
New Algorithms and Lower Bounds for the Parallel

Evaluation of Certain Rational Expressions

and Recurrences

H . T . KUNG

Carnegie-Mellon University, Pdtsburgh, Pennsylvania

ABSTR&CT. The parallel evaluation of rational expressions is considered. New algorithms which
minimize the number of multiplication or divismn steps are given. T, hey are faster than the usual
algorithms when multiplication or division takes more time than addition or subtraction. I t is shown,
for example, that x ~ can be evaluated in two steps of parallel division and flog2 nl steps of parallel
addition, while the usual algorithm takes [log~ nl steps of parallel multiphcation.

Lower bounds on the time required are obtained in terms of the degree of the expressions to be
evaluated. From these bounds, the algorithms presented in the paper are shown to be asymptotically
optimal Moreover, i t is shown that by using parallelism the evaluation of any first-order rational
recurrence of degree greater than 1, e.g. y,+l = ½(y, • a/y,), and any nonlinear polynomial recur-
rence can be sped up at most by a constant factor, no matter how many processors are used and how
large the size of the problem is.

KEY woRns ANn PHRASES: parallel algorithms, lower bounds, parallel evaluation, rational expres-
sions, recurrence problem

cR cx~,~GoaI~S: 3.15, 5.10, 5.25

1. Introduction

In this paper we consider the parallel eva lua t ion of cer ta in rat ional expressions. W e
assume tha t several processors which can perform four ar i thmet ic operations, + , - - ,
X , / , are available, and tha t the t ime required for accessing da t a and communica t ing
be tween processors can be ignored. This problem has been s tudied by m a n y people. (See
the surveys wr i t t en by Bren t [3] and K u c k [12].)

A lmos t all papers in this field assume tha t every ar i thmet ic opera t ion takes the same
a m o u n t of t ime. However , this assumption is false for two reasons. Fo r m a n y processors,
f loating number mul t ip l ica t ion takes more t ime than addit ion. Fur thermore , if we deal
wi th expressions involving, for example, matr ices or mult iple-precis ion numbers then
mul t ip l ica t ion is l ikely to be more expensive than addit ion. (He re we in terpre t a r i thmet ic
operat ions as mat r ix or mult iple-precision number operat ions.) I n Section 3 of this paper,
we assume that multiplication takes more time than add~twn. Hence, to get be t t e r algorithms,
we should avoid using mult ipl icat ions. We der ive new algori thms for the paral lel evalua-
tions of x ' , {x ~, x3, - . . , x '} , I I l " (x --t- a ,) , ~o"a ,x ' , etc., where the a, are scalars.

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.
This research was supported in part by the National Science Foundation under Grant GJ-32111 and
the Office of Naval Research under Contract N00014-67-A-0314-0010, NR 044-422.
A preliminary version of this paper was presented at the Sixth Annual ACM Symposium on the
Theory of Computing, Seattle, Washington, May 1974.
Author's address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213.

Jourmd of the Amoemt4on for Computing Maeh~ery, Vol. 23, No. 2, April ~970, pp. 2~2-281.

Parallel Evaluation of Certain Rational Expressions and Recurrences 253

Each of the algorithms minimizes the time needed for the multiplications to within a
constant and can be shown to be faster than the best previously known algorithm for
large n. Moreover, all the algorithms, except the one associated ~4th Theorem 3.4, have
the following two characteristics:

1. To run the algorithms each processor is either masked or performing the same opera-
tion at any time. Hence the algorithm can be run on single-instruction stream-multiple-
data stream (SIMD) machines (Flynn [4]) such as ILLIAC IV.

2. The algorithms require a very simple interconnection pattern. All we need is a
binary tree network between processors.

In Section 4 we prove lower bounds on the time needed for the parallel evaluation of
certain rational expressions, under the assumption that all processors can perform differ-
ent operations at any time. This assumption corresponds to multiple-instruction stream-
multiple-data stream (M I M D) machines (Flynn [4]) such as C.mmp, the multi-mini-
processor system at Carnegie-Mellon University (Wulf and Bell [19]). I t is clear that
lower bounds with respect to M I M D machines also hold with respect to S IMD machines.
The lower bounds obtained in the paper imply that the algorithms introduced in Section
3 are asymptotically optimal with respect to M I M D machines, although most of these
algorithms can be run on S IMD machines, as noted above.

Section 5 deals with the problem of the parallel evaluation of rational expressions
defined by recurrences. We show that, by using parallelism, the evaluation of an expres-
sion defined by any first-order rational recurrence of degree greater than 1 or any non-
linear polynomial recurrence can be sped up at most by a constant factor, no matter how
many processors are used. Consider, for example, the evaluation of the yn defined by the
recurrence

Y,+i = ½(y, + a /y ,) , i ~- O, 1, 2, . . . , a -- 1,

which is the well-known recurrence for approximating a t. We show that for evaluating y~
any parallel algorithm using any number of processors cannot be essentially faster than
the obvious sequential algorithm for any n. Thus the theory for nonlinear recurrences is
completely different from the theory for linear recurrences, where good speedups have
been obtained (for example, Heller [5], Kogge [9], Kogge and Stone [10], Maruyama [13],
Munro and Paterson [14], and Stone [15]).

