  are dist inct  and are known analytically,  (3.3) follows 
from Theorem 3.2. [] 

There are several potential  applications of Algorithms 3.1 and 3.2. For  example, by  
using Algorithms 3.1 and 3.2 we can compute A" and P ( A ) ,  respectively, where A is a 
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mat r ix  and  P ( x )  is some C h e b y s h e v  polynomial .  A"  a n d  P ( A )  ~ can t h e n  be used to  

app rox ima te  t he  d o m i n a n t  e igenvectors  of A. (See, for instance,  Wi lk inson  [18, Ch.  9].) 

LE~MA 3.2. I l k  ~_ ½n( n + 1) - -  1, then the set {x ~, x 3, . . .  , x ~} can be evaluated in two 
steps of parallel division and [log nl W 2 steps of parallel addition. More precisely, 

Tk(x  2, x 3, . . . ,  x ~) ~ [log nlA + 2(A,  + D , ) ,  (3.4)  

provided k > ½n(n ~- 1) - 1. 

PROOF. W e  es tabl ish  the  l e m m a  by  exhibi t ing an  a lgor i thm.  

Algorithm 3.3. (An algorithm for the parallel evaluation of {x 2, ".. , x" } by using at least ½n(n-}-l) - 1 
processors.) 

1. A s s i g n  ~ processors for the evaluation of x '  for each  i ffi 2, . . .  , n. Use Algorithm 3 1 to evaluate 
x '  for each ~. Since k > ½n(n+l) - 1, x ~, ".. , x ~ can be evaluated simultaneously. 

2. Step 4 of Algorithm 3.1 will not be performed for the evaluahon of x ~, " "  , x ~-~ untd the time 
when step 4 of Algorithm 3.1 is ready to be performed for the evaluatmn of x ". 

Clearly,  t he  l e m m a  can be p roven  f rom Algor i thm 3.3. [] 
THEOREM 3.3. I f  k _~ n, then the set {x ~, x 3, • • • , x ~} can be evaluated in five steps of 

parallel nonscalar multiplwation or division and [log nl ~ 5 steps of parallel addition. More 
precisely, 

T~(x 2, x 3, . . . ,  x ~) < llog nlA + A + 4 ( A ,  + D~) + M.  (3.5) 

PROOF. We  es tabl ish  t h e  t heo rem for t h e  ease n > 9 b y  exhibi t ing an  a lgor i thm.  

Us ing  the  s ame  ideas as in the  a lgor i thm,  t he  t heo rem can be easily p roven  for ~ ~ 8. 

Algorithm 3.4. (An algorithm for the parallel evaluation of {x 2, x 3, " "  , x ~ 1 by using n processors.) 

1. Compute A, = x' ,  ~ ffi 2, . . .  , m by Algorithm 3.3, where m ffi Intl. 
2. Compute B, = A~', ~ ffi 2, .-" , m by Algorithm 3.3. 
3. Compute C,.~ ffi B, • A~ , % 3 ffi 1, . . .  , m - 1, in parallel, where A~ = z and B~ ffi A~.  

No te  t h a t  C ,  = A m ' . A j  = x "m+: and  t h a t  {x 2, . .  • , x ~} c {Bm}O {C,,~ I i, 3 = 1, . . .  , 

m - 1}. Hence  Algor i thm 3.4 indeed  evaluates  {x~, . . .  , x~}. Also no te  t h a t  since 
½m (m -}- 1) - 1 ~ n for n > 9, there  are enough processors to per form s teps  1. and  2 by  
Algor i thm 3.3. T h e  to ta l  t ime  needed  for s teps  1 and  2 is 2{llog mlA W 2(A,  + D,)] .  
Since (m - 1) 2 < n, s tep  3 can be done  in t ime  M.  Therefore  Algor i thm 3.4 takes  t ime 

[log nlA ÷ A + 4 ( A ,  + D,)  -t- M.  [] 
T h e  following corollary shows how the  above resul ts  can be used to  p roduce  efficient 

parallel  a lgor i thms wi th  small  parallelism. 
COROLLARY 3.2. I f  n > k > 1, then x ~ can be evaluated ~n 61 steps of parallel non- 

scalar multipl,cation or divzswn and ([log kl W 5)l  steps of parallel addition, where 1 = 
[log n/log k]. More precisely, 

Tk(x")  < l[[log klA + A W 4 ( A ,  + D,)  + 2M] 

f o r n > k >  l.  
PROOF. We  establ ish t h e  corollary by  exhibi t ing an  a lgor i thm.  

Algorithm 3.5. (An algorithm for the parallel evaluation of x ~ by using k processors, where n > k > 1.) 

