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ABSTRACT. The parallel evaluation of rational expressions is considered. New algorithms which
minimize the number of multiplication or division steps are given. They are faster than the usual
algorithms when multiplication or division takes more time than addition or subtraction. It is shown,
for example, that z* can be evaluated in two steps of parallel division and [log: nl steps of parallel
addition, while the usual algorithm takes flogs nl steps of parallel multiplication.

Lower bounds on the time required are obtained in terms of the degree of the expressions to be
evaluated. From these bounds, the algorithms presented 1n the paper are shown to be asymptotically
optimal Moreover, it 18 shown that by using parallelism the evaluation of any first-order rational
recurrence of degree greater than 1, e.g. y..1 = (3. + a/y.), and any nonlinear polynomisal recur-
rence can be sped up at most by a constant factor, no matter how many processors are used and how
large the size of the problem is.
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1. Introduction

In this paper we consider the parallel evaluation of certain rational expressions. We
assume that several processors which can perform four arithmetic operations, +, —,
X, /, are available, and that the time required for accessing data and communicating
between processors can be ignored. This problem has been studied by many people. (See
the surveys written by Brent [3] and Kuck [12].)

Almost all papers in this field assume that every arithmetic operation takes the same
amount of time. However, this assumption is false for two reasons. For many processors,
floating number multiplication takes more time than addition. Furthermore, if we deal
with expressions involving, for example, matrices or multiple-precision numbers then
multiplication is likely to be more expensive than addition. (Here we interpret arithmetic
operations as matrix or multiple-precision number operations.) In Section 3 of this paper,
we assume that multiplication takes more time than addition. Hence, to get better algorithms,
we should avoid using multiplications. We derive new algorithms for the parallel evalua-
tions of 2*, {z*, 2%, ---, 2"}, [[i"(¢ + @), Xo"a.x’, etc., where the a, are scalars.
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Each of the algorithms minimizes the time needed for the multiplications to within a
constant and can be shown to be faster than the best previously known algorithm for
large n. Moreover, all the algorithms, except the one associated with Theorem 3.4, have
the following two characteristics:

1. To run the algorithms each processor is either masked or performing the same opera-
tion at any time. Hence the algorithm can be run on single-instruction stream-multiple-
data stream (SIMD) machines (Flynn {4]) such as ILLIAC IV,

2. The algorithms require a very simple interconnection pattern. All we need is a
binary tree network between processors.

In Section 4 we prove lower bounds on the time needed for the parallel evaluation of
certain rational expressions, under the assumption that all processors can perform differ-
ent operations at any time. This assumption eorresponds to multiple-instruction stream-
multiple-data stream (MIMD) machines (Flynn [4]) such as C.mmp, the multi-mini-
processor system at Carnegie-Mellon University (Wulf and Bell [19]). It is clear that
lower bounds with respect to MIMD machines also hold with respect to SIMD machines.
The lower bounds obtained in the paper imply that the algorithms introduced in Section
3 are asymptotically optimal with respect to MIMD machines, although most of these
algorithms can be run on SIMD machines, as noted above.

Section 5 deals with the problem of the parallel evaluation of rational expressions
defined by recurrences. We show that, by using parallelism, the evaluation of an expres-
sion defined by any first-order rational recurrence of degree greater than 1 or any non-
linear polynomial recurrence can be sped up at most by a constant factor, no matter how
many processors are used. Consider, for example, the evaluation of the y. defined by the
recurrence

y'+1=%(y3+a/y')) 2'=O) 1;2:"':""—1y

which is the well-known recurrence for approximating a!. We show that for evaluating y.
any parallel algorithm using any number of processors cannot be essentially faster than
the obvious sequential algorithm for any »n. Thus the theory for nonlinear recurrences is
completely different from the theory for linear recurrences, where good speedups have
been obtained (for example, Heller [5], Kogge [9], Kogge and Stone [10], Maruyama [13],
Munro and Paterson [14], and Stone {15]).

In Section 2, we give basic definitions and an abstract formulation of the general
evaluation problem considered in the paper.