In Section 2, we give basic definitions and an abstract formulation of the general
evaluation problem considered in the paper.

2. Abstract Formulation and Definitions

Let F be an algebraically closed field, e.g. F is the field e of complex numbers, and let x
be an indeterminate over F. F[x] and F(x) denote the ring of polynomials and the field of
rational expressions in x over F, respectively. Our problem is to evaluate a set of poly-
nomials in F[x], {fl(x), f~(x), . . . , fro(x)}, under the following assumptions:

1. By evaluating {fl(x), . . . , fro(X)} we mean computing the values of f l (x) , . . . ,
f,,,(x) over F(x) , given F I.J {x}. The four binary operations, -b, - , X , / , associated with
the field F(x) are the ones we are allowed to use.

2. The elements in F are called scalars. A multiplication of two elements in F(x) is
called a scalar multiplication if one of the two elements is a scalar; otherwise it is called
a nonscalar multiplication. Scalar or nonscalar addition (subtraction) is similarly defined.
A division whose dividend is a scalar is called a scalar division. Let M, Mo, A, A , denote
the tithe needed for one nonscalar multiplication, scalar multiphcation, nonscalar addltw~
(subtraction), scalar addztion (subtraction), respectively. Let D, D, denote the tithe needed
for a di~sion whose dividend is a nonscalar, scalar, respectively.

3. At any given time, up to k operations may be performed. This means that there are
k processors which can perform the operations, -1-, - , X , / , at any time but some proc-
essors may be idle. If in some time interval all processors, except the ones masked, per-

2 5 4 H . T . KUN(~

form the same operation, say, addition, then we refer to that time interval as a parallel
step of additiorl.

I f the positive integer k in (3) is greater than one, we say {fl(x), - ' - , f~(x)} is to be
evaluated in parallel, while if k is equal to one, we say it is to be evaluated sequentially.
We define Tk(f l (x) , " " , f ~ (x)) to be the min imum time needed to evaluate {fl(x), . - - ,
f,~(x)} with k processors.

To illustrate our notation given in (2), we consider an example. Let F = C and let x be
an 1 X 1 matrix A whose entries are in C. Suppose that we use an 0 (l a) algorithm for matrix
multiplication and inversion. (Here we interpret division as matrix inversion.) Then
M = 0(13), M , = O(l~), A = O(l~), A , ffi O(l), D = O(lS), D, = 0(13).

3. New Algorithms W h w h Use Divisions for the Parallel Evaluation of x ~, {x 2, x 3, • • • , x~},
I I , '~ (x + a.), ~ o "~ a,x', etc.

In this section we assume that M > A . We first consider a well-known problem, that of
evaluating x ~. Knuth [11, §4.6.3] gives a rather detailed survey of sequential algorithms
for solving this problem. I t is known that there exists a sequential algorithm which takes
time [log n ~ O(log n/log log n)]M. (In this paper all logarithms are taken to base 2.)
However, as pointed out in Borodin and Munro [1], it is easy to show the following:

LEMMA 3.1. I f diviswn ~s not used, |log n]M is a lower bound on the time for the parallel
evaluation of x ~, no matter how many processors are used.

Hence, if division is not used, any parallel algorithm cannot be essentially faster than
the fastest sequential algorithm. In the proof of the following theorem we give an algo-
rithm for the parallel evaluation of x ~ which uses divisions and which takes time less than
|log ~]M when n is large.

THEOaEM 3.1. I f k >_ n, x ~ can be evaluated in two steps of parallel diviswn and
|log n| ~ 2 steps of parallel ad&twn. More precisely,

T , (x '~) < [logn]A "t- 2 (A , - k D,). (3.1)

PROOF. We establish the theorem by exhibiting an algorithm.

Algorithm 3.1. (An algorithm for the parallel evaluation of x".)
1.

2.

3.
4.
5.

Note that

C o m p u t e A , = x - r , , ~ ffi 1, . . . , n , m paral le l , w h e r e the r, are in F and are the n d i s t i n c t
zeros of x ~ - r for a n y n on z e r o e l e m e n t r in F.
C o m p u t e B , ffi s,/A, , i = 1, . . . , n , in paral le l , w h e r e s , ffi r , / (n r) .
C o m p u t e C = ~ B , in paral le l .
C o m p u t e D ffi 1 /C .
C o m p u t e E ffi D ÷ r.

n n n

C = ~ B , = ~ s , / A , = ~ r , / l n r (x - - r,)] = P (x) / [n r (x '~ - r)],
1 1 1

where P (x) = ~ , ' - i r, H e ~ , (x - re). Evaluating the first derivative of x ~ -- r =
H i " (x - r,) a t r , , wehave nr$ -1 = ~Ie~, (r, -- re). Thus P(r ,) = r, I I ~ , (r, - re) ffi
nr, i = 1, • . . , n. This implies that P (x) --= nr, since the degree of P (x) is n - 1. Hence
C = 1 / (x ~ - r) and so E = D ~ r = 1/C ~ r = x ~. Therefore Algorithm 3.1 indeed
evaluates x ". Since the number of available processors is greater than or equal to n, steps
1, 2, 3, 4, 5 can be done in time A , , D , , [log nlA, D , , A , , respectively. So Algorithm 3.1
takes time |log nlA ~ 2(A, ~ D,).