Since 1 ffi [log n/log k], n < k I. We have the following two cases: 
Case l .  n ~ k  ~. Lety0ff ix .  For i ffi 0, --- , 1 -  1, 

1.1. compute ye ~ by Algorithm 3.1; 
1.2. set y,+l ~-- y~. 

Clearly, yz ffi x ". By Theorem 3.1, Tk(x ~) < /[Ilog k]A + 2(A° + D#)]. 
Case 2. n < k I. Let n ffi ~ 0  z-l a,k', where 0 <_ a, < k The algorithm for case 1 can be modified 

as follows: Let y0 = x and z0 ffi 1. For z = 0, . "  , l - 1, 
1.1. compute lYJ, yJ, "'" , YA} by Algorithm 3.4; 

a t .  1.2. compute z,+~ = z,y, , 
1.3. s e t  y,+t ~-  y~ .  
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I t  is straightforward to show that z~ = x n. By Theorem 3.3, we have 

T~(x") _< /[[log klA -t- A --b 4(A, W D,) ÷ 2M]. [] 

I t  is possible to slightly improve the bounds in Corollary 3.2 by using more compli- 
cated algorithms than Algorithm 3.5. 

COROLLARY 3.3. I f  k > n, then a general n-th degree polynomial ~ o  ~ a,x" can be evalu- 
ated by one step of parallel scalar multiplication, five steps of parallel nonscalar multzplication 
or diviszon, and 2[log n[ + 6 steps of parallel addition. More precisely, 

T ~ ( ~ o  ~ a,x') < (2Ilog nl + 2)A + 4(A~ + D,) + M "t- M,.  (3.6) 

PROOF. The theorem is proven by an algorithm which computes {x ~, . , . ,  x"} in 
time Ilog nlA % A W 4(A, % D,) -t- M by using Algorithm 3.4, then computes Ia0, 
a~x, • • • , a,~x'l in one step of scalar multiplication, and finally combines these in further 
llog nl + 1 steps of parallel addition. [] 

Note that the dominant term of the upper bound in (3.6) is 2 llog nlA, while all oiher 
upper bounds we have derived so far have the dominant term [log nlA (see (3.1)-(3.5)). 
In the following theorem we show that the upper bound in (3.6) may be improved to 
have [log nlA as the dominant term by using 2n processors. 

THEOREM 3.4. T2, (~o"a ,x ' )  _~ (logn)A + O(( logn ) t )M.  
PROOF. We apply a recursive evaluation procedure due to Brent [2], Maruyama [13], 

and (independently) Munro and Paterson [14, Alg. A]. The procedure will not be de- 
scribed here. However, we note that the procedure requires x 2' at time iA ~ constant, 
for i -- 1, . . .  , [log n]. We then assign ~ processors for the procedure and another n 
processors for the evaluation of x 2' for all i by using Algorithm 3.1 for each z. Hence at 
time iA ~ constant, x 2' is always available. [] 

4. Lower Bounds 

In this section we assume that different processors may perform different operations at 
any time. We shall prove lower bounds under this general assumption. Let f ( x )  be a 
rational expression in F(x) .  Define the degree o f f ( x )  to be degf = max (degfl ,  deg f2), 
where f l (x) ,  f2(x) are two relatively prime polynomials in E[x] such that f -- fl/f2. 

LEMMA 4.1. Let f (  x ) , g( x ) E F( x ) and h( x ) = f(  x ) op g( x ) where op E {&, - ,  X,/}.  
Then if  op zs a nonscalar additwn, multiplicatwn, or dwzsion then deg h ~ deg f • deg g, 
otherunse deg h = max( deg f , deg g ) . 

PROOF. Assume that op is a nonscalar multiplication. Then 

h = (ffff2) op (gl/g2) = (f~'gl)/(f:'g2), 

and hence degh < max(degfl + deg gl, degf2 + deg g2) _< degf  q- deg g. Since the 
proofs for other cases are similar, they will be omitted. [] 

THEOREM 4.1. Let f (x )  E F(x)  with deg f = n. Then T~(f(x) ) >_ {log nlU Vk,  where 
U = rain(A, M, D).  

