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ABSTRACT The  problem oI eva lua tmgxn  defined by the l inear  recur rence  x, = x~-lb, + a,+l, t >- 1, x0 = a l ,  or  
equivalently evaluat ing the HorneT expression ( ' ( a lb~  + a.o)bz + + a,,)b,, + a,,+~ is cons idered  It is 
shown that by using an rdeahzed k-processor  parallel computer  the speedup for the problem is at most ~rk + 
ra ther  than k The bound  is essentially sharp  
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1. Introduction 

The concept of computers such as C.mmp and I L L I A C  1V is to achieve computat ional  
speedup by performing several operations simultaneously with parallel  processors.  This 
type of computer  organization is referred to as a parallel  computer .  In this paper  we 
prove upper bounds on speedups achievable by parallel  computers  for a part icular 
problem,  the solution of first-order linear recurrences.  We conslder this problem because 
it ~s important  m practice and also because it is so simply stated that we may obtain some 
insight into the nature of parallel computat ion by studying it. 

Consider a k-processor parallel  computer .  It is understood that  because of possible 
memory conflicts, delays due to mterprocessors communication,  etc. ,  k-fold speedup is 
rarely achieved. In this paper  we show that the speedup for a l inear recurrence problem 
is at most ~k + ~, even under the assumption that the k-processor machine is ideahzed so 
that there are no memory conflicts or commumcation delays. We also show that the 
bound ~k + ~ is almost the best possible. Of course the actual speedup obtained from a 
real k-processor machine would be less than or equal to ~k + ~. The difference between 
]k + ~ and k is rather significant. For  example,  f fk  = 16, 64, then the speedup for the 
problem is at most 11 ,43 ,  respectwely,  no matter  how efficient the k-processor  machine 
IS. 

The reason that we get at most 70 percent of the speedup we might expect for the 
problem is the inherent dependency of variables in the linear recurrence A related result 
m Kung [7] states that many nonhnear recurrences can be sped up at most by a constant 
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factor, no matter how many processors are used. Hence these nonlinear recurrences 
must involve even more dependency relationships than the linear ones We believe that 
the study of these dependency relationships is fundamental  for understanding parallel 
computation. 

A graph representation of parallel algorithms is given in the Section 2. In Section 3 we 
gwe the results of this paper and discuss their significance. The proof of our main 
theorem (Theorem 2) is given in Section 4. In Section 5 we give a summary and make 
some remarks about this work. An illustration of the algorithm used in the proof of 
Theorem 2 ' ,  a generalized version of Theorem 2, is prov)ded in the Appendix. 

2. Model o f  Computation 

Let h be an inflmte field and a,, b,, i = 1, 2, ... , lndeterminates over h. Suppose that we 
perform computations in the extension field h(aj, bz, a o, b2, ...). We consider the 
problem of evaluating rational expressions E in h(al, bl, a2, b2, ...) given an input set I 
such that {at, bl,  a2, b2, .. } U h C I C h(at, bl ,  a2, b2 . . . .  ). (The recurrence considered in 
this paper m fact is an expression E of a special form. See Section 3.) 

An algortthm for evaluating E given I is defined by a direct acychc graph such that: 

(a) The m-degree of any node is either 0 or 2. A node whose in-degree is zero is called 
an input node. 

(b) There exists exactly one node whose out-degree is 0, and it is called the output 
node. The out-degree of any other node is greater than or equal to 1. 

(c) Each input.node contains a value which is an element from the input set I.  Each of 
the rest of the nodes contains an operation + ,  - ,  ×,  or / and a value which ~s the result 
of the operation on the values of the two predecessors. The value of the output node is E.  
(We often refer to a node by its value or its operation if there is no ambiguity.) 

(d) Each node belongs to one of t + 1 sets, called levels and denoted by lo, lj, ... , lt, 
such that (1) all input nodes are at level 1o, (2) for t --> 1, the predecessors of any node at 
level l, are from levels 10 . . . .  l,-1, (3) no level is empty 

Then it can be easily verified that the output node is the only node at level It and that t is 
bounded below by the maximal length of a path from any input node to the output node. 
We define t to be the time, k = max~_<,_~t ILl to be the number o f  processors, and w = 

~_~t II, I to be the number o f  total operations needed by the algorithm. An algorithm is 
called a sequential algorithm if k = 1 and a parallel algorithm ff k >- 2. 

