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ABSTRACT. A maximal  vector of a set ~s one which is not less than any other vector m all components We derive 
a recurrence relation for computing the average number  of maxunal  vectors m a set of  n vectors m d-space under  
the assumpUon that all  (nl) a relative ordermgs are equally probable. Solving the recurrence shows that the average 
number of maxmaa is O((ln n) a-~) for fixed d We use this result to construct an algorithm for finding all the 
maxima that  have expected running tmae hnear m n (for sets of vectors drawn under  our assumptions) We  then 
use the result to find an upper bound on the expected number  of  convex hull points m a random point set 
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1. Introduction 

The problem of  finding all maximal vectors m a set o f  n d-vectors has recently been studied 
by Kung, Luccio, and Preparata [3] and Yao [9]. In this paper we consider the related 
problem of  finding the expected number o f  maximal elements in a gwen set. We give a 
solution to that problem under a very general probability distribution and then apply that 
answer to related problems. 

A maximal vector is one that is not less than any other vector in all components.  More 
precisely, we say that a vector P dominates the vector Q if  P is greater than Q in every 
component; then a vector is maximal if  it is not dominated by any other vector in the set. 
For example, in {(1, 2, 4), (2, 3, 1), (3, 1, 3), (4, 4, 2)}, only (2, 3, l)  is not maximal. It is 
helpful to view this problem geometrically when d = 2. In that case the vectors can be 
considered as n points m the plane and a given vector is maximal if  and only if there is no 
point in its first quadrant (above it and to its right). 
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A probability distribution is implied as we ask for the expected number of  maxima. A 
mathematically tractable yet reasonable model assumes that for each vector, the magnitude 
of  one component is distributed independently of  the magmtude of  the other components 
and, for each component, the magmtudes chosen for each vector are distinct. The second 
restriction nnplies that the vectors can be sorted into increasing order on any component, 
yielding a relative ordenng from 1 to n. Thus each set of  n d-vectors corresponds to a 
particular relatwe ordering for each component, that is, to one of  (n!) d assignments of  
permutations of  (1, 2, 3, ..., n) to the d components. Examples of  multivariate statistical 
distributions with distinct components &stributed independently include the multivariate 
normal distribution and multivariate uniform distribution drawn from a unit hypercube. 
(Recall that elements drawn independently from any continuous distribution function are 
distract with probability one.) 

The solution to the maximal vector problem is often required in the analysis of  the run 
time of  dynamic programming algorithms (see Schkolnick [7] and Schkolnick and Thomp- 
son [8]). In dynamic programming the solution to a problem of size n is obtained from the 
best solutions of  problems of  size n - 1. For many applications a cost vector of  length 1 is 
sufficient; thus, there is a single best solution to each subproblem. In cases where more 
than one best solution must be retained for each subproblem, It may still be possible to 
design a multidimensional cost function with the property that the best solutions for every 
subproblem are just the maximal ones. If  the cost vectors of  candidate solutions are 
assumed to have the proper distribution, then the maximal vector problem indicates the 
expected number of  best solutions. Examples of  dynamic programming algorithms where 
multidimensional cost functions are used can be found in [4, 5, 7, 8]. 

Other applications of  this work are given in later sections of  this paper. These include 
a fast expected-time algorithm for finding maxima of  a vector set and a new theorem 
about convex hulls of  random sets. That theorem extends previous results in stochastic 
geometry which have been described by Santalo [6]. 

In Section 2 we formulate and solve a recurrence that shows that the expected number 
of  maxima among n d-vectors is O((ln n)d-l). We use this result m Section 3 to give an 
algorithm for finding all the maxima of  a set of  n d-vectors that has expected running time 
linear mn .  In Section 4 we show, for a gwen set of  random points, how this result gives an 
upper bound on the expected number of  points from the set that are on the boundary of  
the convex hull of  the set. 