Note that |log nlA + 2 (A , + D,) < |log n]M when |log n| > 2 (A , + D ,) / (M -- A) .
In fact,

lim |log n]M/Ulog n]A + 2(A, + D,)l = M / A .
n~oo

Hence we have sped up the evaluation of x ~ by a factor M / A for large n.

Parallel Evaluation of Certain Rational Expressions and Recurrences 255

Remarks on Algorithm 3.1.
1. The choice of r in step 1 depends on the application of the algorithm. For instance,

if the algorithm is used to compute A" for a real matrix A then the number r should be
chosen such tha t A -- r J is nonsingular for all i; otherwise the algorithm would break
down at step 2, where we have to compute s ,(A - r ,I) -1 for all i. (Note tha t for matr ix
computation, in the algorithm divisions should be interpreted as matrix inversions, and
scalars r , , r should be interpreted as r J , rI, respectively, where I is the ident i ty matrix.)

2. Since the constants, r , , s , , are in F and i t is assumed in Section 2 that elements in F
are given as free, Theorem 3.1 does not count the time needed to compute r, and s , . In
practice, these constants have to be either stored in a table or computed. (We find a
similar situation in the fast Fourier transform where certain constants, i.e. powers of an
n th root of unity, are needed.) Str ic t ly speaking, the algorithm is really a form of "pre-
conditioning." The same remark holds for the Mgorithms below.

3. The algorithm raises x to the nth power without using any multiplications bu t with
two divisions. This may be surprising to those who are dealing only with sequential algo-
rithms. This again demonstrates tha t there exists an intrinsic difference between sequen-
t ia l and parallel computat ion (see Stone [16] for other examples).

Using the same ideas, we can immediately obtain the following.
THEOREM 3.2. Let al, . . •, an be n distinct elements in F. I f k >_ n, then ~I1 ~ (x + a,)

can be evaluated in two steps of parallel division and [log nl + 1 steps 0 3" parallel addition.
More precisely,

T , (y ~ I ~ (x --}- a ,)) < Ilogn]A + A , + 2D~. (3.2)

PROOF. We establish the theorem by exhibiting an algorithm.

Algorithm 3.2. (An algorithm for the parallel evaluation of H i (x + at))

1. Compute A, = x + a , , i -~ 1, . . . , n, in parallel.
2. Compute B, = b,/A, , ~ = 1, . . . , n, in parallel, where b, ffi [II,~, (a~ -- a,)] -t.
3. Compute C = ~ [B, m parallel.
4. Compute D ffi 1/C.

Note that C -- ~ , ~ B, = ~ , ~ b , /A, = l / H a " (x + a,) . Hence the algorithm indeed
evaluates]II~ ~ (x -~ a,) . Since the algorithm clearly takes t ime [log n] A ~ A, -P 2D,
with n processors, we have proven (3.2). []

The obvious algorithm for the parallel evaluation of I I ~ " (x -}- a,) is the following:

1. Compute A, = x "-k a , , z = 1, - . . , n, in parallel.
2. Compute D = II~ A, m parallel.

I t takes t ime [log nlM ~ A , . Hence Algorithm 3.2 achieves a speedup factor M / A for
large n without significantly complicating the algorithm. I t is conceivable tha t in general
a computer organization which is suitable for executing the obvious algorithm is also
suitable for executing Algori thm 3.2.

I t should be noted tha t Theorem 3.2 and Algorithm 3.2 can be extended to cover the
general expression l~Ii" (x ~ a,) m, where the a, are n distinct elements in F and the m,
are positive integers, since partial fraction expansions can still be used when factors are
raised to powers greater than one. The extension is straightforward and will not be given
in detail here.

COROLLARY 3.1. I f P(x) is the n-th degree Ckebyshev polynomial with respect to some
interval, then

T ~ (P (z)) _< [log nlA + A~ -k 2D, . (3.3)

PROOF. Since the zeros of P (x) are dist inct and are known analytically, (3.3) follows
from Theorem 3.2. []

There are several potential applications of Algorithms 3.1 and 3.2. For example, by
using Algorithms 3.1 and 3.2 we can compute A" and P (A) , respectively, where A is a

256 H . T . KUNG

mat r ix and P (x) is some C h e b y s h e v polynomial . A" a n d P (A) ~ can t h e n be used to

app rox ima te t he d o m i n a n t e igenvectors of A. (See, for instance, Wi lk inson [18, Ch. 9].)