PROOF. The proof follows from a growth argument on degree. Consider an arbitrary 
algorithm for the parallel evaluation of f(x) by using arbitrary number of processors. Let 
R, denote the set of rational expressions which can be created by the algorithms in time 
zU. It suffices to show by induction that elements in R, have degrees at most 2". Obviously, 
the statement holds for i -- 1. Suppose that it holds for z g j. Let rl E R:+i. We want to 
prove deg rl _~ 2 ~+1. If rl E R~ then deg rl ~ 2" < 2 ~+1. We are done. Suppose that rl ~ R~. 
Let us consider how r~ is computed from R~ by the algorithm. Since rl is created by the 
algorithm, rl is the result of a binary operation opt of the algorithm with operands rl,l 
and rl.2. Similarly, for i = 1, 2, if r~,, ~ Re, r~., is the result of another binary operation 
opt., of the algorithm with operands rl,,.~ and r~,,,2. Hence r~ is associated with a binary 
tree whose internal nodes represent results of the binary operations and whose leaves 
represent the elements in R~ which are used for computing rl .  By the construction of the 
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tree, the rational expressions associated with internal nodes are not in R~. ( I t  is clear that  
the tree is finite, since there is a positive lower bound on the time needed for every opera- 
tion.) We note that  if the binary operation associated with an internal node is a nonscalar 
addition, multiplication, or division then the two successors of the node must be leaves. 
Hence along each path of the tree there is at most one node with which a nonscalar addi- 
tion~ multiplication, or division is associated. Then by Lemma 4.1 and the induction 
hypothesis one can easily show that  deg r~ < 2 ~+~. The induction is complete. O 

By Theorem 4.1 and the results obtained in Section 3, we have the following 
COROI, LAaY 4.1. I f  M > A and D > A,  then 

I T , ( x  ~) < [log nlA W 2(A~ + D,), 
Tn(IY~l" (x W a,))  _< [log nlA + A,  W 2D, ,  

[log nlA _< ~Tn(x~, x 3, . . .  , x ' )  ~ |log nlA + A + 4(A,  + D,) + M,  
( T e , ( ~ o ~ a , x  ") < (log n )A  + O( (log n)~)M, where a, ~ O. 

Hence the lower and upper bounds are asymptot~caUy optimal as n ~ ~ .  
Suppose that  we have a problem for which D, D , ,  M are much greater than A or M,. 

Hence we want to minimize the number of dwisions and nonscalar multiplications. The 
following theorem gives a lower bound on the time needed for divisions and nonscalar 
multiplications. 

THEOREM 4.2. Suppose that we do ~ot count the time needed for additwn, subtraction, 
and scalar mult~plwation. Let f ( x )  E F(x)  ~ t h  deg f = n. Then 

Tk(f(x)  ) >_ [log n/log(k W 1)lV, 

where V = min(D,  D, , M) .  
PROOF. Consider an arbitrary algorithm for the parallel evaluation of f ( x )  by using 

k processors. Let R, be the set of rational expressions in F(x)  which can be evaluated in 
time iV  by the algorithm. We shall show by induction that  there exists a common de- 
nominator D, for the elements in R, such that  deg D, < (k + 1) '  and such that  if r E R, 
then r = UD, for some ~ E F[x] with deg ~ _< (k -{- 1)'. The induction statement clearly 
holds f o r ,  = 1. Assume that  it holds for ~ < 2. Let r~, .. • , r t ,  l _< k, be the results im- 
mediately following from the nonscalar multiplications or divisions of the algorithm, 
which occur in the time interval ( iV,  ( j  + 1)V]. Then 

R j + i =  { ~ u , r , + u r l u , , u E F  and r E R ~ } .  

Assume that  r, = s, op, t, where s, ,  t, E R~ and op, E { X , / } .  By the induction hypothe- 
ses, s, = ~,/D~ and t, = L/Dj  where ~,, ~, E F[x] and both have degree less than or equal 
to (k W 1)'. Hence r, = ~,[,/Dj ~ when op, = X and r, = ~,/L when op, = / .  Without 
loss of generality, assume that  op, = / for i < h < 1 and op, = X for i > h. Define 

It1 "'" lhDj if h = l, 
D~+l = tl [hD~ 2 if h < l .  

I t  is easy to check that  D j+l is a common denominator for the elements in R~+~, and that  
deg D~+~ _< (k -{- 1) ~+~, since deg t, < (k -k 1) ~ and deg D~ _< (k --k l y .  Also, it is easy 
to show that  if r E Rj+i then r = UD~+i for some ~ E F[x] with deg ~ _< (k + 1) '+~. 
Therefore the induction is complete and hence we have proven the theorem. [] 

COROLLARY 4.2. Suppose that we do not count the time needed for addition, subtraction, 
and scalar multiplication. I f  k < n, then 

[log n/log(k + 1)IV _< T~(x ~) ~ [log n/log kl(4D, + 2M), 

where V = rain(D, D , ,  M) .  Hence the bounds are within a constant factor of the best 
possible. 