Example 2.1. The graph shown in Figure 1 defines a parallel algorithm for evaluating 
the Horner  expression of seven variables, 

H7 = ((albl + a2)b2 + a3)b3 + a4, 

given I = {a~, ba, a2, b2, a3, b3, a4} in time t = 4, with k = 3 processors and w = 8 
operations 

It seems to us that this model is very general and includes any algorithm for evaluating 
expressions. One should note, however, that we have imphc~tly assumed that each 
operation takes one unit of time and the following machine idealizations: 

(a) Each processor can perform any of the four binary operations, but all processors 
do not necessarily perform the same operation at any time. 

(b) No time is required to communicate data between processors. 

Since we are interested m lower bounds on t~me and upper bounds on speedup, as we 
mentioned m Section 1, the results obtained in this paper for the idealized machine are 
certainly applicable for any real machine. 

We now define some notation. For an expression E and an input set 1, define 
Tk(E mod 1) = minimum time needed to evaluate E given I by an algorithm using k 
processors, and define the speedup of the problem of evaluating E given 1 by using k 
processors to be 
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level ,t 2 
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Input nodes 0 t , b t , a 2 ,  b 2 , a 3 ,  b3, a4 

Output node H 7 

Fm t 

S~(E rood/} = T~(E rood I)/Tk(E mod I), 

For slmphc~ty we often write Tk(E), Sk(E) for Te(E rood 1), Sk(E mod I) if there is no 
ambiguity. In this paper we obtain lower bounds on Tk(E) and upper bounds on Sk(E) for 
E defined by hnear recurrences. 

3. Results 

The problem consLdered m this paper is the following first-order linear recurrence 
problem. 

glvenal ,  ... , an+r, bl ,  ... , b , ,  Xo = al, x, = x,_jb, + a,+l for t  -- 1, (3.1) 
compute xn. 

Th~s ~s one of the most frequently occurring recurrences m practice. Consider the Horner 
expression of 2n + 1 variables: 

H2,+1 = ((...((albl + a2)b2 + a3)b3 + "'" + a, -Obn-i  + an)bn + a,+i. 

It is clear that x~ = H2n+~. Hence the recurrence problem is just the problem of 
evaluating H2,,+~ given the input set 

1 = {al . . . . .  a,+~, bl . . . . .  bn} L.3 X. 

It ~s easy to see that the minimum t~me sequentml algorithm is the obvious one defined by 
the recurrence (3,1). Hence we have 

Tl(H2,+l) = 2n. (3.2) 

Various parallel algorithms using O(n) processors for the problem have appeared in 
many papers, including Brent [1], Kogge [5], Kuck and Maruyama [6], and Stone [9]. In 
this paper we are interested m algorithms using k processors, where k is a positive integer 
independent of n Brent [2] had the first result along this line. He showed that for a 
general arithmetic expression E ,  ofn  variables and without division, if the input set is the 
set of all variables in E , ,  then 

Te(E,)  --< 2n /k  + O(log n). (3.3) 

Wmograd [10] recently improved Brent 's result for the case that k -< O(n/ ( log  n)2). He 
showed 

T~.(E,) <- [3/(2k)]n + O((log n)2). (3.4) 

Since H.~,+, is a specml instance of E2,+~. by (3.4) we have 

TA(H~,,+i) <-- (3/k)n + O((log n)2). 
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For the case that k << n, this bound can be easily improved by utilizing the special form 
of H2n+,. We have the following theorem. 

THEOREM 1 .l  

Te(Hzn+a) -< [3/(k + ½)] n + O(log k). (3.5) 

PROOF. Equat ion (3.1) is equivalent to 

Write 

n b~ a t .  i l [;"] t) 
where l is to be determined later .  We use k - 1 processors to compute 

[hal  = firb,.,+,l 
O1 ?+~L0 1 J' 

which takes time tl, and one processor to compute 

It]-- I t  -' ] 
f o r  i = 1, . . ,  1, w h i c h  t akes  t i m e  t2. 