LE~MA 3.2. I l k ~_ ½n(n + 1) - - 1, then the set {x ~, x 3, . . . , x ~} can be evaluated in two
steps of parallel division and [log nl W 2 steps of parallel addition. More precisely,

Tk(x 2, x 3, . . . , x ~) ~ [log nlA + 2(A, + D ,) , (3.4)

provided k > ½n(n ~- 1) - 1.

PROOF. W e es tabl ish the l e m m a by exhibi t ing an a lgor i thm.

Algorithm 3.3. (An algorithm for the parallel evaluation of {x 2, ".. , x" } by using at least ½n(n-}-l) - 1
processors.)

1. A s s i g n ~ processors for the evaluation of x ' for each i ffi 2, . . . , n. Use Algorithm 3 1 to evaluate
x ' for each ~. Since k > ½n(n+l) - 1, x ~, ".. , x ~ can be evaluated simultaneously.

2. Step 4 of Algorithm 3.1 will not be performed for the evaluahon of x ~, " " , x ~-~ untd the time
when step 4 of Algorithm 3.1 is ready to be performed for the evaluatmn of x ".

Clearly, t he l e m m a can be p roven f rom Algor i thm 3.3. []
THEOREM 3.3. I f k _~ n, then the set {x ~, x 3, • • • , x ~} can be evaluated in five steps of

parallel nonscalar multiplwation or division and [log nl ~ 5 steps of parallel addition. More
precisely,

T~(x 2, x 3, . . . , x ~) < llog nlA + A + 4 (A , + D~) + M. (3.5)

PROOF. We es tabl ish t h e t heo rem for t h e ease n > 9 b y exhibi t ing an a lgor i thm.

Us ing the s ame ideas as in the a lgor i thm, t he t heo rem can be easily p roven for ~ ~ 8.

Algorithm 3.4. (An algorithm for the parallel evaluation of {x 2, x 3, " " , x ~ 1 by using n processors.)

1. Compute A, = x' , ~ ffi 2, . . . , m by Algorithm 3.3, where m ffi Intl.
2. Compute B, = A~', ~ ffi 2, .-" , m by Algorithm 3.3.
3. Compute C,.~ ffi B, • A~ , % 3 ffi 1, . . . , m - 1, in parallel, where A~ = z and B~ ffi A~.

No te t h a t C , = A m ' . A j = x "m+: and t h a t {x 2, . . • , x ~} c {Bm}O {C,,~ I i, 3 = 1, . . . ,

m - 1}. Hence Algor i thm 3.4 indeed evaluates {x~, . . . , x~}. Also no te t h a t since
½m (m -}- 1) - 1 ~ n for n > 9, there are enough processors to per form s teps 1. and 2 by
Algor i thm 3.3. T h e to ta l t ime needed for s teps 1 and 2 is 2{llog mlA W 2(A, + D,)] .
Since (m - 1) 2 < n, s tep 3 can be done in t ime M. Therefore Algor i thm 3.4 takes t ime

[log nlA ÷ A + 4 (A , + D,) -t- M. []
T h e following corollary shows how the above resul ts can be used to p roduce efficient

parallel a lgor i thms wi th small parallelism.
COROLLARY 3.2. I f n > k > 1, then x ~ can be evaluated ~n 61 steps of parallel non-

scalar multipl,cation or divzswn and ([log kl W 5)l steps of parallel addition, where 1 =
[log n/log k]. More precisely,

Tk(x") < l[[log klA + A W 4 (A , + D,) + 2M]

f o r n > k > l.
PROOF. We establ ish t h e corollary by exhibi t ing an a lgor i thm.

Algorithm 3.5. (An algorithm for the parallel evaluation of x ~ by using k processors, where n > k > 1.)

Since 1 ffi [log n/log k], n < k I. We have the following two cases:
Case l . n ~ k ~. Lety0ff ix . For i ffi 0, --- , 1 - 1,

1.1. compute ye ~ by Algorithm 3.1;
1.2. set y,+l ~-- y~.

Clearly, yz ffi x ". By Theorem 3.1, Tk(x ~) < /[Ilog k]A + 2(A° + D#)].
Case 2. n < k I. Let n ffi ~ 0 z-l a,k', where 0 <_ a, < k The algorithm for case 1 can be modified

as follows: Let y0 = x and z0 ffi 1. For z = 0, . " , l - 1,
1.1. compute lYJ, yJ, "'" , YA} by Algorithm 3.4;

a t . 1.2. compute z,+~ = z,y, ,
1.3. s e t y,+t ~- y~ .

Parallel Evaluation of Certain Rational Expresszons and Recurrences 257

I t is straightforward to show that z~ = x n. By Theorem 3.3, we have

T~(x") _< /[[log klA -t- A --b 4(A, W D,) ÷ 2M]. []

I t is possible to slightly improve the bounds in Corollary 3.2 by using more compli-
cated algorithms than Algorithm 3.5.