2. Abstract Formulation and Definilions

Let F be an algebraically closed field, e.g. F is the field € of complex numbers, and let
be an indeterminate over F. F[z] and F(2z) denote the ring of polynomials and the field of
rational expressions in x over F, respectively. Our problem is to evaluate a set of poly-
nomials in Flz], {fi(z), fo(z), - -+, fa(2)}, under the following assumptions:

1. By evaluating {fi(z), - - - , fmw(2)} we mean computing the values of fi(z), ---,
Jn(z) over F(z), given F U {z}. The four binary operations, +, —, X, /, associated with
the field F(x) are the ones we are allowed to use.

2. The elements in F are called scalars. A multiplication of two elements in F(x) is
called a scalar multiplication if one of the two elements is a scalar; otherwise it is called
a nonscalar multiplication. Scalar or nonscalar addition (subtraction) is similarly defined.
A division whose dividend is a scalar is called a scalar division. Let M, M, | A, A, denote
the ttme needed for one nonscalar mulliplication, scalar multiplication, nonscalar addition
(subtraction), scalar addition (subtraction), respectively. Let D, D, denote the time needed
Jor a division whose dividend is a nonscalar, scalar, respectively.

3. At any given time, up to k operations may be performed. This means that there are
k processors which can perform the operations, +, —, X, /, at any time but some proc-
essors may be idle. If in some time interval all processors, except the ones masked, per-
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form the same operation, say, addition, then we refer to that time interval as a parallel
step of addition.

If the positive integer k in (3) is greater than one, we say {fi(x), -+ - , fm(z)} is to be
evaluated in parallel, while if k is equal to one, we say it is to be evaluated sequentially.
We define Ti(fi(x), -+, fm(x)) to be the minimum time needed to evaluate {fi(x), - -,
Sfm(2)} with k processors,

To illustrate our notation given in (2), we consider an example. Let # = € and let « be
anl X I matrix A whose entriesarein €. Suppose that we use an O(*) algorithm for matrix
multiplication and inversion. (Here we interpret division as matrix inversion.) Then
M =00, M, =0, A =0, A, = 01), D = O@*), D, = O(*).

3. New Algorithms Which Use Divisions for the Parallel Evaluation of 2", {2*, &%, - -+ , 2™},
IL" (2 + a), 26" ax, ete.

In this section we assume that M > A. We first consider a well-known problem, that of
evaluating 2. Knuth {11, §4.6.3] gives a rather detailed survey of sequential algorithms
for solving this problem. It is known that there exists a sequential algorithm which takes
time flog n + O(log n/log log n}]M. (In this paper all logarithms are taken to base 2.)
However, as pointed out in Borodin and Munro {1], it is easy to show the following:

LeMMma 3.1, If diviswon 1s not used, llog nlM s a lower bound on the time for the parallel
evaluation of x", no matler how many processors are used.

Hence, if division is not used, any parallel algorithm cannot be essentially faster than
the fastest sequential algorithm. In the proof of the following theorem we give an algo-
rithm for the parallel evaluation of " which uses divisions and which takes time less than
[log 1M when = is large.

TreEOREM 3.1. If k > n, 2" can be evaluated in two steps of parallel division and
[log n} 4+ 2 steps of parallel addition. More precisely,

To(z") < llognl A + 2(A, + D). (3.1)
Proor. We establish the theorem by exhibiting an algorithm.

Algorithm 3.1. (An algorithm for the parallel evaluation of z.)

1. Compute A, =z — r., 1 = 1,--+ , n, 1n parallel, where the . are in F and are the n distinet
zeros of z* — r for any nonzero element r in F.