Pnoo~. The result follows from Corollary 3.2 and Theorem 4.2. 
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5. Results on Nonlinear Recurrence Problems 

I t  frequently occurs in applied mathematics tha t  the  solution to some problems is given 
by a recurrence relation. Hence we often have to compute yn from y0, y - l ,  "-" , y-m 
where y~ is defined by y,+l = ~p(y,, • • • , y,--m) for some function ¢ ( x l ,  • "- , x~+l). I t  is 
natural  to t ry  to use parallel computation to speed up the process of computing y r .  
Karp,  Miller, and Winograd [8] studied some general aspects of parallelism and recur- 
rence. Recent work in this area includes, for example, Heller [5], Kogge [9], Kogge and 
Stone [10], Maruyama  [13], Munro and Paterson [14], and Stone [15]. These works con- 
centrate essentially on linear recurrence problems. In  particular, Kogge [9] has given a 
unified t reatment  for general linear recurrence problems and has shown tha t  for a general 
class of linear recurrence problems we can have the n/ log n speedup ratio, which can be 
shown to be, in some sense, optimal. Therefore the linear recurrence problem is essentially 
settled. However, we do not know how to construct efficient parallel algorithms for even 
very simple nonlinear recurrence problems. (Note  tha t  nonlinear recurrence problems 
occur in practice very often.) For example, i t  seems very difficult to use parallelism for 
the following nonlinear recurrence: 

y,+, = ½(y, + a /y , ) ,  (5.1) 

which is the well-known recurrence for approximating a t, (The question of using parallel- 
ism for the recurrence problem (5.1) was asked by Stone [17].) In  this section we shall 
show that  any parallel algorithm usi~g any number of processors cannot be ess'ent~ally faster 
than the obvious sequential algomthm, for any first-order rational recurrence of degree greater 
than 1 like (5.1), and for any nonlincar polynomial rec~rre~ce problem like 

y,+l = 2y,2y,-1 + 3y,_~. (5.2) 

LEMMA 5.1. ]f ~¢(X), ~(X) E F(x), then deg(¢ o ~) = (deg ¢)(deg ~). (Note  that  
" , "  stands for composition.) 

PROOF. Write ~ = ¢ ~ / ~ ,  where ¢~, ~2 are two relatively prime polynomials in F[x]. 
We may assume that  the leading coefficient of ¢2 is unity. We write e l (x )  = a ( x  - al) TM 

• ". ( x - - a h )  '~ and~2(x)  = ( x - -  bl) ~ . . .  ( x - -  bl) ~t, where t h e a i s i n F ,  t h e a ,  are 
distinct dements  in F, the b, are distinct dements  in F, and the m , ,  n, are positive 
integers. Clearly, deg ~ = ~ ]  m, and deg ~ = ~ ]  n , .  Since ~ and ~2 are r d a t i v d y  
prime, we have a, ~ b~, V i ,  3. Let $~ and q~2 be two relatively prime polynomials such 
tha t  ~ = ~ / ~ .  Note tha t  

( ¢ o  &)(x) = [a(~(x)  - a,) ~' . . .  (&(x)  - a~)'~]/ 
[ ~ ( z )  - b,)  "~ . . .  ( ~ ( z )  - b~)"'] 

= {[a(~,(x) - al( .~:(x))  m . . .  ( $ , ( z )  - ah~2(x))~h}/ 

[ ( ~ , ( x )  - b~(x)) . . . . .  ( ~ , ( x )  - b ~ ( x ) ) ~ ' l }  ~ ( x )  ~ n ' - z ~ ' .  ( 5 . 3 )  

Claim that  ~bl(x) --  a,~b2(x) and g,l(x) - b~f2(x) are relatively prime for all i, j .  We 
prove this by contradiction. Assume tha t  there exists h(x )  E F[x] with deg h > 1 such 
tha t  ~b~ - a,~b2 = h~h and ~h - b~b~ = h~h where the h~, h~ ~ F[x]. These imply tha t  
~ = [(hi - h2)/(b~ - a,)]h and ~b~ = [h~ -4- a,(hl - h2)/(b~ - a,)]h. Hence h is a com- 
mon divisor for q~ and ~ .  This is a contradiction. Similarly, we can prove tha t  there are 
no nontrivial common divisors between ~2(x) and $1(x) - a,$2(x) and between ~ ( x )  
and ~ ( x )  - b~¢~(x). Therefore, from (5.3), one can compute the degree of ¢ o ¢~ as 
follows: Assume tha t  deg ~ = deg ,p~ > deg ~ and deg ¢~ = deg ~ > deg ~ .  (The proofs 
for the other cases are similar and will be omitted.)  The numerator of (5.3) has 
degree ( ~  m,) deg ~ = (deg ~) (deg  ~b). The denominator of (5.3) has degree ( ~  n,) 
deg ~b~ + ( ~ m ,  - ~ ] n , )  deg ~b2 = (deg ¢2)(deg ~,) + (deg ~, - deg ~2)(deg ~2), 
which is less than or equal to (deg ¢ ) (deg  ~b). Hence deg(~ o ~b) = (deg ~ ) (deg  ¢~). [] 

T ~ o a ~  5.1. Let y ,  be defined by y,+~ = ¢ ( y , )  where ~ ( x )  ~ F ( x )  with deg ¢ = d. 