COROLLARY 3.3. I f k > n, then a general n-th degree polynomial ~ o ~ a,x" can be evalu-
ated by one step of parallel scalar multiplication, five steps of parallel nonscalar multzplication
or diviszon, and 2[log n[+ 6 steps of parallel addition. More precisely,

T ~ (~ o ~ a,x') < (2Ilog nl + 2)A + 4(A~ + D,) + M "t- M,. (3.6)

PROOF. The theorem is proven by an algorithm which computes {x ~, . , . , x"} in
time Ilog nlA % A W 4(A, % D,) -t- M by using Algorithm 3.4, then computes Ia0,
a~x, • • • , a,~x'l in one step of scalar multiplication, and finally combines these in further
llog nl + 1 steps of parallel addition. []

Note that the dominant term of the upper bound in (3.6) is 2 llog nlA, while all oiher
upper bounds we have derived so far have the dominant term [log nlA (see (3.1)-(3.5)).
In the following theorem we show that the upper bound in (3.6) may be improved to
have [log nlA as the dominant term by using 2n processors.

THEOREM 3.4. T2, (~o"a ,x ') _~ (logn)A + O((logn) t)M.
PROOF. We apply a recursive evaluation procedure due to Brent [2], Maruyama [13],

and (independently) Munro and Paterson [14, Alg. A]. The procedure will not be de-
scribed here. However, we note that the procedure requires x 2' at time iA ~ constant,
for i -- 1, . . . , [log n]. We then assign ~ processors for the procedure and another n
processors for the evaluation of x 2' for all i by using Algorithm 3.1 for each z. Hence at
time iA ~ constant, x 2' is always available. []

4. Lower Bounds

In this section we assume that different processors may perform different operations at
any time. We shall prove lower bounds under this general assumption. Let f (x) be a
rational expression in F(x) . Define the degree o f f (x) to be degf = max (degfl , deg f2),
where f l (x) , f2(x) are two relatively prime polynomials in E[x] such that f -- fl/f2.

LEMMA 4.1. Let f (x) , g(x) E F(x) and h(x) = f(x) op g(x) where op E {&, - , X,/}.
Then if op zs a nonscalar additwn, multiplicatwn, or dwzsion then deg h ~ deg f • deg g,
otherunse deg h = max(deg f , deg g) .

PROOF. Assume that op is a nonscalar multiplication. Then

h = (ffff2) op (gl/g2) = (f~'gl)/(f:'g2),

and hence degh < max(degfl + deg gl, degf2 + deg g2) _< degf q- deg g. Since the
proofs for other cases are similar, they will be omitted. []

THEOREM 4.1. Let f (x) E F(x) with deg f = n. Then T~(f(x)) >_ {log nlU Vk, where
U = rain(A, M, D).

PROOF. The proof follows from a growth argument on degree. Consider an arbitrary
algorithm for the parallel evaluation of f(x) by using arbitrary number of processors. Let
R, denote the set of rational expressions which can be created by the algorithms in time
zU. It suffices to show by induction that elements in R, have degrees at most 2". Obviously,
the statement holds for i -- 1. Suppose that it holds for z g j. Let rl E R:+i. We want to
prove deg rl _~ 2 ~+1. If rl E R~ then deg rl ~ 2" < 2 ~+1. We are done. Suppose that rl ~ R~.
Let us consider how r~ is computed from R~ by the algorithm. Since rl is created by the
algorithm, rl is the result of a binary operation opt of the algorithm with operands rl,l
and rl.2. Similarly, for i = 1, 2, if r~,, ~ Re, r~., is the result of another binary operation
opt., of the algorithm with operands rl,,.~ and r~,,,2. Hence r~ is associated with a binary
tree whose internal nodes represent results of the binary operations and whose leaves
represent the elements in R~ which are used for computing rl . By the construction of the

258 H . T . KUNG

tree, the rational expressions associated with internal nodes are not in R~. (I t is clear that
the tree is finite, since there is a positive lower bound on the time needed for every opera-
tion.) We note that if the binary operation associated with an internal node is a nonscalar
addition, multiplication, or division then the two successors of the node must be leaves.
Hence along each path of the tree there is at most one node with which a nonscalar addi-
tion~ multiplication, or division is associated. Then by Lemma 4.1 and the induction
hypothesis one can easily show that deg r~ < 2 ~+~. The induction is complete. O

By Theorem 4.1 and the results obtained in Section 3, we have the following
COROI, LAaY 4.1. I f M > A and D > A, then

I T , (x ~) < [log nlA W 2(A~ + D,),
Tn(IY~l" (x W a,)) _< [log nlA + A, W 2D, ,

[log nlA _< ~Tn(x~, x 3, . . . , x ') ~ |log nlA + A + 4(A, + D,) + M,
(T e , (~ o ~ a , x ") < (log n)A + O((log n)~)M, where a, ~ O.