2. Compute B, = 8,/A4,, 7 = 1, -, n, in parallel, where s, = r,/(nr).
3. Compute C = >_1 B, in parallel.

4. Compute D = 1/C.

5. Compute E = D 4 r.

Note that

C = z::B. = }?_‘,s,/A, = Z:r./[m*(x — 7)) = P(z)/[nr(z” — 7)),

where P(z) = Y a7, |[m (z — 7,). Evaluating the first derivative of 2" — r =
II." (& = 7.) atr., wehave me? ™" = 1< (r. = r,). Thus P(r.) = r, - (r.—7) =
nr, ¢+ = 1, --- | n. This implies that P(x) = nr, since the degree of P(x) isn — 1. Hence
C=1/(2"—r)andso E = D + r = 1/C + r = z". Therefore Algorithm 3.1 indeed
evaluates 2”. Since the number of available processors is greater than or equal to n, steps
1,2, 3,4, 5 can be done in time A, , D, , llog #l4, D, , A, , respectively. So Algorithm 3.1
takes time [log nl4 + 2(4, 4+ D,). O

Note that [log n]d + 2(4, + D,) < [log n]M when [log n] > 2(4, + D,)/(M ~ 4).
In fact,

lim {log n)M/[llog nlA + 2(A. + D,)] = M/A.

Hence we have sped up the evaluation of " by a factor M/A for large n.
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Remarks on Algorithm 3.1.

1. The choice of 7 in step 1 depends on the application of the algorithm. For instance,
if the algorithm is used to compute A™ for a real matrix A then the number r should be
chosen such that A — r.I is nonsingular for all ¢; otherwise the algorithm would break
down at step 2, where we have to compute s,(A — 7)™ for all . (Note that for matrix
computation, in the algorithm divisions should be interpreted as matrix inversions, and
scalars 7, , r should be interpreted as r.I, rI, respectively, where I is the identity matrix.)

2. Since the constants, 7, , s, , are in F and it is assumed in Section 2 that elements in F
are given as free, Theorem 3.1 does not count the time needed to compute r, and s, . In
practice, these constants have to be either stored in a table or computed. (We find a
similar situation in the fast Fourier transform where certain constants, i.e. powers of an
nth root of unity, are needed.) Strictly speaking, the algorithm is really a form of “pre-
conditioning.” The same remark holds for the algorithms below.

3. The algorithm raises z to the nth power without using any multiplications but with
two divisions. This may be surprising to those who are dealing only with sequential algo-
rithms. This again demonstrates that there exists an intrinsic difference between sequen-
tial and parallel computation (see Stone [16] for other examples).

Using the same ideas, we can immediately obtain the following.

THEOREM 3.2. Letay, -, a, be n distinct elements in F. If k > n, then Hl" (z + a,)
can be evaluated in two steps of parallel division and llog nl + 1 steps of parallel addition.
More precisely,

T.(1I" (z + @) < llog n]l4 + A, + 2D, . (3.2)
Proor. We establish the theorem by exhibiting an algorithm.

Algorithm 3.2. (An algorithm for the parallel evaluation of [t (= + a:))

1. Compute A, =z +a,,¢=1,+:+,n, in parallel.

2. Compute B, = b,/A,, 2 =1, , n, in parallel, where b, = ([[,% (a; — a:)I"t.
3. Compute C = Y B, 1n parallel.

4. Compute D = 1/C.

Note that C = Y "B, = 2., b./A, = 1/[[i" (z + a.). Hence the algorithm indeed
evaluates [[," (z + @.). Since the algorithm clearly takes time flog n14 + 4, + 2D,
with » processors, we have proven (3.2). O

The obvious algorithm for the parallel evaluation of []1"(z + a.) is the following:

1. Compute 4, =z +a,, 1 =1, , n, in parallel.
2. Compute D = [ 4, in parallel.

It takes time [log n]1M + A, . Hence Algorithm 3.2 achieves a speedup factor M /A for
large n without significantly complicating the algorithm. It is conceivable that in general
a computer organization which is suitable for executing the obvious algorithm is also
suitable for executing Algorithm 3.2.