Note that the multiplication of two matrices of the form [~ f] takes three operat ions 
and results m a matrix of the same form. Hence the obvious parallel  algorithm gives 

t i  ~ 3 ( [ ( n  - l ) / ( k  - 1 ) ]  - 1 + [ l o g ( k  - 1)1) .  

Note next that the multiplication of [g f] and [f] uses two operat ions and results m a 
vector of the form [~]. Hence 

t2 ~< 2/. 

Choose l = [3n/(2k + 1)1. Then both [o b ~] and [~] can be computed in trine 

max(q, tz) ~ [3/(k + ½)]n + O(log k). 

By using the fact that 

P.t p a 

x,, can be obtained in two addit ional operat ions.  [] 
The fundamental  result of this paper  is the following theorem. 
THEOREM 2. For any algorithm whwh evaluates H2~+l gwen the input set I, we have 

w --> 3n - t/2. (3.6) 

We defer the proof  of this theorem until Section 4. We have the following two 
corollaries: 

COROLLARY I .  

Tk(H2n+l) >- [3/(k + ½)] n, Vk, Vn. (3.7) 

PROOF The proof  follows from (3.6) and the fact that kt >- w. [] 
COROLLARY 2. For any algortthm which evaluates H2,+l gtven the input set I, t f  t < 2n, 

then 

w > 2n. (3.8) 

We now explain the significance of these corollaries.  From Corollary 1 and (3.2),  we 
obtain the main result of the paper:  

i T h e o r e m  1 has been  p roven  independen t ly  by Chen  [3] with a different  a p p r o a c h  
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Sk(H~n+~) --< ~k + ~, Vk, Vn; (3.9) 

i.e. the speedup o f  the problem ts at most ~k + ~ rather than k when a k-processor 
machine ts used. Also, by (3.5) and (3.7), 

[3/(k + ½)] n <- Tk(H~n+,) <- [3/(k + ½)] n + O(log k). 

Hence the bounds in (3.5) and (3.7) are asymptotically the best possible bounds as n 
~,  and so is the bound m (3.9). Furthermore one should observe that by (3.2) the bound 
in (3.7) is sharp for k = 1. 

We now turn to Corollary 2. By the corollary, any algorithm which takes time less than 
2n must perform more than 2n operations. Since the sequential algorithm uses 2n opera- 
tlons, we conclude that t f  a parallel algorithm ts faster than the sequential algorithm, then 
tt requtres more work than the sequential algorithm does. This result plays a crucial role 
when we want to convert a parallel algorithm using an unhmited number of processors into 
one using k processors (see Lemma 2 in Brent [2] and Winograd [10]). The tradeoff 
between t and w has been observed m other problems (see, e.g Hyafd and Kung [4]). It 
becomes particularly significant for the p~pehne computers such as CDC STAR-100, 
where both t and w are important. (An excellent discussion on this matter can be found 
in Lamblotte and Volgt [8] ) We view Theorem 2 as a start toward understanding the 
tradeoff between t and w in parallel computation. 

4 P r o o f o f T h e o r e m  2 

In this section we consader generalized Horner expressions: 

G2n+~ = (( '"  "((A1B1 + As)B2 + Aa)B3 + " ' "  + An-1)Bn-I + An)Bn + An+a, 

where 

A,  ~ L(a,) = {/aa, + v[/z,u E h}, B, E L(b,) = {#b~ + r i l l  , ~, ~ h}, 

and A,, B, ~ h. Let 

J = U [L(a,) U L(b,)]. 

Instead of proving Theorem 2, we prove the following stronger theorem. 
THEOREM 2'.  For any algortthm which evaluates G2,+a given the tnput set J, w > 3n - 

t /2.  
We first estabhsh three lemmas. The first lemma says that, for evaluating G2,+~, if no 

input node is used more than once and if all input nodes are essentially distract, then the 
operation revolving a~ and b~ is the only possible operation which can be performed at 
level Ii. 

LEMMA 1. In the directed graph o f  any algorithm for evaluating G~n+l given J ,  i f  the 
out-degree o f  each input node is exactly equal to 1 and t f  each a, or b, does not appear in 
more than one input node, then there ts only one node at level l~ and its value is a rational 
expresston ora l  and bl over h. 