Hence the lower and upper bounds are asymptot~caUy optimal as n ~ ~ .
Suppose that we have a problem for which D, D , , M are much greater than A or M,.

Hence we want to minimize the number of dwisions and nonscalar multiplications. The
following theorem gives a lower bound on the time needed for divisions and nonscalar
multiplications.

THEOREM 4.2. Suppose that we do ~ot count the time needed for additwn, subtraction,
and scalar mult~plwation. Let f (x) E F(x) ~ t h deg f = n. Then

Tk(f(x)) >_ [log n/log(k W 1)lV,

where V = min(D, D, , M) .
PROOF. Consider an arbitrary algorithm for the parallel evaluation of f (x) by using

k processors. Let R, be the set of rational expressions in F(x) which can be evaluated in
time iV by the algorithm. We shall show by induction that there exists a common de-
nominator D, for the elements in R, such that deg D, < (k + 1) ' and such that if r E R,
then r = UD, for some ~ E F[x] with deg ~ _< (k -{- 1)'. The induction statement clearly
holds f o r , = 1. Assume that it holds for ~ < 2. Let r~, .. • , r t , l _< k, be the results im-
mediately following from the nonscalar multiplications or divisions of the algorithm,
which occur in the time interval (iV, (j + 1)V]. Then

R j + i = { ~ u , r , + u r l u , , u E F and r E R ~ } .

Assume that r, = s, op, t, where s, , t, E R~ and op, E { X , / } . By the induction hypothe-
ses, s, = ~,/D~ and t, = L/Dj where ~,, ~, E F[x] and both have degree less than or equal
to (k W 1)'. Hence r, = ~,[,/Dj ~ when op, = X and r, = ~,/L when op, = / . Without
loss of generality, assume that op, = / for i < h < 1 and op, = X for i > h. Define

It1 "'" lhDj if h = l,
D~+l = tl [hD~ 2 if h < l .

I t is easy to check that D j+l is a common denominator for the elements in R~+~, and that
deg D~+~ _< (k -{- 1) ~+~, since deg t, < (k -k 1) ~ and deg D~ _< (k --k l y . Also, it is easy
to show that if r E Rj+i then r = UD~+i for some ~ E F[x] with deg ~ _< (k + 1) '+~.
Therefore the induction is complete and hence we have proven the theorem. []

COROLLARY 4.2. Suppose that we do not count the time needed for addition, subtraction,
and scalar multiplication. I f k < n, then

[log n/log(k + 1)IV _< T~(x ~) ~ [log n/log kl(4D, + 2M),

where V = rain(D, D , , M) . Hence the bounds are within a constant factor of the best
possible.

Pnoo~. The result follows from Corollary 3.2 and Theorem 4.2.

Parallel Evaluation of Certain Rational Expressions and Recurrences 259

5. Results on Nonlinear Recurrence Problems

I t frequently occurs in applied mathematics tha t the solution to some problems is given
by a recurrence relation. Hence we often have to compute yn from y0, y - l , "-" , y-m
where y~ is defined by y,+l = ~p(y,, • • • , y,--m) for some function ¢ (x l , • "- , x~+l). I t is
natural to t ry to use parallel computation to speed up the process of computing y r .
Karp, Miller, and Winograd [8] studied some general aspects of parallelism and recur-
rence. Recent work in this area includes, for example, Heller [5], Kogge [9], Kogge and
Stone [10], Maruyama [13], Munro and Paterson [14], and Stone [15]. These works con-
centrate essentially on linear recurrence problems. In particular, Kogge [9] has given a
unified t reatment for general linear recurrence problems and has shown tha t for a general
class of linear recurrence problems we can have the n/ log n speedup ratio, which can be
shown to be, in some sense, optimal. Therefore the linear recurrence problem is essentially
settled. However, we do not know how to construct efficient parallel algorithms for even
very simple nonlinear recurrence problems. (Note tha t nonlinear recurrence problems
occur in practice very often.) For example, i t seems very difficult to use parallelism for
the following nonlinear recurrence:

y,+, = ½(y, + a /y ,) , (5.1)

which is the well-known recurrence for approximating a t, (The question of using parallel-
ism for the recurrence problem (5.1) was asked by Stone [17].) In this section we shall
show that any parallel algorithm usi~g any number of processors cannot be ess'ent~ally faster
than the obvious sequential algomthm, for any first-order rational recurrence of degree greater
than 1 like (5.1), and for any nonlincar polynomial rec~rre~ce problem like

y,+l = 2y,2y,-1 + 3y,_~. (5.2)

LEMMA 5.1.]f ~¢(X), ~(X) E F(x), then deg(¢ o ~) = (deg ¢)(deg ~). (Note that
" , " stands for composition.)