It should be noted that Theorem 3.2 and Algorithm 3.2 can be extended to cover the
general expression [];” (z 4 a,)™ where the a, are n distinct elements in F and the m,
are positive integers, since partial fraction expansions can still be used when factors are
raised to powers greater than one. The extension is straightforward and will not be given
in detail here,

CoroLuary 3.1.  If P(x) is the n-th degree Chebyshev polynomial with respect to some
interval, then

T.(P(z)) < llogmlA + A, + 2D, . (3.3)

Proor. Since the zeros of P(z) are distinct and are known analytically, (3.3) follows
from Theorem 3.2. O

There are several potential applications of Algorithms 3.1 and 3.2. For example, by
using Algorithms 3.1 and 3.2 we can compute A™ and P(4), respectively, where 4 is a
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matrix and P(z) is some Chebyshev polynomial. A™ and P(A)" can then be used to
approximate the dominant eigenvectors of A. (See, for instance, Wilkinson {18, Ch. 9].)

LemMa 3.2, Ifk > dn(n + 1) — 1, then the set {a, 2%, - - - , 2™} can be evaluated in two
steps of parallel division and llog nl + 2 steps of parallel addition. More precisely,

Tu(a, a, -+, 2") < llog A + 2(A, + D)), (34)

provided k > in(n 4+ 1) — 1.
Proor. We establish the lemma by exhibiting an algorithm.

Algorithm 3.3. (An algorithm for the parallel evaluation of {2?, - -+ , 2"} by using at least n(n+1) — 1
processors.)

1. Assign : processors for the evaluation of z* for each ¢ = 2, .-+ , n. Use Algorithm 3 1 to evaluate
z* for each 2. Since k > In(n+1) — 1, 2%, --- , 2™ can be evaluated simultaneously.

2. Step 4 of Algorithm 3.1 will not be performed for the evaluation of #?, --- , ! until the time
when step 4 of Algorithm 3.1 is ready to be performed for the evaluation of z~.

Clearly, the lemma can be proven from Algorithm 3.3. O

THEOREM 3.3. If k > n, then the set {a*, 2°, - -- , 2"} can be evaluated in fiwe steps of
parallel nonscalar multiplication or division and llog nl <+ 5 steps of parallel addition. More
precisely,

Tu(al, 2, -, 2") < llognld + 4 + 4(4, + D,) + M. (3.5)

Proor. We establish the theorem for the case » > 9 by exhibiting an algorithm.
Using the same ideas as in the algorithm, the theorem can be easily proven for » < 8.

Algorithm 3.4. (An algorithm for the parallel evaluation of {2%, 2%, -+ ,z"} by using n processors.)
1. Compute A4, = x*, 1 = 2, -+ , m by Algorithm 3.3, where m = [n}].

2. Compute B, = An*, 2 = 2,°-- , m by Algorithm 3.3.

3. Compute C,, = B,- 4,,,9=1,"--,m — 1, in parallel, where 4, = z and B; = An .
Note that C., = A,"-A4, = 2™ and that {2, --- , 2"} € (B} U{C.,|4,7 =1, -,
m — 1}. Hence Algorithm 3.4 indeed evaluates {2’ ---,z"}. Also note that since

dm(m + 1) — 1 < nforn 2> 9, there are enough processors to perform steps 1 and 2 by
Algorithm 3.3. The total time needed for steps 1 and 2 is 2[flog m14 + 2(4, + D,)].
Since (m — 1)’ < =, step 3 can be done in time M. Therefore Algorithm 3.4 takes time
og #lA + A + 4(4,+ D)+ M. O

The following corollary shows how the above results can be used to produce efficient
parallel algorithms with small parallelism.

CoroLLARY 3.2. If n > k > 1, then 2" can be evaluated wn 6l steps of parallel non-
scalar multiplhcation or dimsiwon and (llog k1 + 5)1 steps of parallel addition, where | =
llog n/log k). More precisely,

Te(z") < lllog K14 + A + 4(A, 4+ D,) + 2M]

forn >k > 1.
Proor. We establish the corollary by exhibiting an algorithm.

Algorithm 3.5. (An algorithm for the parallel evaluation of ™ by using & processors, wheren > &k > 1.)

