
The Complexity of Parallel Evaluation of Linear Recurrences

L . H Y A F I L

lRlA-Laborta, Rocquencourt, France

A N D

H . T. K U N G

Carnegie-Mellon University, Pittsburgh, Pennsylvania

ABSTRACT The problem oI eva lua tmgxn defined by the l inear recur rence x, = x~-lb, + a,+l, t >- 1, x0 = a l , or
equivalently evaluat ing the HorneT expression (' (a lb~ + a.o)bz + + a,,)b,, + a,,+~ is cons idered It is
shown that by using an rdeahzed k-processor parallel computer the speedup for the problem is at most ~rk +
ra ther than k The bound is essentially sharp

KEY WORDS AND PHRASES complexi ty , parallel computa t ion , speedup, parallel evaluaUon, hnea r recur-
rences, d i rected graph , ar i thmet ic expressions

CR CATEGORIES 4 32, 5 10, 5 25, 5 32

1. Introduction

The concept of computers such as C.mmp and I L L I A C 1V is to achieve computat ional
speedup by performing several operations simultaneously with parallel processors. This
type of computer organization is referred to as a parallel computer . In this paper we
prove upper bounds on speedups achievable by parallel computers for a part icular
problem, the solution of first-order linear recurrences. We conslder this problem because
it ~s important m practice and also because it is so simply stated that we may obtain some
insight into the nature of parallel computat ion by studying it.

Consider a k-processor parallel computer . It is understood that because of possible
memory conflicts, delays due to mterprocessors communication, etc. , k-fold speedup is
rarely achieved. In this paper we show that the speedup for a l inear recurrence problem
is at most ~k + ~, even under the assumption that the k-processor machine is ideahzed so
that there are no memory conflicts or commumcation delays. We also show that the
bound ~k + ~ is almost the best possible. Of course the actual speedup obtained from a
real k-processor machine would be less than or equal to ~k + ~. The difference between
]k + ~ and k is rather significant. For example, f fk = 16, 64, then the speedup for the
problem is at most 11 ,43 , respectwely, no matter how efficient the k-processor machine
IS.

The reason that we get at most 70 percent of the speedup we might expect for the
problem is the inherent dependency of variables in the linear recurrence A related result
m Kung [7] states that many nonhnear recurrences can be sped up at most by a constant

Copyr ight © 1977, Associat ion for Compu t ing Machinery , lnc Genera l permission to r epubhsh , but not for
profit , all or par t of this mater ia l is g ran ted provided that A C M ' s copyr ight notice is given and that reference is
made to the publicat ion, to ~ts date of issue, and to the fact that repr int ing privileges were g ran ted by
permission of the Assoeiat~on for Compu t ing Machinery

This research was suppor ted in par t by I R I A , France , and m par t by the Nat ional Science Founda t ion unde r
G r a n t GJ-32111 and the Office of Naval Research unde r Cont rac t N 0 0 1 4 - 6 7 - A - 0 3 1 4 - 0 0 1 0 , N R 044-422
Much of th~s work was c a r n e d out at 1RIA while the second au tho r was vm~tmg there in the s u m m e r of 1974

A u t h o r s ' addresses L Hyafi l , l R I A - L a b o r m , Rocquencou r t , France , H T Kung , Carnegie-Mel lon Univer-
sity, Pi t t sburgh, PA 15213

Journal of the Association for Computing Machinery, Vol 24, No 3, July 1977, pp 513-521

514 L. HYAFIL AND H. T. KUNG

factor, no matter how many processors are used. Hence these nonlinear recurrences
must involve even more dependency relationships than the linear ones We believe that
the study of these dependency relationships is fundamental for understanding parallel
computation.

A graph representation of parallel algorithms is given in the Section 2. In Section 3 we
gwe the results of this paper and discuss their significance. The proof of our main
theorem (Theorem 2) is given in Section 4. In Section 5 we give a summary and make
some remarks about this work. An illustration of the algorithm used in the proof of
Theorem 2 ' , a generalized version of Theorem 2, is prov)ded in the Appendix.

