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ABSTRACT  The problem of evaluating x,, defined by the hinear recurrence x, = x,_b, + a,45, 1= 1, x4 =a,, OF
equivalently evaluating the Horner expression (- (a,b, + a»)b, + + a, )b, + a,,, is considered It 1s
shown that by using an idealized k-processor parallel computer the speedup for the problem 1s at most ¥k + %
rather than k& The bound 1s essentially sharp

KEY WORDS AND PHRASES complexity, parallel computation, speedup, parallel evaluation, hinear recur-
rences, directed graph, arithmetic expressions

CR CATEGORIES 4 32,5 10,525,532

1. Introduction

The concept of computers such as C.mmp and ILLIAC IV is to achieve computational
speedup by performing several operations simultaneously with parallel processors. This
type of computer organization is referred to as a parallel computer. In this paper we
prove upper bounds on speedups achievable by parallel computers for a particular
problem, the solution of first-order linear recurrences. We consider this problem because
it 1s important in practice and also because it 1s so sumply stated that we may obtain some
insight into the nature of parallel computation by studying it.

Consider a k-processor parallel computer. It is understood that because of possible
memory conflicts, delays due to interprocessors communication, etc., k-fold speedup is
rarely achieved. In this paper we show that the speedup for a linear recurrence problem
1s at most 3k + %, even under the assumption that the k-processor machine is idealized so
that there are no memory conflicts or communication delays. We also show that the
bound 3k + } 1s almost the best possible. Of course the actual speedup obtained from a
real k-processor machine would be less than or equal to % + 4. The difference between
% + % and k 1s rather significant. For example, if k = 16, 64, then the speedup for the
problem 1s at most 11, 43, respectively, no matter how efficient the k-processor machine
R

The reason that we get at most 70 percent of the speedup we might expect for the
problem is the inherent dependency of variables in the linear recurrence A related result
in Kung (7] states that many nonlinear recurrences can be sped up at most by a constant
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factor, no matter how many processors are used. Hence these nonlinear recurrences
must involve even more dependency relationships than the linear ones We beheve that
the study of these dependency relationships is fundamental for understanding parallel
computation.

A graph representation of parallel algorithms is given in the Section 2. In Section 3 we
give the results of this paper and discuss their significance. The proof of our main
theorem (Theorem 2) is given 1n Section 4. In Section 5 we give a summary and make
some remarks about this work. An illustration of the algorithm used in the proof of
Theorem 2', a generalized version of Theorem 2, is provided 1n the Appendix.

2. Model of Computation

Let A be an infinute field and a,, b,, i = 1, 2, ... , indeterminates over A. Suppose that we
perform computations in the extension field Aa,, b,, a., bs, ...). We consider the
problem of evaluating rational expressions E m A\(a,, by, a,, b,, ...) given an mput set [
such that {a,, by, as, by, .. } UN C 1 C Nay, by, as, b, ...). (The recurrence considered in
this paper in fact 1s an expression E of a special form. See Section 3.)

An algorithm for evaluating E given [ is defined by a direct acyclic graph such that:

(a) The in-degree of any node 1s either 0 or 2. A node whose m-degree 1s zero is called
an input node.

(b) There exists exactly one node whose out-degree is 0, and 1t is called the output
node. The out-degree of any other node is greater than or equal to 1.

(c) Each input.node contains a value which is an element from the input set /. Each of
the rest of the nodes contains an operation +, —, X, or / and a value which s the result
of the operation on the values of the two predecessors. The value of the output node is E .
(We often refer to a node by its value or its operation 1f there 1s no ambiguity.)

(d) Each node belongs to one of ¢ + 1 sets, called levels and denoted by [y, [, ... , I;,
such that (1) all input nodes are at level [y, (2) for: = 1, the predecessors of any node at
level [, are from levels [, .. , -, (3) no level is empty

Then it can be easily verified that the output node is the only node at level /, and that ¢ 1s
bounded below by the maximal length of a path from any input node to the output node.
We define ¢ to be the time, k = max, <, |I,| to be the number of processors, and w =
Y 1=t |1] tO be the number of total operations needed by the algorithm. An algorithm 1s
called a sequential algorithm if k = 1 and a parallel algorithm if & = 2.

Example 2.1. The graph shown in Figure 1 defines a parallel algorithm for evaluating
the Horner expression of seven variables,

H; = (@b, + ax)b, + aq)b; + ay,

given I = {a,, by, a,, b,, a;, b3, ay} in time ¢t = 4, with k& = 3 processors and w = 8
operations

It seems to us that this model 1s very general and includes any algorithm for evaluating
expressions. One should note, however, that we have implicitly assumed that cach
operation takes one unit of time and the following machine idealizations:

(a) Each processor can perform any of the four binary operations, but all processors
do not necessarily perform the same operation at any time.
(b) No time 1s required to communicate data between processors.