260  H . T .  KUNG 

The~ 

T~(y,~) > In log dlU, Vk, (5.4) 
where U = min(A, M, D). 

PROOF. Let  y0 = x. Then y,  = ¢ ( x )  where ,I> is the n times self-composition ofg.  Then 
by  Lemma 5.1, deg ,I) = (deg q~) ~ = d ~. The theorem follows from Theorem 4.1. O 

Under  the assumptions of Theorem 5.1, y.  clearly can be computed sequentially in 
t ime n.  Tl(9(x)) .  If  deg 9 = d > 1, then by  (5.4) we have 

T~(y~)/Tk(y~) _< T~(~(x) )/((log d)U) = constant ,  Vn, Vk. 

Hence we have the following. 
COROLLARY 5.1. By using parallelism the 'evaluation of an expression defined by any 

first-order ratwnal recurrence with degree greater than 1 can be sped up at most by a constant 
/actor. 

Consider, for example, the recurrence problem (5.1). Assume tha t  we work with real 
numbers and tha t  every ari thmetic operation takes the same t ime U. Then to evaluate 
y~ the obvious sequential algorithm takes t ime 3nU, while by Theorem 5.1 any parallel al- 
gori thm takes time at  least nU. Hence by  using parallelism the evaluation of y,  can be 
sped up at  most by  a factor of 3, for all n. This is completely different from the evaluation 
of linear recurrence where n/ log n speedups can be obtained. 

Now we consider higher order recurrences, i.e. y,+~ = ~ ( y , ,  y,_~, • • • , y,_,~) from m > 
0. Suppose tha t  (p is a mult ivar ia te  polynomial of degree greater than 1. Let y0 = y-~ = 
. . . .  y_,~ = x. Then y~, y2, ' "" , y~ are rational expressions in x. I t  is very easy to see 
tha t  there exists a constant 0 > 1 such that  the degree of y, in x is greater than or equal to 
0' for all z. For  example, consider the third-order recurrence (5.2). Let a, be a lower bound 
on the degree of y, in x. Then by  (5.2) we have a,+~ >_ 2a, + a,_~. By a s tandard tech- 
nique on difference equations, we know a, can be chosen as 0" where 02 = 20 + 1 and - 
hence 0 > 1. 

Since the degree of y .  in x is _> 8~, by Theorem 5.1 we have Tk(y,) ~ In log O]U, where 
U = rain(A, M, D) .  Let  Ti(~)  denote the time for evaluating ~ ( x l ,  x2, • . .  , x,~+l) 
sequentially. Then Ti(y,)  _< nTl(~) and hence 

T~(y,)/T~(y~) < T~(~p)/((log O)U) -- constant, Yn, Vk. 

Hence we have the following 
COROLLARY 5.2. By using parallelism the evaluation of an expression defined by any non- 

linear polynomial recurrence can be sped up at most by a constant factor. 

6. Summary and Conclusions 

I t  is convenient to th ink tha t  the paper consists of two parts.  In  the first part ,  we have 
given a general technique to construct parallel algorithms which minimize the number of 
multiplication or division steps. This technique is useful when multiplication or division is 
expensive. Some rather  surprising algorithms are derived. For  example, Algorithm 3.1 
evaluates powers of x using additions instead of multiplications. This demonstrates the 
intrinsic difference between sequential and parallel computation.  

In  the second par t  of the paper, we have shown (Theorems 4.1 and 4.2) lower bounds 
on the t ime to evaluate rational expressions. The lower bounds are asymptotical ly close 
to the upper bounds established by  the algorithms in the first part  of the paper. Using 
the lower bound results, we have shown tha t  by  using parallelism the evaluation of an 
expression defined by  any first-order rational recurrence of degree greater than 1 or any 
nonlinear polynomial recurrence can be sped up a t  most by  a constant  factor, no matter 
how many prvcessors are used and how large the size of the problem is. This is probably the 
first and may be the only known example of a problem which cannot be essentially sped 
up. 
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