2. Model o f Computation

Let h be an inflmte field and a,, b,, i = 1, 2, ... , lndeterminates over h. Suppose that we
perform computations in the extension field h(aj, bz, a o, b2, ...). We consider the
problem of evaluating rational expressions E in h(al, bl, a2, b2, ...) given an input set I
such that {at, bl, a2, b2, .. } U h C I C h(at, bl , a2, b2). (The recurrence considered in
this paper m fact is an expression E of a special form. See Section 3.)

An algortthm for evaluating E given I is defined by a direct acychc graph such that:

(a) The m-degree of any node is either 0 or 2. A node whose in-degree is zero is called
an input node.

(b) There exists exactly one node whose out-degree is 0, and it is called the output
node. The out-degree of any other node is greater than or equal to 1.

(c) Each input.node contains a value which is an element from the input set I. Each of
the rest of the nodes contains an operation + , - , ×, or / and a value which ~s the result
of the operation on the values of the two predecessors. The value of the output node is E.
(We often refer to a node by its value or its operation if there is no ambiguity.)

(d) Each node belongs to one of t + 1 sets, called levels and denoted by lo, lj, ... , lt,
such that (1) all input nodes are at level 1o, (2) for t --> 1, the predecessors of any node at
level l, are from levels 10 l,-1, (3) no level is empty

Then it can be easily verified that the output node is the only node at level It and that t is
bounded below by the maximal length of a path from any input node to the output node.
We define t to be the time, k = max~_<,_~t ILl to be the number o f processors, and w =

~_~t II, I to be the number o f total operations needed by the algorithm. An algorithm is
called a sequential algorithm if k = 1 and a parallel algorithm ff k >- 2.

Example 2.1. The graph shown in Figure 1 defines a parallel algorithm for evaluating
the Horner expression of seven variables,

H7 = ((albl + a2)b2 + a3)b3 + a4,

given I = {a~, ba, a2, b2, a3, b3, a4} in time t = 4, with k = 3 processors and w = 8
operations

It seems to us that this model is very general and includes any algorithm for evaluating
expressions. One should note, however, that we have imphc~tly assumed that each
operation takes one unit of time and the following machine idealizations:

(a) Each processor can perform any of the four binary operations, but all processors
do not necessarily perform the same operation at any time.

(b) No time is required to communicate data between processors.

Since we are interested m lower bounds on t~me and upper bounds on speedup, as we
mentioned m Section 1, the results obtained in this paper for the idealized machine are
certainly applicable for any real machine.

We now define some notation. For an expression E and an input set 1, define
Tk(E mod 1) = minimum time needed to evaluate E given I by an algorithm using k
processors, and define the speedup of the problem of evaluating E given 1 by using k
processors to be

The Complexuy o f Parallel Evaluatzon o f Lmear Recurrences

level 1o

level ,l 1

level ,t 2

level,~ 3

level 14

al b= o 2 b z o 3 b 3 a 4

~b~o2)b263~

515

Input nodes 0 t , b t , a 2 , b 2 , a 3 , b3, a4

Output node H 7

Fm t

S~(E rood/} = T~(E rood I)/Tk(E mod I),

For slmphc~ty we often write Tk(E), Sk(E) for Te(E rood 1), Sk(E mod I) if there is no
ambiguity. In this paper we obtain lower bounds on Tk(E) and upper bounds on Sk(E) for
E defined by hnear recurrences.

3. Results

The problem consLdered m this paper is the following first-order linear recurrence
problem.

glvenal , ... , an+r, bl , ... , b , , Xo = al, x, = x,_jb, + a,+l for t -- 1, (3.1)
compute xn.

Th~s ~s one of the most frequently occurring recurrences m practice. Consider the Horner
expression of 2n + 1 variables:

H2,+1 = ((...((albl + a2)b2 + a3)b3 + "'" + a, -Obn-i + an)bn + a,+i.

It is clear that x~ = H2n+~. Hence the recurrence problem is just the problem of
evaluating H2,,+~ given the input set

1 = {al a,+~, bl bn} L.3 X.