Since we are mterested in lower bounds on time and upper bounds on speedup, as we
mentioned 1n Section 1, the results obtamed in this paper for the 1dealized machine are
certamnly applicable for any real machine.

We now define some notation. For an expression E and an imput set /, define
T«(E mod J) = minimum time needed to evaluate E given I by an algorithm using &
processors, and define the speedup of the problem of evaluating E given I by using &k
processors to be
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S, (E mod I} = T(E mod I)/T,{(E mod ).

For simplictty we often write T\ (E), S.(E) for T\ (E mod I), S,{(E mod I) if there is no
ambiguity. In this paper we obtain lower bounds on T (E) and upper bounds on Sy(E) for
E defined by linear recurrences.

3. Results

The problem considered n this paper 1s the following first-order linear recurrence
problem.

givenay, ..., an-Habl’ tre s bn; Xo =4, X, = xl—lbi + a1y for: = 1’ (31)
compute x,,.

This 1s one of the most frequently occurring recurrences 1n practice. Consider the Horner
expression of 2n + 1 variables:

Hopyr = ((..((aiby + a)by + a)by + - -+ + ap )by + @by + apyy-

It 1s clear that x, = H,,,,. Hence the recurrence problem is just the problem of
evaluating H,,.,; given the input set

I={a,, ..., any, by, ... , b} UA.

It1s easy to see that the mmimum time sequential algorithm is the obvious one defined by
the recurrence (3.1). Hence we have

T\(Hznyy) = 2. 3.2)

Various parallel algorithms using O(n) processors for the problem have appeared in
many papers, including Brent [1], Kogge [5], Kuck and Maruyama [6], and Stone [9]). In
this paper we are mterested 1n algorithms using k processors, where k is a positive integer
independent of n Brent [2] had the first result along this line. He showed that for a
general anthmetic expression E, of n variables and without division, if the input set is the
set of all variables in E,, then

TW(E,) = 2n/k + O(log n). (3.3)

Wimograd [10] recently improved Brent’s result for the case that k < O(n/(log n)?). He
showed

T, (E,) = [3/(2k)]n + O((log n)?). (3.4)
Since H,,., 15 a special instance of E,,,,. by (3.4) we have

Ty(Hypsy) = (3/k)n + O((log n)*).
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For the case that k << n, this bound can be easily improved by utilizing the special form
of H,,.,. We have the following theorem.
THEOREM 1.

Ti(Hzniy) = [3/(k + Dl n + Olog k). (3.5)

Proor. Equation (3.1) is equivalent to

X ) _ [br @] [ %0y
[F]= (o5 l) o=t

Write

7 i
Xn btal"—)} ( bz an-H] [-xo]
) - s)) (e D)
where I 1s to be determined later. We use k& — 1 processors to compute
bal _ e a,H}
L0 1] 11:11[0 17

which takes time ¢,, and one processor to compute

(1= (557 B
fori =1, .., 1, which takes time ¢£,.

Note that the multiplication of two matrices of the form [§ ¥] takes three operations
and results 1n a matrix of the same form. Hence the obvious parallel algorithm gives

ty =3((m - D/k — D] = 1 + [logk — 1.
Note next that the multiplication of {§ ¥]and [f] uses two operations and results 1n a
vector of the form[¥]. Hence
t, = 2.
Choose ! = [3n/(2k + 1)]. Then both [§ ¢] and [§:] can be computed in time
max(ty, t;) =< [3/(k + Hln + O(log k).

By using the fact that

FI-6 116
x, can be obtained in two additional operations. [

The fundamental result of this paper 1s the following theorem.
THEOREM 2. For any algorithm which evaluates H,,., grven the input set I, we have

w=3n —t/2. (3.6)

We defer the proof of this theorem until Section 4. We have the following two
corollaries:
COROLLARY |.

Ti(Honsy) = [3/(k + $)] n, Yk, Vn. (3.7
Proor The proof follows from (3.6) and the fact thatkt =z w. O

COROLLARY 2. For any algorithm which evaluates H,, .., given the input set I, 1ift < 2n,
then

w > 2n. 3.8)
We now explain the significance of these corollaries. From Corollary 1 and (3.2), we
obtain the main result of the paper:
! Theorem 1 has been proven independently by Chen [3] with a different approach
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Si(Honsy) = % + 5, Vk, Vn; 3.9

i.e. the speedup of the problem is at most %k + % rather than k when a k-processor
machine 1s used. Also, by (3.5) and (3.7),

(3/k + PYn = Ti(Honra) = [3/(k + Hln + O(log k).