Since ! = [log n/log k1, n < k'. We have the following two cases:
Casel.n =4%'. Lety =z Fori=0,---,1~1,
1.1. compute y# by Algorithm 3.1;
1.2. set y,+1 — y&.
Clearly, y: = z". By Theorem 3.1, Ti(z") < lllog k1A + 2(4, + D).
Case2. n <k'. Letn = zé" a.k*, where 0 < @, < k The algorithm for case 1 can be modified
as follows: Let %o = z and 2o = 1. For: = 0,--- , 1 —- 1,
1.1. compute {y.2, y3, -+- , ¥#} by Algorithm 3.4;
1.2. compute z.,1 = 2y.%;
1.3. set y.41 «— yiF.
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1t is straightforward to show that z; = z". By Theorem 3.3, we have
Ti(z") < lllog KIA + A + 4(A, + D,) + 2M]. a

It is possible to slightly improve the bounds in Corollary 3.2 by using more compli-
cated algorithms than Algorithm 3.5.

CoroLLARY 3.3. If k > n, then a general n-th degree polynomial Zo" a.z" can be evalu-
ated by one step of parallel scalar multiplication, five steps of parallel nonscalar multiplication
or division, and 2{log n] 4+ 6 steps of parallel addition. More precisely,

Ta( 20" ax') < (2Mlognl + 2)A + 4(A, + D) + M + M, . (3.6)

Proor. The theorem 1s proven by an algorithm which computes {2%, ---, 2"} in
time flog 714 + A + 4(A, + D,) + M by using Algorithm 3.4, then computes {a,,
ax, -+, a,x"} in one step of scalar multiplication, and finally combines these in further
llog nl + 1 steps of parallel addition. (1

Note that the dominant term of the upper bound in (3.6) is 2 [log nlA, while all other
upper bounds we have derived so far have the dominant term llog nlA (see (3.1)-(3.5)).
In the following theorem we show that the upper bound in (3.6) may be improved to
have [log nlA as the dominant term by using 2n processors.

THEOREM 3.4. Ti( Yo" a2’) < (logn)A + O((log n)})M.

Proor. We apply a recursive evaluation procedure due to Brent [2], Maruyama [13],
and (independently) Munro and Paterson {14, Alg. A]. The procedure will not be de-
seribed here. However, we note that the procedure requires z*° at time 74 -+ constant,
for i = 1, -+, |log n]. We then assign n processors for the procedure and another n
processors for the evaluation of 2*" for all 7 by using Algorithm 3.1 for each 2. Hence at
time ¢4 -+ constant, ' is always available. 0O

4. Lower Bounds

In this section we assume that different processors may perform different operations at
any time. We shall prove lower bounds under this general assumption. Let f(z) be a
rational expression in F(z). Define the degree of f(x) to be deg f = max (deg fi, deg f2),
where fi(z), f2(z) are two relatively prime polynomials in Fiz] such that f = fi/f: .

LemMma 4.1, Letf(x), g(x) € F(x) and h(z) = f(z) op g(x) whereop € {+, —, X, /}.
Then if op s a nonscalar addition, multiplication, or dwision then deg h < deg f + deg g,
otherunse deg h = max(deg f, deg g).

Proor. Assume that op is a nonscalar multiplication. Then

k= (fi/fz) op (9/92) = (fr-01)/(fo-g2),

and hence deg h < max(deg fi + deg ¢, deg f» + deg g2) < deg f + deg g. Since the
proofs for other cases are similar, they will be omitted. O

THEOREM 4.1. Let f(x) € F(z) with deg f = n. Then Tx(f(x)) > llog nlU Yk, where
U = min(A, M, D).