PROOF. Write ~ = ¢ ~ / ~ , where ¢~, ~2 are two relatively prime polynomials in F[x].
We may assume that the leading coefficient of ¢2 is unity. We write e l (x) = a (x - al) TM

• ". (x - - a h) '~ and~2(x) = (x - - bl) ~ . . . (x - - bl) ~t, where t h e a i s i n F , t h e a , are
distinct dements in F, the b, are distinct dements in F, and the m , , n, are positive
integers. Clearly, deg ~ = ~] m, and deg ~ = ~] n , . Since ~ and ~2 are r d a t i v d y
prime, we have a, ~ b~, V i , 3. Let $~ and q~2 be two relatively prime polynomials such
tha t ~ = ~ / ~ . Note tha t

(¢ o &)(x) = [a(~(x) - a,) ~' . . . (&(x) - a~)'~]/
[~ (z) - b,) "~ . . . (~ (z) - b~)"']

= {[a(~,(x) - al(.~:(x)) m . . . ($, (z) - ah~2(x))~h}/

[(~ , (x) - b~(x)) (~ , (x) - b ~ (x)) ~ ' l } ~ (x) ~ n ' - z ~ ' . (5 . 3)

Claim that ~bl(x) -- a,~b2(x) and g,l(x) - b~f2(x) are relatively prime for all i, j . We
prove this by contradiction. Assume tha t there exists h(x) E F[x] with deg h > 1 such
tha t ~b~ - a,~b2 = h~h and ~h - b~b~ = h~h where the h~, h~ ~ F[x]. These imply tha t
~ = [(hi - h2)/(b~ - a,)]h and ~b~ = [h~ -4- a,(hl - h2)/(b~ - a,)]h. Hence h is a com-
mon divisor for q~ and ~ . This is a contradiction. Similarly, we can prove tha t there are
no nontrivial common divisors between ~2(x) and $1(x) - a,$2(x) and between ~ (x)
and ~ (x) - b~¢~(x). Therefore, from (5.3), one can compute the degree of ¢ o ¢~ as
follows: Assume tha t deg ~ = deg ,p~ > deg ~ and deg ¢~ = deg ~ > deg ~ . (The proofs
for the other cases are similar and will be omitted.) The numerator of (5.3) has
degree (~ m,) deg ~ = (deg ~) (deg ~b). The denominator of (5.3) has degree (~ n,)
deg ~b~ + (~ m , - ~] n ,) deg ~b2 = (deg ¢2)(deg ~,) + (deg ~, - deg ~2)(deg ~2),
which is less than or equal to (deg ¢) (deg ~b). Hence deg(~ o ~b) = (deg ~) (deg ¢~). []

T ~ o a ~ 5.1. Let y , be defined by y,+~ = ¢ (y ,) where ~ (x) ~ F (x) with deg ¢ = d.

260 H . T . KUNG

The~

T~(y,~) > In log dlU, Vk, (5.4)
where U = min(A, M, D).

PROOF. Let y0 = x. Then y, = ¢ (x) where ,I> is the n times self-composition ofg. Then
by Lemma 5.1, deg ,I) = (deg q~) ~ = d ~. The theorem follows from Theorem 4.1. O

Under the assumptions of Theorem 5.1, y. clearly can be computed sequentially in
t ime n. Tl(9(x)) . If deg 9 = d > 1, then by (5.4) we have

T~(y~)/Tk(y~) _< T~(~(x))/((log d)U) = constant , Vn, Vk.

Hence we have the following.
COROLLARY 5.1. By using parallelism the 'evaluation of an expression defined by any

first-order ratwnal recurrence with degree greater than 1 can be sped up at most by a constant
/actor.

Consider, for example, the recurrence problem (5.1). Assume tha t we work with real
numbers and tha t every ari thmetic operation takes the same t ime U. Then to evaluate
y~ the obvious sequential algorithm takes t ime 3nU, while by Theorem 5.1 any parallel al-
gori thm takes time at least nU. Hence by using parallelism the evaluation of y, can be
sped up at most by a factor of 3, for all n. This is completely different from the evaluation
of linear recurrence where n/ log n speedups can be obtained.

Now we consider higher order recurrences, i.e. y,+~ = ~ (y , , y,_~, • • • , y,_,~) from m >
0. Suppose tha t (p is a mult ivar ia te polynomial of degree greater than 1. Let y0 = y-~ =
. . . . y_,~ = x. Then y~, y2, ' "" , y~ are rational expressions in x. I t is very easy to see
tha t there exists a constant 0 > 1 such that the degree of y, in x is greater than or equal to
0' for all z. For example, consider the third-order recurrence (5.2). Let a, be a lower bound
on the degree of y, in x. Then by (5.2) we have a,+~ >_ 2a, + a,_~. By a s tandard tech-
nique on difference equations, we know a, can be chosen as 0" where 02 = 20 + 1 and -
hence 0 > 1.

Since the degree of y . in x is _> 8~, by Theorem 5.1 we have Tk(y,) ~ In log O]U, where
U = rain(A, M, D) . Let Ti(~) denote the time for evaluating ~ (x l , x2, • . . , x,~+l)
sequentially. Then Ti(y,) _< nTl(~) and hence

T~(y,)/T~(y~) < T~(~p)/((log O)U) -- constant, Yn, Vk.