PROOF Let V be the value of a node at level l~. Then V is a rataonal expression of a,, 
b,, of a ,  a e, or of b,, b e. We shall only prove the lemma for the case that V as a rational 
expression of a ,  be, since the proofs for the other cases are samilar. 

Because the out-degree of every input node ~s 1 and each of a, and b e does not appear 
in more than one input node, the value of the output node, G2n+l, is a rational expression 
R of V, ah, and bk for h ~ i and k ~ j By comparing the coefficients of a, and b e m G2~+~ 
and in R, one can check that V must be a rational expressaon of a~ and b~. This also 
proves that there is only one node at level l~. In fact it is possible to show that the only 
operation at level la as a multiphcation of the form (~a~ + v~)(/z~bl + v~) where ~,, v, 
h [] 

The foUowmg lemma is similar to Lemma 1 and hence the proof Is omitted 
LEMMA 2. I f  in addttton to the assumptton o f  Lemma 1, we assume that the out-degree 
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o f  the only node at level 11 is 1, then there is only one node at level 12 
O n e  of  the  mos t  i m p o r t a n t  p r o p e r t i e s  of  gene ra l i z ed  H o r n e r  express ions  is t he i r  

r e p r o d u c i n g  p rope r ty ,  which  is s t a t ed  in the  fo l lowing l e m m a .  
LEMMA 3. I f  in G2,+1, a, is replaced by c~ and b, by 13for some 1 -< i -< n, with ~, 13 E 

A, the form o f  generahzed expressions stdl remams; more precisely, G2n+t is reduced to 
a2n-1 • 

PROOF OF THEOREM 2 '  Le t  D be  the  d i r ec t ed  g r a p h  of  any  a l g o r i t h m  which  e v a l u a t e s  
G2n+l g iven  J .  T h e  p r o o f  of  the  t h e o r e m  is b a s e d  on  a r e d u c t i o n  a l g o r i t h m ,  ca l led  
A l g o r i t h m  A ,  on  the  g r a p h  D A l g o r i t h m  A first  e h m i n a t e s  an+l in D a n d  t h e n  e l i m i n a t e s  
the  pa i r s  (a,, b,) one  at  a t ime .  ( E l i m i n a t i o n s  are  d o n e  by  subs t i t u t i ng  su i t ab le  c o n s t a n t s  
in h for  the  m d e t e r m m a n t s ,  t he  a, a n d  b , . )  T o  be  prec i se ,  A l g o r i t h m  A is de f i ned  in the  
fol lowing.  Also  see the  A p p e n d i x ,  whe re  A l g o r i t h m  A has  b e e n  w o r k e d  ou t  wi th  r e spec t  
to the  g r a p h  used in E x a m p l e  2 .1 .  

ALGORITHM A 

1 [Inmahze ] 
1 1 Replace an+l by c~,,+a in the graph D, where ~x,+~ ~ k Is so chosen that after the replacement the value 

of each node in D is well defined, i e no division of zero occurs (It is easy to see that such an an+l 
exists ) 

1 2 Let P be {1, 2, , n} (P is the set of the indexes of those mdetermlnants a, and b, which have not been 
ehmmated from D ) 

2. [Check the conditions of Lemma I ] If the condmons of Lemma I are satisfied, then let t be the smallest 
integer m P and go to step 4 

3 [Choose t for step 4 ] Choose t in P such that a~ or b~ appears either in more than one input node or in an 
Input node with out-degree greater than 1 (Such an t exists, since conditions of Lemma 1 are not satisfied ) 

4 [Ehmmate (a,, b,) ] Replace a, by ~x, and b, by /3, m D, where ~x,, /3, ~ h are so chosen that after the 
replacements the value of each node in D is well defined 

5 [Reduce the graph D ] Eliminate those nodes in D whose successors all have values in J, and eliminate the 
arcs connected to them (Note that by Lemma 3 the reduced graph remains an algorithm for evaluating a 
generalized Homer expression, which is obtained by substituting o~, for a, and /3, for b, m the original 
expression ) 

6 [Update P and check ff Jt is empty ] Set P ~ P - {i}. If P = 0 ,  terminate the algorithm, otherwise return to 
step 2 

T h e  fo l lowing t h r e e  facts  can  be  easily ver i f i ed  
(a)  In s tep  1 at  leas t  one  n o n s c a l a r  o p e r a t i o n  in D is c o n v e r t e d  in to  a sca lar  o p e r a t i o n .  