It ~s easy to see that the minimum t~me sequentml algorithm is the obvious one defined by
the recurrence (3,1). Hence we have

Tl(H2,+l) = 2n. (3.2)

Various parallel algorithms using O(n) processors for the problem have appeared in
many papers, including Brent [1], Kogge [5], Kuck and Maruyama [6], and Stone [9]. In
this paper we are interested m algorithms using k processors, where k is a positive integer
independent of n Brent [2] had the first result along this line. He showed that for a
general arithmetic expression E , ofn variables and without division, if the input set is the
set of all variables in E , , then

Te(E,) --< 2n /k + O(log n). (3.3)

Wmograd [10] recently improved Brent 's result for the case that k -< O(n/ (log n)2). He
showed

T~.(E,) <- [3/(2k)]n + O((log n)2). (3.4)

Since H.~,+, is a specml instance of E2,+~. by (3.4) we have

TA(H~,,+i) <-- (3/k)n + O((log n)2).

5 1 6 L. HYAFIL AND H, T, KUNG

For the case that k << n, this bound can be easily improved by utilizing the special form
of H2n+,. We have the following theorem.

THEOREM 1 .l

Te(Hzn+a) -< [3/(k + ½)] n + O(log k). (3.5)

PROOF. Equat ion (3.1) is equivalent to

Write

n b~ a t . i l [;"] t)
where l is to be determined later . We use k - 1 processors to compute

[hal = firb,.,+,l
O1 ?+~L0 1 J'

which takes time tl, and one processor to compute

It]-- I t -']
f o r i = 1, . . , 1, w h i c h t akes t i m e t2.

Note that the multiplication of two matrices of the form [~ f] takes three operat ions
and results m a matrix of the same form. Hence the obvious parallel algorithm gives

t i ~ 3 ([(n - l) / (k - 1)] - 1 + [l o g (k - 1)1) .

Note next that the multiplication of [g f] and [f] uses two operat ions and results m a
vector of the form [~]. Hence

t2 ~< 2/.

Choose l = [3n/(2k + 1)1. Then both [o b ~] and [~] can be computed in trine

max(q, tz) ~ [3/(k + ½)]n + O(log k).

By using the fact that

P.t p a

x,, can be obtained in two addit ional operat ions. []
The fundamental result of this paper is the following theorem.
THEOREM 2. For any algorithm whwh evaluates H2~+l gwen the input set I, we have

w --> 3n - t/2. (3.6)

We defer the proof of this theorem until Section 4. We have the following two
corollaries:

COROLLARY I .

Tk(H2n+l) >- [3/(k + ½)] n, Vk, Vn. (3.7)

PROOF The proof follows from (3.6) and the fact that kt >- w. []
COROLLARY 2. For any algortthm which evaluates H2,+l gtven the input set I, t f t < 2n,

then

w > 2n. (3.8)

We now explain the significance of these corollaries. From Corollary 1 and (3.2), we
obtain the main result of the paper:

i T h e o r e m 1 has been p roven independen t ly by Chen [3] with a different a p p r o a c h

The Complextty o f Parallel Evaluation o f Linear Recurrences 517

Sk(H~n+~) --< ~k + ~, Vk, Vn; (3.9)

i.e. the speedup o f the problem ts at most ~k + ~ rather than k when a k-processor
machine ts used. Also, by (3.5) and (3.7),

[3/(k + ½)] n <- Tk(H~n+,) <- [3/(k + ½)] n + O(log k).

Hence the bounds in (3.5) and (3.7) are asymptotically the best possible bounds as n
~, and so is the bound m (3.9). Furthermore one should observe that by (3.2) the bound
in (3.7) is sharp for k = 1.

We now turn to Corollary 2. By the corollary, any algorithm which takes time less than
2n must perform more than 2n operations. Since the sequential algorithm uses 2n opera-
tlons, we conclude that t f a parallel algorithm ts faster than the sequential algorithm, then
tt requtres more work than the sequential algorithm does. This result plays a crucial role
when we want to convert a parallel algorithm using an unhmited number of processors into
one using k processors (see Lemma 2 in Brent [2] and Winograd [10]). The tradeoff
between t and w has been observed m other problems (see, e.g Hyafd and Kung [4]). It
becomes particularly significant for the p~pehne computers such as CDC STAR-100,
where both t and w are important. (An excellent discussion on this matter can be found
in Lamblotte and Volgt [8]) We view Theorem 2 as a start toward understanding the
tradeoff between t and w in parallel computation.