Proor. The proof follows from a growth argument on degree. Consider an arbitrary
algorithm for the parallel evaluation of f(x) by using arbitrary number of processors. Let
R, denote the set of rational expressions which can be created by the algorithms in time
1U. Tt suffices to show by induction that elements in R, have degrees at most 2°. Obviously,
the statement holds for 7 = 1. Suppose that it holds for » < j. Let r, € R,1 . We want to
provedegr < 2. If 1y, € R, thendegr, < 2’ < 2’*. We are done. Suppose thatry ¢ R, .
Let us consider how r; is computed from R, by the algorithm. Since r; is created by the
algorithm, 7 is the result of a binary operation op; of the algorithm with operands 7y
and r . Similarly, for¢ = 1, 2, if r,, ¢ R, , ., is the result of another binary operation
op1,, of the algorithm with operands 7,1 and ry,, » . Hence n, is associated with a binary
tree whose internal nodes represent results of the binary operations and whose leaves
represent the elements in R, which are used for computing r, . By the construction of the
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tree, the rational expressions associated with internal nodes are not in R, . (It is clear that
the tree is finite, since there is a positive lower bound on the time needed for every opera-
tion.) We note that if the binary operation associated with an internal node is a nonsealar
addition, multiplication, or division then the two successors of the node must be leaves.
Hence along each path of the tree there is at most one node with which a nonscalar addi-
tion, multiplication, or division is associated. Then by Lemma 4.1 and the induction
hypothesis one can easily show that deg r; < 2°. The induction is complete. [J

By Theorem 4.1 and the results obtained in Section 3, we have the following

CororLarY 4.1. If M > Aand D > A, then

5T,,(ac") < llog nlA + 2(A, + D),

T.(JLi" (z + a.)) < llognlA + A, + 2D,,

Hog MA < NI 308 .. 47Y < llog nld + A + 4(As + D) + M,
Ton( 20" az’) < (log n)A + O((log n)*)M, where a, # 0.

Hence the lower and upper bounds are asymptotrcally optimal as n — .

Suppose that we have a problem for which D, D, , M are much greater than A or M,.
Henee we want to minimize the number of divisions and nonscalar multiplications. The
following theorem gives a lower bound on the time needed for divisions and nonsecalar
multiplications.

THEOREM 4.2. Suppose that we do not count the time needed for addition, subtraction,
and scalar multiplication. Let f(x) € F(x) with deg f = n. Then

Tu(f(z)) > log n/log(k + DIV,

where V = min(D, D,, M).

Proor. Consider an arbitrary algorithm for the parallel evaluation of f(x) by using
k processors. Let R. be the set of rational expressions in F(z) which ecan be evaluated in
time ¢V by the algorithm, We shall show by induction that there exists a common de-
nominator D, for the elements in B, such that deg D, < (k + 1)* and such that if r € R,
then r = 7/D, for some 7 € Flx] with deg 7 < (k + 1)". The induction statement clearly
holds for 2 = 1. Assume that it holds for+ < 7. Let 71, -+ - , 7, I < k, be the results im-
mediately following from the nonsealar multiplications or divisions of the algorithm,
which occur in the time interval (jV, (7 4+ 1)V]. Then

1
R = {Zu.r,+ur|u,,u€ F and r¢€ R,}.

Assume that r, = s, op. t. where s, , t. € R, and op, € { X, /}. By the induction hypothe-
ses, s, = §,/D,and t, = 1./D, where 3, , . € Flz] and both have degree less than or equal
to (k + 1)°. Hence r, = §1./D,’ when op. = X and , = §./I, when op, = /. Without
loss of generality, assume that op. = / for ¢ < h < land op, = X for ¢ > h. Define

Do Jh 8D, i h=1,
MTAL DR i R <l

It is easy to check that D,., is a common denominator for the elements in R, , and that
deg D, < (5 + 1), since deg t, < (k + 1)’ and deg D, < (k + 1)°. Also, it is easy
to show that if r € R,y then r = 7/D, for some 7 € Flz) with deg 7 < (k + 1)°*.
Therefore the induction is complete and hence we have proven the theorem. 1

CoROLLARY 4.2.  Suppose that we do not count the time needed for addition, subtraction,
and scalar multiplication. If k < n, then

flog n/log(k + IV < Ti(z") < llog n/log K\(4D, + 2M),

where V = min(D, D,, M). Hence the bounds are withan a constant factor of the best
possible. '
Proor. The result follows from Corollary 3.2 and Theorem 4.2. O
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5. Results on Nonlinear Recurrence Problems