( "x  o p y "  is de f ined  to be  a sca lar  o p e r a t i o n  i f o p  E {+ ,  - ,  ×} and  at  leas t  one  o f x  a n d y  
be longs  to h ,  or  if op  = / a n d y  ~ h . )  

(b)  If  the  cond i t i ons  of  L e m m a  1 are no t  sat isf ied in s tep  2, t h e n  at  leas t  t h r e e  
n o n s c a l a r  o p e r a t i o n s  in D are  c o n v e r t e d  in to  sca lar  o p e r a t i o n s  in s tep  4. 

(c) I f  t he  cond i t i ons  of  L e m m a  1 are sa t is f ied in s tep  2,  t h e n  t h e r e  are  two cases:  
Case  1 T h e  add i t iona l  cond i t i on  in L e m m a  2 is sat isf ied.  In this  case ,  by L e m m a  2 

the  d e p t h  of  the  r e d u c e d  g r a p h  o b t a i n e d  in s tep  5 ts less t h a n  tha t  of  the  o r ig ina l  g r a p h  by 
~t  leas t  2 F u r t h e r m o r e  in s tep  4 at  leas t  two n o n s c a l a r  o p e r a t i o n s  a re  c o n v e r t e d  in to  
scalar  o p e r a t i o n s  w h e n  I PI > 1 a n d  o n e  nonsca l a r  o p e r a t i o n  m t o  a sca lar  o p e r a t i o n  w h e n  
I e l  = 1. 

Case  2 T h e  add i t i ona l  c o n d i t i o n  in L e m m a  2 is no t  sat isf ied.  Th i s  impl ies  t ha t  the  
o u t - d e g r e e  of  the  on ly  n o d e  at  level  11 is a t  leas t  2. H e n c e  m s t ep  4 at  leas t  t h r e e  
n o n s c a l a r  o p e r a t i o n s  are  c o n v e r t e d  in to  sca lar  o p e r a t i o n s  w h e n  IPI > I a n d  two nonsca -  
lar  o p e r a t i o n s  in to  sca lar  o p e r a t i o n s  w h e n  IPI = 1 M o r e o v e r  the  d e p t h  of  the  r e d u c e d  
g r a p h  o b t a i n e d  in s tep  5 is less t h a n  t h a t  of  the  or ig ina l  g r a p h  by  at  leas t  1. 

T h e  ma in  loop  of  the  a l g o r i t h m  (s teps  2 - 5 )  is e x e c u t e d  n t imes  s ince n pa i rs  of  ( a ,  b,) 
have  to be  e h m l n a t e d .  Le t  u be  the  n u m b e r  o f  t imes  t ha t  the  c o n d i t i o n s  o f  L e m m a  1 are  
no t  sa t is f ied in s tep  2 and  v the  n u m b e r  of  t imes  t ha t  the  cond i t i ons  a re  sat isf ied.  T h e n  n 
= u + v. F u r t h e r m o r e  let  vj(v2) be the  n u m b e r  of  t imes  t h a t  the  c o n d i t i o n s  of L e m m a  1 
are  sat isf ied m s tep  2 and  case  1 (case 2) is t rue ,  respec t ive ly .  T h e n  v = v~ + v2. By (a) ,  
(b ) ,  a n d  (c) the  n u m b e r  of  n o n s c a l a r  o p e r a t i o n s  which  are  c o n v e r t e d  m scalar  o p e r a t i o n s  
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by Algorithm A ~s at least 3u + 2vl + 3v~. We have w ~- 3u + 2v~ + 3v2. Hence w ~ 3n - 
v~. By (c), t >- 2vl + Vz. Therefore, 

w >- 3n - t /2 + v2/2 >- 3n - t/2. 

Equahty is only possible ff v2 = 0. [] 

5. Summary and Concludmg Remarks 

We have proved that for the first-order hnear recurrence problem, the speedup achiev- 
able by a k-processor parallel computer is at most ~k + ~, no matter how large the size n 
of the problem The techmque used m the proof appears to be new in complexity theory 
It is expected that the techmque can be used for other problems. 