2. Determining the Average Number of Maxima 

In this section we derive the primary result of  this paper. We give two derivations of  this 
result. Our first derivation is formal and therefore rather complicated, so we supplement 
that with a second, informal derivauon. The second derivation is not completely precise, 
but it does give an intmtwe idea of  the essential workings of  the formal derivation. We 
proceed directly with the formal derivation; the informal begins immediately after the 
statement of  Theorem 2. 

Let A(n, d) be the average number of  maximal vectors out of  n d-vectors. Without loss 
of  generality, assume that the vector components in each dimension are integers from 1 to 
n. We shall therefore view a set o fn  d-vectors as an n×d array, whose rows are the vectors 
and whose columns are permutations of  { 1, 2 . . . . .  n}. Let S be the set of  all such arrays. 
Then S contains (n!) a arrays. For any array r in S, let M(r) denote the number o f  maximal 
vectors in r. By the definition ofA(n, d), we have 

Let T be a subset of  S which consists of  arrays with their first columns equal to (1, 2, ..., 
n) T. Because M(r) is invariant under permutations of  the rows m r, it follows that 
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1 X M(r)=~ X M(r).  
r E T  r~ES 

LEMMA 2. 

LEMMA 1. 

E Ml(r) = _1 (n!)d_,A(n ' d - 1). 
r ~ T  FI 

PROOF. Note that ~reTMl(r)  is the number of  times, over all r in T, vector (1, Ar) is 
maximal in r. Note also that vector ( l ,  At) is maximal over all n d-vectors in r i f  and only 
if vector Ar ts maximal over all n (d - l)-vectors in the subarray [~:]. Then ~reTMl(r) IS 

simply the number of  times, over all r in T, the vector Ar in the first row is maximal  in 
[~].  Since over all r in T there are (n!)d-lA(n, d - l)  maximal  (d - D-vectors and the 
number of  maximal  vectors occurring m each row is the same, it follows that 

Z Ml(r)  = _l (n!)d_iA(n ' d - 1). []  
r ~ T  n 

E M2(r) = (n!)a-lA(n - 1, d). 
r ~ T  

PRoof. Consider an array r in T. Note that a d-vector in region 2 is maximal  over all 
n d-vectors in r i f  and only if  it is maximal  over all n - l d-vectors in regmn 2. Therefore, 
for any r in T we shall consider only region 2. ~reTM2(r) is the number  of  occurrences of  
maximal vectors in region 2 over all r in T. Let A be a fixed (d - 1)-vector. Over all r in 
T where r has (1, A) as its first row, there are ((n - l )!)e- lA(n - 1, d) maximal d-vectors 
occurring in region 2. Since A may be chosen m n a-1 ways, we have 

E M2(r) = (n!)a-lA(n -- 1, d). [] 
r E T  

The following theorem follows from (2.3) and Lemmas 1 and 2. 
THEOREM 1. 

A(n, d)  -- A(n  - 1, d)  + A(n,  d - 1)/n, (2.4) 

f o r  n, d >_ 2. 
It is easy to check that 

A(I ,  d)  -- 1 for d_> 1 (2.5) 

Thus, 

(n!)d-~A(n, d ) =  ~ M(r) .  (2.1) 
r ~ T  

Any array r in T can be decomposed as 

regton l I___I ~ . . . .  f l ,  . . . . . . . .  
I 

| 

region2 ] B Cr 

I 
where B = (2, 3 . . . . .  n) T. (Region 1 contains o n ~  one vector, namely, (1, A0.)  For  i = 1, 
2, define M,(r) to be the number  of  maximal vectors in r whmh are in region i. Thus, 

M(r) = n l ( r )  + M2(r). (2.2) 

(Note that Mx(r) is either 0 or 1.) Taking sums in both sides, we have by (2.1), 

(n!)d-'d(n, d ) =  ~ M d r  ) + ~ M2(r). (2.3) 
r•T  r E T  
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and 

A ( n , l ) =  1 for n_> 1. (2.6) 