Hence the bounds in (3.5) and (3.7) are asymptotically the best possible bounds as n —
o, and so is the bound 1n (3.9). Furthermore one should observe that by (3.2) the bound
m (3.7) is sharp for k = 1.

We now turn to Corollary 2. By the corollary, any algorithm which takes time less than
2n must perform more than 2n operations. Since the sequential algorithm uses 2 opera-
tions, we conclude that if a parallel algorithm s faster than the sequential algorithm, then
it requires more work than the sequential algorithm does. This result plays a crucial role
when we want to convert a parallel algorithm using an unlimited number of processors into
one using k processors (see Lemma 2 in Brent [2] and Winograd {10]). The tradeoff
between ¢ and w has been observed in other problems (see, e.g Hyafil and Kung [4]). It
becomes particularly significant for the pipehine computers such as CDC STAR-100,
where both ¢t and w are important. (An excellent discussion on this matter can be found
in Lambiotte and Voigt [8] ) We view Theorem 2 as a start toward understanding the
tradeoff between ¢ and w in parallel computation.

4 Proof of Theorem 2
In this section we consider generalized Horner expressions:
Goniy = (" ((A;B; + A)By, + A))By + -+ + Ay )Bn  + Ap)B, + Ay,
where
A, € L(@) = {pa, + v|u, v €A}, B, € Lb) = {ub, + v|p, v €A},
and A,, B, € \. Let
J= U [L{) VU L)

1=1=n
Instead of proving Theorem 2, we prove the following stronger theorem.

THeoreM 2'.  For any algorithm which evaluates G,,., given the input set J, w = 3n —
t/2.

We first establish three lemmas. The first lemma says that, for evaluating Gs,..;, if no
input node is used more than once and if all input nodes are essentially disttnct, then the
operation mvolving g, and b, is the only possible operation which can be performed at
level /,.

LEMMA 1. I% the directed graph of any algorithm for evaluating G, given J, if the
out-degree of each input node is exactly equal to 1 and if each a, or b, does not appear in
more than one input node, then there 1s only one node at level 1, and its value is a rational
expression of a, and b, over \.

Proor  Let V be the value of a node at level /;. Then V 1s a rational expression of a,,
b,, ofa,, a,, or of b,, b,. We shall only prove the lemma for the case that V 1s a rational
expression of a,, b,, since the proofs for the other cases are siumilar.

Because the out-degree of every input node 1s 1 and each of a, and b, does not appear
in more than one input node, the value of the output node, G,,.,, is a rational expression
RofV, a,,andb, forh #1and k #j By comparing the coefficients of g, and b, in G,
and in R, one can check that V must be a rational expression of 4, and b,. This also
proves that there is only one node at level /,. In fact it is possible to show that the only
operation at level /, 1s a multiplication of the form (u,a, + v, )(u.b, + v,) where u,, v, €
A 4

The following lemma 1s similar to Lemma 1 and hence the proof 1s omitted

LemMa 2. Ifin addition to the assumption of Lemma 1, we assume that the out-degree
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of the only node at level I, is 1, then there is only one node at level 1,

One of the most important properties of generalized Horner expressions is their
reproducing property, which is stated in the following lemma.

LemMa 3. Ifin G,pey, a,is replaced by aand b, by B forsome 1l <i=n,with a, B €
A, the form of generalized expressions stdl remans; more precisely, Go, ., 15 reduced to
Gan-y-

Proor oF THEOREM 2’ Let D be the directed graph of any algorithm which evaluates
Ganiy given J. The proof of the theorem is based on a reduction algorithm, called
Algornithm A, on the graph D Algorithm A first ehminates a,.,, 1n D and then eliminates
the pairs (a,, b,) one at a time. (Eliminations are done by substituting suitable constants
in A for the indeterminants, the a, and b,.) To be precise, Algorithm A is defined in the
following. Also see the Appendix, where Algorithm A has been worked out with respect
to the graph used m Example 2.1.

ALGORITHM A

1 [Imitiahze ]
11 Replace ay.; by @, 10 the graph D, where a,,, € X 1s so chosen that after the replacement the value
of each node n D 1s well defined, 1 ¢ no dwvision of zero occurs (It 1s easy to see that such an a,,,
exists )
12 LetPbe{l,2, ,n} (Pisthe setof the indexes of those indeterminants ¢, and b, which have not been
ehmmated from D )
2. {Check the conditions of Lemma 1 ] If the conditions of Lemma 1 are satisfied, then let 1 be the smallest
mteger in P and go to step 4
3 [Choose : for step 4 ] Choose ; in P such that g, or b, appears either 1n more than one mnput node or n an
mnput node with out-degree greater than 1 (Such an« exists, since conditions of Lemma 1 are not satisfied }
4 [Ehminate (a,, b,} ] Replace a, by a, and b, by 8, in D, where a,, B, € \ are so chosen that after the
replacements the value of each node in D 1s well defined
5 [Reduce the graph D ] Eiminate those nodes 1 D whose successors all have values in J, and elimmate the
arcs connected to them (Note that by Lemma 3 the reduced graph remains an algorithm for evaluating a
generalized Horner expression, which 1s obtained by substituting «, for 4, and B, for b, 1n the original
expression )
6 [Update P and check if it 1s empty | Set P «<— P — {i}. If P = ¢, termunate the algorithm, otherwise return to
step 2