4 P r o o f o f T h e o r e m 2

In this section we consader generalized Horner expressions:

G2n+~ = (('" "((A1B1 + As)B2 + Aa)B3 + " ' " + An-1)Bn-I + An)Bn + An+a,

where

A, ~ L(a,) = {/aa, + v[/z,u E h}, B, E L(b,) = {#b~ + r i l l , ~, ~ h},

and A,, B, ~ h. Let

J = U [L(a,) U L(b,)].

Instead of proving Theorem 2, we prove the following stronger theorem.
THEOREM 2'. For any algortthm which evaluates G2,+a given the tnput set J, w > 3n -

t /2.
We first estabhsh three lemmas. The first lemma says that, for evaluating G2,+~, if no

input node is used more than once and if all input nodes are essentially distract, then the
operation revolving a~ and b~ is the only possible operation which can be performed at
level Ii.

LEMMA 1. In the directed graph o f any algorithm for evaluating G~n+l given J , i f the
out-degree o f each input node is exactly equal to 1 and t f each a, or b, does not appear in
more than one input node, then there ts only one node at level l~ and its value is a rational
expresston ora l and bl over h.

PROOF Let V be the value of a node at level l~. Then V is a rataonal expression of a,,
b,, of a , a e, or of b,, b e. We shall only prove the lemma for the case that V as a rational
expression of a , be, since the proofs for the other cases are samilar.

Because the out-degree of every input node ~s 1 and each of a, and b e does not appear
in more than one input node, the value of the output node, G2n+l, is a rational expression
R of V, ah, and bk for h ~ i and k ~ j By comparing the coefficients of a, and b e m G2~+~
and in R, one can check that V must be a rational expressaon of a~ and b~. This also
proves that there is only one node at level l~. In fact it is possible to show that the only
operation at level la as a multiphcation of the form (~a~ + v~)(/z~bl + v~) where ~,, v,
h []

The foUowmg lemma is similar to Lemma 1 and hence the proof Is omitted
LEMMA 2. I f in addttton to the assumptton o f Lemma 1, we assume that the out-degree

5 1 8 L. HYAFIL AND H. T. KUNG

o f the only node at level 11 is 1, then there is only one node at level 12
O n e of the mos t i m p o r t a n t p r o p e r t i e s of gene ra l i z ed H o r n e r express ions is t he i r

r e p r o d u c i n g p rope r ty , which is s t a t ed in the fo l lowing l e m m a .
LEMMA 3. I f in G2,+1, a, is replaced by c~ and b, by 13for some 1 -< i -< n, with ~, 13 E

A, the form o f generahzed expressions stdl remams; more precisely, G2n+t is reduced to
a2n-1 •

PROOF OF THEOREM 2 ' Le t D be the d i r ec t ed g r a p h of any a l g o r i t h m which e v a l u a t e s
G2n+l g iven J . T h e p r o o f of the t h e o r e m is b a s e d on a r e d u c t i o n a l g o r i t h m , ca l led
A l g o r i t h m A , on the g r a p h D A l g o r i t h m A first e h m i n a t e s an+l in D a n d t h e n e l i m i n a t e s
the pa i r s (a,, b,) one at a t ime . (E l i m i n a t i o n s are d o n e by subs t i t u t i ng su i t ab le c o n s t a n t s
in h for the m d e t e r m m a n t s , t he a, a n d b , .) T o be prec i se , A l g o r i t h m A is de f i ned in the
fol lowing. Also see the A p p e n d i x , whe re A l g o r i t h m A has b e e n w o r k e d ou t wi th r e spec t
to the g r a p h used in E x a m p l e 2 .1 .

ALGORITHM A

1 [Inmahze]
1 1 Replace an+l by c~,,+a in the graph D, where ~x,+~ ~ k Is so chosen that after the replacement the value

of each node in D is well defined, i e no division of zero occurs (It is easy to see that such an an+l
exists)

1 2 Let P be {1, 2, , n} (P is the set of the indexes of those mdetermlnants a, and b, which have not been
ehmmated from D)

2. [Check the conditions of Lemma I] If the condmons of Lemma I are satisfied, then let t be the smallest
integer m P and go to step 4

3 [Choose t for step 4] Choose t in P such that a~ or b~ appears either in more than one input node or in an
Input node with out-degree greater than 1 (Such an t exists, since conditions of Lemma 1 are not satisfied)