The recurrence (2.4) with initial conditions (2.5) and (2.6) can be solved by first setting up 
the generating functions 

Gn(z) = ~ A(n, d + l)z a, for n > _ l .  
d.~O 

o r  

By (2.4) and (2.6), 

G.(z) = G._,(z) + (z/n)6.(z), 

G. (z )  = G n - l ( Z ) / ( l  - z/n) (2 .7)  

for n _> 2. By (2.5), Gl(z) = 1/(1 - z). Hence (2.7) implies that 

1 
Gn(z) l-I 

1~,1_<. (1 - z/i)' 

which is Eq. (33) of  Knuth [2, Sec. 1.2.9] with x, = 1/i. Define 

1 1 1 
= 1 + - . .  

Knuth's  analysis shows that the coefficient of  Z d i n  Gn(z) 1s 

HO~(n)kl W~(n)k2 H~(n)"~ X 
k,k2, ,ka_>o lk'kl! 2kzk2! dkdkd! 

kl+2k2+ + d k d - d  

which is, by definition, A(n, d + 1). Clearly, 

A(n, d) _> ( l / ( d  - l)!)Htl)(n) d-'. (2.8) 

The values of  A(n, d) for small d are 

A(n, 1 ) =  l, 
A(n, 2) -- Hm(n), which is the nth harmonic number Ha, 
A(n, 3) = ½ H°)(n) 2 + ½ H(2)(n), 

1 1 /./(3) (n~  A(n, 4) = ~ H°)(n) a + ½ Hm(n)H~2)(n) + ~ __ ,_,. 

It Is not difficult to show that the sum of  the coefficients in A(n, d) is always 1. (For  
~ a 1.) Since H(')(n) _<//°)(n)" for example, the sum of  the coefficients in A(n, 4) is g + ~ + ~ = 

n, r _> 1, we have 

A(n, d) _< Hm(n) d-a. (2.9) 

By (2.8) a n d  (2.9) we have 
THEOREM 2. 

(1/(d - l)!)Hm(n) a-1 _< A(n, d) _< Hm(n) d-l. 

Therefore, A(n, d) = O((ln n)d-1) for fixed d. 
We now give a more intuitive derivation of  the recurrence for A(n, d). As we stated 

previously, this derivation is not precise, but it should help m getting an intuitive Idea of  
the workings of  the prewous proof. To compute the expected number  of  maxima in a set 
we will consider the set sorted in order by the first coordinate. (As before, we consider that 
all numbers have been translated to the integers from 1 to n.) The situation we now have 
is illustrated as follows: 
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d - I  
A 

1 
2 
3 

. . . . .  -I . . . . . . . . . . . . .  
I 

n - - I  
n 

We now ask: What is the probability that the ith vector in the set is a maximum? Since its 
first coordinate is greater than the first coordinates of  the 1st through the (i - l)-st vectors, 
it cannot be dominated by any of  those. Therefore the ah  vector is a maximum if and only 
if its remaining d - 1 coordinates are maximal in the set of  the/ th through the nth vectors. 
The probabihty that the ith vector is maximal in this set is, by independence, the expected 
number of  maxima in the set (which is A(n - t + 1, d - 1)) &vided by the total number 
of  vectors in the set (which is n - i + 1). Since these probabilities are independent for all 
values of/ ,  to find the expected number of  maxima in the set we sum the probablhtms of  
each vector being maximal and we have 

n /t 
A(n, d) = E A(n - t + 1, d -  1 ) =  E A ( j ' d -  l) 

,-1 n - l + 1 l ' l  j 

Note that the last sum is equivalent to the expression for A(n, d) m Theorem 1. 
We now give a simpler (and less precise) bound on the growth of  A(n, d). It is obvious 

that A(n, d) must be monotone increasmg in n, so f f j  _< n then A(j ,  d) ~_ A(n, d). We use 
this observation in the following derivation. 