The following three facts can be easily verified

(a) Instep 1 at least one nonscalar operation in D 1s converted nto a scalar operation.
(“x opy” is defined to be a scalar operation if op € {+, —, X} and at least one of x and y
belongs to A, orifop = /andy € \.)

(b) If the conditions of Lemma 1 are not satisfied in step 2, then at least three
nonscalar operations 1n D are converted into scalar operations in step 4.

(c) If the conditions of Lemma 1 are satisfted 1n step 2, then there are two cases:

Case 1 The additional conditton in Lemma 2 1s satisfied. In this case, by Lemma 2
the depth of the reduced graph obtained in step 5 1s less than that of the original graph by
at least 2 Furthermore n step 4 at least two nonscalar operations are converted into
scalar operations when | P > 1 and one nonscalar operation mto a scalar operation when
|P| = 1.

Case 2 The additional condition 1n Lemma 2 1s not satisfied. This implies that the
out-degree of the only node at level [, is at least 2. Hence 1n step 4 at least three
nonscalar operations are converted into scalar operations when | P| > 1 and two nonsca-
lar operations 1nto scalar operations when |P| = 1 Moreover the depth of the reduced
graph obtained in step 5 is less than that of the original graph by at least 1.

The main loop of the algorithm (steps 2-5) is executed n times since # pairs of (a,, b,)
have to be eliminated. Let 4 be the number of times that the conditions of Lemma 1 are
not satisfied in step 2 and v the number of times that the conditions are satisfied. Thenn
= u + v. Furthermore let v,(v,) be the number of times that the conditions of Lemma 1
are satisfied in step 2 and case 1 (case 2) 1s true, respectively. Then v = v, + v,. By (a),
(b), and (c) the number of nonscalar operations which are converted in scalar operations
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by Algorithm A 1s at least 3u + 2v; + 3v,. We havew = 3u + 2v, + 3v,. Hencew = 3n —
v,. By (¢), £ = 2v, + v,. Therefore,

w=23n—1t/24+v,/2 =31 —1t/2.
Equality is only possible if v, = 0. O

5. Summary and Concluding Remarks

We have proved that for the first-order linear recurrence problem, the speedup achiev-
able by a k-processor parallel computer is at most 3k + %, no matter how large the size n
of the problem The techmque used in the proof appears to be new in complexity theory
It is expected that the technique can be used for other problems.

We wish to demonstrate by this result that the gain from parallelism very much
depends upon the nature of individual problems, e.g. the dependency relationships
among the variables of the problem. We believe that identifying properties which
prevent us from getting good speedups 1s fundamental for understanding parallel compu-
tation.

Appendix

We ulustrate Algorithm A with respect to the graph shown in Figure 2

1. a4 < 1. We obtain Figure 3.

2. a; « 2, by < 3. We obtain Figure 4. The graph in Figure 4 is reduced to that in
Figure 5.

Fic 2
@ = mnput node, ®, & = node with nonscalar operation

a4 b, oz ba 03 bs 1

o Gzby +1

((ayby +a,) b, +a3) by+1

Fic 3
® = nput node, O = node with scalar operation, ®, & = node with nonscalar operation
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ay b, az bz 2 3 1

O 3by(a,by+ a,) +7

Fic 4
® = mput node, O = node with scalar operation, ®, & = node with nonscalar operation

ay by [P 3bz 7 4 by 1 6 7

3by(ayby+ay) 6(a,b,+1)

3ba(agby+az)+7 6a4by +13

Fic S Fic 6
® = mput node, O = node with scalar operation,®, & = node with nonscalar operation

9 b, 6 7 3 1 6 7

Qb 3

6(a b +1) 24

6a, by +13 31

Fic 7 Fic 8
® = put node, O = node with scalar operation, ® = node with nonscalar operation

3. a; « 1, by, « 2. We obtan Figure 6. The graph in Figure 6 is reduced to that in
Figure 7.

4, g, < 3, b; «— 1. We obtain Figure 8.

5. The graph in Figure 8 is reduced to 31
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