4 [Ehmmate (a,, b,)] Replace a, by ~x, and b, by /3, m D, where ~x,, /3, ~ h are so chosen that after the
replacements the value of each node in D is well defined

5 [Reduce the graph D] Eliminate those nodes in D whose successors all have values in J, and eliminate the
arcs connected to them (Note that by Lemma 3 the reduced graph remains an algorithm for evaluating a
generalized Homer expression, which is obtained by substituting o~, for a, and /3, for b, m the original
expression)

6 [Update P and check ff Jt is empty] Set P ~ P - {i}. If P = 0 , terminate the algorithm, otherwise return to
step 2

T h e fo l lowing t h r e e facts can be easily ver i f i ed
(a) In s tep 1 at leas t one n o n s c a l a r o p e r a t i o n in D is c o n v e r t e d in to a sca lar o p e r a t i o n .

("x o p y " is de f ined to be a sca lar o p e r a t i o n i f o p E {+ , - , ×} and at leas t one o f x a n d y
be longs to h , or if op = / a n d y ~ h .)

(b) If the cond i t i ons of L e m m a 1 are no t sat isf ied in s tep 2, t h e n at leas t t h r e e
n o n s c a l a r o p e r a t i o n s in D are c o n v e r t e d in to sca lar o p e r a t i o n s in s tep 4.

(c) I f t he cond i t i ons of L e m m a 1 are sa t is f ied in s tep 2, t h e n t h e r e are two cases:
Case 1 T h e add i t iona l cond i t i on in L e m m a 2 is sat isf ied. In this case , by L e m m a 2

the d e p t h of the r e d u c e d g r a p h o b t a i n e d in s tep 5 ts less t h a n tha t of the o r ig ina l g r a p h by
~t leas t 2 F u r t h e r m o r e in s tep 4 at leas t two n o n s c a l a r o p e r a t i o n s a re c o n v e r t e d in to
scalar o p e r a t i o n s w h e n I PI > 1 a n d o n e nonsca l a r o p e r a t i o n m t o a sca lar o p e r a t i o n w h e n
I e l = 1.

Case 2 T h e add i t i ona l c o n d i t i o n in L e m m a 2 is no t sat isf ied. Th i s impl ies t ha t the
o u t - d e g r e e of the on ly n o d e at level 11 is a t leas t 2. H e n c e m s t ep 4 at leas t t h r e e
n o n s c a l a r o p e r a t i o n s are c o n v e r t e d in to sca lar o p e r a t i o n s w h e n IPI > I a n d two nonsca -
lar o p e r a t i o n s in to sca lar o p e r a t i o n s w h e n IPI = 1 M o r e o v e r the d e p t h of the r e d u c e d
g r a p h o b t a i n e d in s tep 5 is less t h a n t h a t of the or ig ina l g r a p h by at leas t 1.

T h e ma in loop of the a l g o r i t h m (s teps 2 - 5) is e x e c u t e d n t imes s ince n pa i rs of (a , b,)
have to be e h m l n a t e d . Le t u be the n u m b e r o f t imes t ha t the c o n d i t i o n s o f L e m m a 1 are
no t sa t is f ied in s tep 2 and v the n u m b e r of t imes t ha t the cond i t i ons a re sat isf ied. T h e n n
= u + v. F u r t h e r m o r e let vj(v2) be the n u m b e r of t imes t h a t the c o n d i t i o n s of L e m m a 1
are sat isf ied m s tep 2 and case 1 (case 2) is t rue , respec t ive ly . T h e n v = v~ + v2. By (a) ,
(b) , a n d (c) the n u m b e r of n o n s c a l a r o p e r a t i o n s which are c o n v e r t e d m scalar o p e r a t i o n s

The Complexity o f Parallel Evaluation o f Linear Recurrences 519

by Algorithm A ~s at least 3u + 2vl + 3v~. We have w ~- 3u + 2v~ + 3v2. Hence w ~ 3n -
v~. By (c), t >- 2vl + Vz. Therefore,

w >- 3n - t /2 + v2/2 >- 3n - t/2.