A(n, d) = E A(j ,  d -  1)_< A(n, d -  1) 

~-1 J j-~ j 
1 

_< A ( n , d -  1) J=l j ~ A ( n ,  d - 1)H(1)(n). 

Iterating this recurrence on d easily gives the upper bound 

A(n, d) _< H(1)(n) a-1. 

3. A Fast Expected-Time Maxtma Algorithm 

So far m this paper we have considered the problem of  counting the number of  maxima 
in a set of  vectors; a related problem is finding the maxmaa in a set of  vectors. This problem 
has received much attention recently. Kung, Luccio, and Preparata [3] give an algorithm 
for finding the maxima of  n vectors m d-space that has worst-case running time of  
O(n In n) for d = 2 and O(n(In n) a-~) for d _> 3. Yao [9] shows that the results in 2- and 3- 
space are optimal by gwing a worst-case lower bound of  O(n In n) (indeed, she gwes a 
bound that is the exact number of  comparisons taken by a known algorithm for planar 
sets). 

These results, however, deal only with the worst-case complexity of  finding maxima; it 
is often interesting to consider also the average-case complexity. In this section we wdl use 
Theorem 2 and a general dwide and conquer schema to give a fast expected-time algorithm 
for finding maxima (this schema is investigated in detail by Bentley and Shamos [1]). The 
algorithm we develop here wdl have expected running time linear m n for vector sets 
drawn under the "independent and distinct" assumptions stated in Section 1. 

Our maxima algorithm is easily described recursively. Without loss of  generahty, we 
assume that n is a power of  2. To find the maxima of  a set S of  n vectors, divide S into two 
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sets A and B, each containing n/2 vectors. Recursively find the maxima of  A and B, calling 
those sets MA and MB, respectively. It is easy to see that the set of  maximal vectors of  S is 
the set of  maxima of  MA U MB. Therefore we can find all the maxima of  S by finding the 
maxima of  MA t_J MB; to do this we use the algorithm of Kung, Luccio, and Preparata 
[3]. (Recursion in our ongmal algorithm stops when n is less than some predefined 
constant.) The division into subproblems can be implemented on a random access computer 
by storing the vectors in an nxd  array of  scalar values. Each vector is initially represented 
as a pair of  integers which define the top and bottom endpoints of  a segment in the array. 
Division into further subsets can be accomplished by taking the arithmetic mean of  the 
endpoints as defining two new segments, etc.; note that the division preserves randomness 
and can be accomplished in constant time. 

The expected running time of  this algonthm is easy to analyze, given that the expected 
number of  maxima m a set of  n d-vectors is O((ln n)d-1). Since division into subproblems 
can be accomplished in constant time, the recurrence describing the expected running time 
of  our algorithm on n d-vectors Is 

r(n, d) = 2r(n/2, d) + F(n, d), (3.1) 

where F(n, d) is the expected running time of  the marriage step (finding the maxima of  
MA I.) Mn). Let t be the number of  vectors m Ma (3 Mn. Then the running time of  the 
marriage step using the algorithm of Kung, Luccio, and Preparata is bounded above by 
O(t(ln i) a-z) for d _> 3. This gives 

n 

F(n, d) _< Z p(t) t(ln i) d-2, 

where p(i) is the probability of  there being exactly ~ maxima m MA t3 MB. By the fact that 
the number of  maxima in A is independent of  that m B, the expected value of  i satisfies 

E(t) = ~ p(i) i 

= 2. (expected number of  maxima m a set of  n/2 d-vectors) 
-- 2. O((ln (n/2)) d-a) 
= O(( ln  n)a-~). 

Therefore, by ha z _< In n, we have 

H n, d) _< (In n) a-2 ~ p(i). i 
i l l  

= O((ln n)Za-3). (3.2) 

Substituting (3.2) into (3.1) gwes for the running time of  our algorithm the recurrence 

T(n, d) _< 2T(n/2, d) + O((in n)2a-3). 