1t frequently occurs in applied mathematics that the solution to some problems is given
by a recurrence relation. Hence we often have to compute y, from yo, ya, <+, Yom
where y, is defined by .11 = @(y., -+, Yi—m) for some function ¢(zy, - -+ , Tmsy). It is
natural to try to use parallel computation to speed up the process of computing y, .
Karp, Miller, and Winograd [8] studied some general aspects of parallelism and recur-
rence. Recent work in this area includes, for example, Heller [5], Kogge [9], Kogge and
Stone [10], Maruyama [13], Munro and Paterson [14], and Stone [15]. These works con-
centrate essentially on linear recurrence problems. In particular, Kogge [9] has given a
unified treatment for general linear recurrence problems and has shown that for a general
class of linear recurrence problems we can have the n/log n speedup ratio, which can be
shown to be, in some sense, optimal. Therefore the linear recurrence problem is essentially
settled. However, we do not know how to construct efficient parallel algorithms for even
very simple nonlinear recurrence problems. (Note that nonlinear recurrence problems
oceur in practice very often.) For example, it seems very difficult to use parallelism for
the following nonlinear recurrence:

Y1 = 3(y. + a/y.), (5.1)

which is the well-known recurrence for approximating a'. (The question of using parallel-
ism for the recurrence problem (5.1) was asked by Stone {17].) In this section we shall
show that any parallel algorithm using any number of processors cannot be essentrally faster
than the obvious sequential algorithm, for any first-order rational recurrence of degree greater
than 1 like (5.1), and for any nonlinear polynomial recurrence problem like

Yorr = 2051 + 3ye (5.2)

Lemma 5.1. If o(z), ¥(z) € F(x), then degle oy) = (deg ¢)(deg ). (Note that
“«” stands for composition. )

Proor. Write ¢ = ¢1/¢2, where @1, ¢, are two relatively prime polynomials in Flz).
We may assume that the leading coefficient of ¢, is unity. We write ¢1(z) = a(z — a))™

“(z = a)™ and @o(2) = (2 — b)™ -+ (¢ — b)"™, where the a is in F, the a. are
distinct elements in F, the b, are distinct elements in F, and the m., n, are positive
integers. Clearly, deg @1 = D_m, and deg ¢; = 2 n,. Since ¢ and ¢, are relatively
prime, we have a, 3 b,, VY1, ;. Let y, and y» be two relatively prime polynomials such
that |ﬁ = Ih/ ¢2 . Note that

(ge)(z) = la(¥(z) — a)™ « -+ (Y(x) — an)™]/
Wz) —b)™ -« (Y(z) — b)™)
= {la(¥i(z) — ar(Pez))™ -+ (Yu(z) — ampe(z))™Y/
[($a(z) — bya(@))™ -+ (da(z) — bade(x)) ™1} da() 2™, (5.3)

Claim that ¥1(z) — awe(z) and Y1(x) — bye(x) are relatively prime for all 7, j. We
prove this by contradiction. Assume that there exists h(z) € Flz] with deg & > 1 such
that Y1 — aye = Mh and Y1 — bye = hoh where the hy, by € Flz]. These imply that
Vo = [(h — ko) /(b, — a)}h and ¢4 = [l + a.(ln — h2)/(b, — a.)}h. Hence h is a com-
mon divisor for ¥, and ¢ . This is a contradiction. Similarly, we can prove that there are
no nontrivial common divisors between Yo(x) and y1(z) — ayz(x) and between yn(x)
and $a(x) — bple(x). Therefore, from (5.3), one can compute the degree of ¢ oy as
follows: Assume that deg ¢ = deg ¢y > deg ¢; and deg ¢ = deg ¢1 > deg ¢, . (The proofs
for the other cases are similar and will be omitted.) The numerator of (5.3) has
degree (D_m,) deg ¢1 = (deg ¢)(deg ¥). The denominator of (5.3) has degree (> n)
deg ¥y + (2 m. — 2o m.) deg yo = (deg ¢2)(deg ¥1) + (deg o1 — deg ¢2)(deg ¥»),
which is less than or equal to (deg ¢)(deg ). Hence deg(p o ¢) = (deg ¢)(degy). O