We wish to demonstrate by this result that the gain from parallelism very much 
depends upon the nature of mdwidual problems, e.g. the dependency relationships 
among the variables of the problem. We believe that identifying properties which 
prevent us from getting good speedups is fundamental for understanding parallel compu- 
tation. 

Appendix 

We dlustrate Algorithm A with respect to the graph shown in Figure 2 
1. a4 ~-- 1. We obtain Figure 3. 
2. a3 *-- 2, ba ~-- 3. We obtain Figure 4. The graph m Figure 4 is reduced to that in 

Figure 5. 

at b~ a z b z a3 b3 o4 

FIe 2 
• = input node,®, O = node with nonscalar operation 

at b~ o z bz o 3 b~ ! 

(ot b! + O2I bzb3 / 
~((a jb t +o z)b ~ z+%)b~+l 

FIG 3 
• = input node, © = node with scalar operation,®, @ = node with nonscalar operation 
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at bl oa ba 2 3 1 

362(olbl +a 2) 

~ S b 2 ( a l b l +  a z) +7 
FIG 4 

• = input node, © = node with scalar operation,@, G = node with nonscalar operation 

ol bt o2 3bz 7 ol bl I 6 7 

362(albl+ °2) ~ PSb~(atbl+aa)+ 7 6 ( at b'l + 1 ) ~NNNN~6~Olbt + 13 

FIG 5 FIG 6 

• = input node, © = node with scalar operation,®, ~ = node with nonscalar operation 

ol bl 6 

6(0161+11~ 

7 

b t +13 

3 t 6 7 

18 

24  

Flo 7 FiG 8 
• = input node, © = node with scalar operation, ® = node with nonscalar operation 

3. as ~ 1, b~ ~ 2. We obta in  F]gure 6. The  g raph  in Figure 6 is r ed u ced  to tha t  m 
Figure 7. 

4. a~ ~-- 3, bl  ~-- 1. We obta in  Figure 8. 
5. The  graph  in Figure 8 is r educed  to 31 

ACKNOWLEDGMENTS. The  au thors  would  like to thank  R o n  Rives t  for  helpful  discus- 
s ions and  J .F ,  Traub  for  his c o m m e n t s .  



The Complex i t y  o f  Parallel  Eva lua t ion  o f  L inear  Recurrences  5 2 1 

REFERENCES 

1 BRENT, R P On the addmon of binary numbers IEEE Trans Comptrs. C-19 (1970), 758-759. 
2 BRENT, R P The parallel evaluation of general arithmetic expressions J ACM 21, 2 (April 1974), 201- 

206 
3 CHEN, S C Speedup of ~teraUve programs m multlprocessmg systems. Ph.D T h ,  Rep 694, Dep. 

Comptr Sc~ , U of Ilhnols at Urbana-Champalgn, Urbana, Ill , Jan 1975 
4 HYAFIL, L , AND KUNG, H T Parallel algorithms for solving triangular linear systems. Comptr ScL 

Dep R e p ,  Carnegie-Mellon U , Pittsburgh, Pa ,  Oct 1974 
5 KOGGE, P M Parallel solution of recurrence problems IBM J Res Develop 18 (1974), 138-148 
6 KOCK, D J , AriD MARUYAMA, K M The parallel evaluation of arithmetic expressions of special forms 

Rep RC 4276, IBM Res Ctr , Yorktown Heights, N Y , March 1973 
7 KUNG, H T New algomhms and lower bounds for the parallel evaluatmn of certain rational expressions 

and recurrences J ACM 23, 2 (April 1976), 252-261 
8 LAMBIOTTE, J J JR , AND VOIGT, R G The solution of tn&agonal linear systems on the CDC STAR-100 

computer ACM Trans Math Software 1, 4 (Dec. 1975), 308-329 
9. STONE. H S An effictent parallel algorithm for the solutmn of a mdlagonal system of equations. J. ACM 

20, 1 (Jan 1973), 27-38 
10 Wn~OGRAD, S On the parallel evaluation of certain arithmetic expressmns 3 ACM 22, 4 (Oct 1975), 

477-492 

RECEIVED DECEMBER 1974, REVISED SEPTEMBER 1976 

Journal of the Assooatton for Computing Machinery, Vo| 24, No 3, July 1977 