For fixed d, this recurrence is well known to have the solution 

T(n, d) = O(n). 

In ad&tion to having a very fast expected running time, our algorithm also has qmte a 
respectable worst-case performance. Note that F(n, d) is always bounded above by 
O(n(in n) a-z) for d _> 3, so the worst-case running time of  our algorithm is given by 

T(n, d) = 2T(n/2, d) + O(n(ln n)a-2), 

which has the solution 
T(n, d) = O(n(ln n)a-1). 

Thus m the worst case our algorithm is only a factor of  In n slower than the best-known 
worst-case algorithm. 
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We summarize the main result of  this section in the following theorem. 
THEOREM 3. The maxima of a set of n d-vectors drawn from a distribution satisfying the 

"'independent and distinct'property can be found in expected time linear in n. 

4. Relation to Convex Hulls 

The maximal elements of  a set of  vectors are a crude representation of  the boundary of  the 
set; the boundary can be more precisely defined as the boundary of  the convex hull of  the 
set. While working with the convex hull we will view the vectors as points in d-space. The 
convex hull of  the n points is then defined as the smallest convex set containing the n 
points. One can get an intuitive picture of  the convex hull of  a planar point set by 
imagining the n points as n nails in a large board, with about an inch of  each nail remaining 
above the board. The convex hull of  this set can be found by taking a large rubber band, 
stretching it infinitely far out in all directions, and then letting it go. It will come to rest 
about certain of  the nails, and the region within the rubber band is the convex hull of  the 
set. 

Given a set of  n points sampled independently from some underlying probability 
distnbution function in d-space, what is the expected number of  points on the resulting 
convex hull? (Here we use the abbreviation "on the convex hull" to mean "on the boundary 
of  the convex hull.") The answer to this question is of  course dependent on n, d, and the 
underlying distribution. Santalo [6] describes a number of  results for different distributions; 
many of  these results and their original references are given in Bentley and Shamos [1]. In 
this section we will gwe an upper bound on the number of  hull points for distributions 
satisfying our requirement of  independence among the d variables. To arrive at tMs bound 
we will first show that every convex hull point is a maximum under at least one of  the 2 a 
possible different assignments of  + and - signs to the d components, and then use this fact 
and Theorem 2 to bound the expected number of  hull points. 

To show that every convex hull point is a maximum under at least one of  the assignments 
of  + and - signs, assume that there is some hull point h which is not. This implies that 
there is at least one point in each of  h's 2 a orthants; choose one point from each orthant 
and call this collection P. Because values are distinct, all points in P are properly contained 
in their orthants. Consider now the convex hull of  P; it must properly contain h. (If it 
contained all the points of  P and not h, then it would not be a convex set.) Since h is 
properly contained in the convex hull of  P it must also be properly contained in the convex 
hull of  the original set. This contradicts our assumption and establishes the desired fact. 

We have shown that every hull point is a maximum under at least one of  the 2 a possible 
assignments o f  + and - signs to the d variables. Consider now the set of  all points that are 
maximal under at least one of  the sign assignments; call this set M. Since the expected size 
of  M is bounded above by 2 d. O((ln n)d-1), and M contains all convex hull points, the 
expected number of  convex hull points is certainly bounded above by that expression. 
Thus we have the following theorem. 

THEOREM 4. The expected number of convex hull points in a point set of n points in d 
dimensions satisfying the "'independent and distinct" property is bounded above by 
O((ln n)d-1). 

Note that the arguments presented in this section together with the algorithm of  Section 
3 might yield a fast expected-time algorithm for identifying the points on the convex hull 
of  a d-dimensional point set. Such an algorithm would first fred all of  the maxima under 
every assignment of  + and - signs, which would yield a small (i.e. O((ln n) a-l) expected 
size) superset of  the hull points. The second step of  the algorithm will discard nonhull 
points from the superset. Obtaining an efficient implementation for such a second step is 
an open problem. 
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