THEOREM 5.1. Lel y, be defined by y,11 = ¢(y.) where ¢(x) € F(x) with deg ¢ = d.
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Then
Ti(ya) = [n log AU, Yk, (5.4)
where U = min(A, M, D).
Proor. Letyp = x. Then y, = ®(2) where ® is the » times self-composition of ¢. Then
by Lemma 5.1, deg & = (deg¢)" = d". The theorem follows from Theorem 4.1. O

Under the assumptions of Theorem 5.1, y. clearly can be computed sequentially in
time n- Th(e(x)). I deg ¢ = d > 1, then by (5.4) we have

Ti(yn)/ Ti(yn) < Ti(e(z))/((log d)U) = constant, Vn, Vk.

Hence we have the following.

CoROLLARY 5.1. By using parallelism the evaluation of an expression defined by any
Jirst-order rational recurrence with degree greater than 1 can be sped up at most by a constant
Jactor.

Consider, for example, the recurrence problem (5.1). Assume that we work with real
numbers and that every arithmetic operation takes the same time U. Then to evaluate
¥ the obvious sequential algorithm takes time 3nU, while by Theorem 5.1 any parallel al-
gorithm takes time at least »U. Hence by using parallelism the evaluation of y, can be
sped up at most by a factor of 3, for all n. This is completely different from the evaluation
of linear recurrence where n/log n speedups can be obtained.

Now we consider higher order recurrences, i.e. 4.1 = @(¥:, Ysc1, *** , Yo—m) fromm >
0. Suppose that ¢ is a multivariate polynomial of degree greater than 1. Let yo = yu =

= Y .m = & Then i1, iz, + -+ , Y are rational expressxons in z. It is very easy to see
that there exists a constant 8 > 1 such that the degree of 3. in z is greater than or equal fo
6" for all 2. For example, consider the third-order recurrence (5.2). Let a, be a lower bound
on the degree of . in z. Then by (5.2) we have a,.1 > 2a, + a._;. By a standard tech-
nique on difference equations, we know a, can be chosen as 8* where §° = 26 + 1 and -
hence 8 > 1.

Since the degree of 4, in z is > 6", by Theorem 5.1 we have Ti(y.) = [n log 61U, where
U = min(4, M, D). Let Ti(¢) denote the time for evaluating ¢(x1, x2, -+ , Tms1)
sequentially. Then Ty(y.) < nTh(¢) and hence

Ti(ya)/Telya) < Ti(e)/((Jog O)U) = constant, Vn, V.

Hence we have the following
COROLLARY 5.2. By using parallelism the evaluation of an expression defined by any non-
Uinear polynomial recurrence can be sped up at most by a constant factor.

6. Summary and Conclusions

It is convenient to think that the paper consists of two parts. In the first part, we have
given a general technique to eonstruet parallel algorithms which minimize the number of
multiplication or division steps. This technique is useful when multiplication or division is
expensive. Some rather surprising algorithms are derived. For example, Algorithm 3.1
evaluates powers of = using additions instead of multiplications. This demonstrates the
intrinsic difference between sequential and parallel computation.

In the second part of the paper, we have shown (Theorems 4.1 and 4.2) lower bounds
on the time to evaluate rational expressions. The lower bounds are asymptotically close
to the upper bounds established by the algorithms in the first part of the paper. Using
the lower bound results, we have shown that by using parallelism the evaluation of an
expression defined by any first-order rational recurrence of degree greater than 1 or any
nonlinear polynomial recurrence can be sped up at most by a constant factor, no matter
how many processors are used and how large the size of the problem is. This is probably the
first and may be the only known example of a problem which cannot be essentially sped

up.
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