Equahty is only possible ff v2 = 0. []

5. Summary and Concludmg Remarks

We have proved that for the first-order hnear recurrence problem, the speedup achiev-
able by a k-processor parallel computer is at most ~k + ~, no matter how large the size n
of the problem The techmque used m the proof appears to be new in complexity theory
It is expected that the techmque can be used for other problems.

We wish to demonstrate by this result that the gain from parallelism very much
depends upon the nature of mdwidual problems, e.g. the dependency relationships
among the variables of the problem. We believe that identifying properties which
prevent us from getting good speedups is fundamental for understanding parallel compu-
tation.

Appendix

We dlustrate Algorithm A with respect to the graph shown in Figure 2
1. a4 ~-- 1. We obtain Figure 3.
2. a3 *-- 2, ba ~-- 3. We obtain Figure 4. The graph m Figure 4 is reduced to that in

Figure 5.

at b~ a z b z a3 b3 o4

FIe 2
• = input node,®, O = node with nonscalar operation

at b~ o z bz o 3 b~ !

(ot b! + O2I bzb3 /
~((a jb t +o z)b ~ z+%)b~+l

FIG 3
• = input node, © = node with scalar operation,®, @ = node with nonscalar operation

520 L. HYAFIL AND H. T. KUNG

at bl oa ba 2 3 1

362(olbl +a 2)

~ S b 2 (a l b l + a z) +7
FIG 4

• = input node, © = node with scalar operation,@, G = node with nonscalar operation

ol bt o2 3bz 7 ol bl I 6 7

362(albl+ °2) ~ PSb~(atbl+aa)+ 7 6 (at b'l + 1) ~NNNN~6~Olbt + 13

FIG 5 FIG 6

• = input node, © = node with scalar operation,®, ~ = node with nonscalar operation

ol bl 6

6(0161+11~

7

b t +13

3 t 6 7

18

24

Flo 7 FiG 8
• = input node, © = node with scalar operation, ® = node with nonscalar operation

3. as ~ 1, b~ ~ 2. We obta in F]gure 6. The g raph in Figure 6 is r ed u ced to tha t m
Figure 7.

4. a~ ~-- 3, bl ~-- 1. We obta in Figure 8.
5. The graph in Figure 8 is r educed to 31

ACKNOWLEDGMENTS. The au thors would like to thank R o n Rives t for helpful discus-
s ions and J .F , Traub for his c o m m e n t s .

The Complex i t y o f Parallel Eva lua t ion o f L inear Recurrences 5 2 1

REFERENCES

1 BRENT, R P On the addmon of binary numbers IEEE Trans Comptrs. C-19 (1970), 758-759.
2 BRENT, R P The parallel evaluation of general arithmetic expressions J ACM 21, 2 (April 1974), 201-

206
3 CHEN, S C Speedup of ~teraUve programs m multlprocessmg systems. Ph.D T h , Rep 694, Dep.

Comptr Sc~ , U of Ilhnols at Urbana-Champalgn, Urbana, Ill , Jan 1975
4 HYAFIL, L , AND KUNG, H T Parallel algorithms for solving triangular linear systems. Comptr ScL

Dep R e p , Carnegie-Mellon U , Pittsburgh, Pa , Oct 1974
5 KOGGE, P M Parallel solution of recurrence problems IBM J Res Develop 18 (1974), 138-148
6 KOCK, D J , AriD MARUYAMA, K M The parallel evaluation of arithmetic expressions of special forms

Rep RC 4276, IBM Res Ctr , Yorktown Heights, N Y , March 1973
7 KUNG, H T New algomhms and lower bounds for the parallel evaluatmn of certain rational expressions

and recurrences J ACM 23, 2 (April 1976), 252-261
8 LAMBIOTTE, J J JR , AND VOIGT, R G The solution of tn&agonal linear systems on the CDC STAR-100

computer ACM Trans Math Software 1, 4 (Dec. 1975), 308-329
9. STONE. H S An effictent parallel algorithm for the solutmn of a mdlagonal system of equations. J. ACM

20, 1 (Jan 1973), 27-38
10 Wn~OGRAD, S On the parallel evaluation of certain arithmetic expressmns 3 ACM 22, 4 (Oct 1975),

477-492

RECEIVED DECEMBER 1974, REVISED SEPTEMBER 1976

Journal of the Assooatton for Computing Machinery, Vo| 24, No 3, July 1977