Hence we have the following
COROLLARY 5.2. By using parallelism the evaluation of an expression defined by any non-

linear polynomial recurrence can be sped up at most by a constant factor.

6. Summary and Conclusions

I t is convenient to th ink tha t the paper consists of two parts. In the first part , we have
given a general technique to construct parallel algorithms which minimize the number of
multiplication or division steps. This technique is useful when multiplication or division is
expensive. Some rather surprising algorithms are derived. For example, Algorithm 3.1
evaluates powers of x using additions instead of multiplications. This demonstrates the
intrinsic difference between sequential and parallel computation.

In the second par t of the paper, we have shown (Theorems 4.1 and 4.2) lower bounds
on the t ime to evaluate rational expressions. The lower bounds are asymptotical ly close
to the upper bounds established by the algorithms in the first part of the paper. Using
the lower bound results, we have shown tha t by using parallelism the evaluation of an
expression defined by any first-order rational recurrence of degree greater than 1 or any
nonlinear polynomial recurrence can be sped up a t most by a constant factor, no matter
how many prvcessors are used and how large the size of the problem is. This is probably the
first and may be the only known example of a problem which cannot be essentially sped
up.

Parallel Evaluation of Certain Rational Expressions and Recurrences 261

ACKNOWLEDGMENTS. I w a n t to t h a n k Professor J .F . T r a u b for h i s he lp fu l c o m m e n t s
on th i s paper .

REFERENCES

(Note. References [6, 7] are not cited in the text.)

1. BORODIN, A.B., AND MUNRO, I. Notes on efficient and optimal algorithms. U. of Toronto,
Toronto, Canada, and U. of Waterloo, Waterloo, Canada, 1972.

2. BRENT, R.P. On the addition of binary numbers. IEEE Trans Comput. C-19 (1970), 758-759.
3. BRENT, R.P. The parallel evaluation of arithmetic expressions in logarithmic time. In Com-

plexity of Sequential and Parallel Numemeal Algomthms, J.F. Traub, Ed., Academic Press, New
York, 1973, pp. 83-102.

4. FLYNN, M.J. Very high-speed computing systems. Proc. IEEES$ (1966), 1901-1909.
5. HELLER, D. A determinant theorem with applications to parallel algorithms. SIAM J. Numer.

Anal. 11 (1974), 559-568.
6. HYAFXL, L., AND KUNG, H.T. The complexity of parallel evaluation of linear recurrences. Proc.

7th Annual ACM Symposium on Theory of Computing, 1975, pp. 12-22, to appear in J. ACM.
7. HVAFIL, L., AND KUNG, H.T. Bounds on the speed-ups of parallel evaluation of recurrences.

Second USA-Japan Computer Conference Proceedings, 1975, 178-182.
8. KARP, R.M., MILLER, R.E., AND WINO~RAD, S. The organization of computations for uniform

recurrence equations. J. ACM 15, 3 (July 1967), 583-590
9. KOGOE, P.M. Parallel solution of recurrence problems. IBM J. Res. Develop. 18 (1974), 138-148.

10. KOGGE, P.M., AND STONE, H.S. A parallel algorithm for the efficmnt solution of a general class
of recurrence equations. IEEE Trans. Comput. C-2~ (1973), 786-793.

11. KNUTH, D.E. The Art of Computer Programming, Vol. 2: Sem~numemcal Algomthms. Addison-
Wesley, Reading, Mass., 1969

12. Kuc~, D.J. Multmperation machine computational complexity. In Complexity of Sequentml
and Parallel Numerical Algomthms, J.F. Traub, Ed., Academic Press, New York, 1973, pp. 17--46.

13. MARUYAMA, K. On the parallel evaluation of polynomials. IEEE TraNs. Comput. C-22 (1973),
2-5.

14. MUNRO. I., Ann PATERSON, M. Optimal algorithms for parallel polynomial evaluation. J .
Comput. Syst. Scls. 7 (1973), 189-198.

15. STONE, H.S. An efficient parallel algorithm for the solution of a tridiagonal system of equa-
tions. J. ACM $0, 1 (Jan 1973), 27-38.

16. STONE, H.S. Problems of parallel computation. In Complexity of ,%que~t~al and Parallel Nu-
merical Algorithms, J.F. Traub, E d , Academic Press, New York, 1973, pp. 1-16.

17. STONE, H.S. Private communicatmn, 1973.
18. WILKINSON, J.H. The Algebraic Eigenvalue Problem. Oxford U. Press (Clarendon), London and

New York, 1965.
19. WULF, W.A., AND BELL, C G C.mmp--A multi-mini-processor. Proe. AFIPS 1972 FJCC, Vol.

41, Pt. II , AFIPS Press, Montvale, N.J., pp. 765-777.

RECEIVED MARCH 1974; REVISED JULY 1975

Journal of the Aaaocmtioa for Computing Machinery, VoL 23, No. 2, April. 1976

