
L.OCKIN(; POL.I(~IF:S: Sl\FF~T'! j\N[) FRE:f=O()M FROM DEl\I)I~()(~K

\1 ihalis 'r' ann akakis
Bell Lahoratorles

,\Iunay IIJlI, .\'J () 74 7';

C'. II. Papadinlitriou
Alassachuselfs /nsllfufe oj' Technology

Ca/fzhrf(I«i', AlA ()] /39

II. T. Kung*"
('urneglc-A/ellon Unll'crstfr

Pllfshurg. PA /5] / 3

1 INI'R()(lU('TI()N

A database consists of ellliflc.\' yvhich reLlte to each other
in certain ways, i,e., they satisfy cerltlin cOllsistency con

straints. Many tinles, when a user updates the database,
he nlay have to update tcnlporarily these constraints in
orde r tC) eventuaII y t I'an s1'0 I' 111 the database in to a new,
consis ten t stat C . For this I'eas 0 n, at 0 nl ic act ion s by the
sa nlC user arc grou ped toget her into un its of consistency
called transactiolls. In practice. a transaction nlay be ei
ther an interactive session, or the execution of a user up
date progranl. When, however, nlan y' transactions access
and update the SanlC database cOI1curTently, there rnust he
sonle kind of coordination to ensure that the resulting se
quence of interleaved atonlic actions (or schedule) is
correct. This TlleanS that all transactions have a consistent
view of the data. and furthernlore the database is Icft at
the end in sonle consistent state,

This required coordination is achic\cd via the COIl

currency cOlltrol,nechalllsfn ()f the database. ('onsiderahle
research effort has heen devoted recently to the theoreti
cal aspects or the design of such a systenl !ECiLTl. SLR,
SK, KS, Pa, PBR, KPI. The theory of databasc con
currency control bears a superficial silllilarity to the
() pe ra ting systenl S- inspi I'ed con cLI rrency 1he 0 I'Y [K [vI, (' [) 1.
The difference is lhtl{ in operating systeIllS \\le have
cooperating, Ill0nitoring. dnd 1110n itored. processes, and
the goal is to prevent had cooperation or Tllanagenlent
(e.g. indetcrnlinacy. deadlocks) In databases, we have a
population of' users that arc una\\'are of each other's pres-

I: \Vork partially '-)upp()rtcd by' NSf, Grants 'lCS 77·0119J, \lCS
77 -05314.
r* Work partially supported by NSf· (;r~nll \lCS 7~-222-~~ ~lI1d

()flicc of Naval Rc'-)carch Contracts N()()()14-7()-('-(U7(). NR
044-422.

CH 1471-2/79/0000-0286$00.75 CO 1979 IEEE

286

ence: the goal is to protect thenl frOTll the dangers of this
ignorance (e.g., creation of bad data because of an unfor
tunate sequence of accesses and updates originatcd fronl
two users). [)eadlocks are inlportant only in conjunction
wi I h correct ness, as possi ble defects of the concurrency
con t I' () I nlechan is III .

/\ concurrency control Illechanisnl is eVciluated basically
in ternlS of the parallelis"l that it supports - roughly, the
class of all schedules that arc possible responses of the
systenl to inconling user requests. The goal is therefore
to design a concurrency control Tllcchanisnl that has as
rich such class as possible. while at the sanle tiTlle allow
ing only correL't schedules.

The right notion of correctness in this context is not
inlTllediately obvious. Virtually all researchers in the area
[c.g. EC;LTI. SK. Pa, PBR] have adopted the notion of
sertalizabili(v. A sequence of atonlic steps is serializable if
it is cquivalcnt (in a schenla-theoretic sense) to a serial

schedu Ie, one in wh ich the users execu te their progra nlS
sequen tiaIly, nne at a tinlc. In facL in [K Pl it was shown
that this is indeed the right notion of correctness when
only syntactic infornlation nn the transactions is avaiLlhle
~- as is usually the case. If sonlC senlantic infornlation IS

also available, then nlorc relaxed definitions arc possible,
In this paper \ve focus on serializability,

With the notable exception of the S[)[) I systcnl
[Be; RPL all solutions to the concurrency control probleTll
proposed thus far are basell on locking, i.e., binary senla
phores controlling the access to data. Each transaction
locks entities according to sonle lackin!? polic:y in such a
way that \vhen the transaction runs concurrently with any
possi ble set of transactions that follow the sanle lock ing
policy, any schedule that Tllay result is guaranteed to be
correcL (that is, serializableL Such a locking policy is
called sq(e. The paradignl of safe locking policies is the
two-phase locking (2PL) policy proposed in [ECiLTIl. In

2PL a transaction nlust lock any entity that it needs be
fore its access, and nlay unlock it at any tinle after its ac
cess. However, after sonle entity is unlocked, the tran
saction cannot lock any nlore entities. Thus a transaction
has two phases: the lockin/{ phase, during which the tran
saction may request, but does not release, locks, and the
unlocking phase. It is shown in [EGLTI] that 2PL is a
safe locking policy, and furthermore that it is necessary
for safety, in the sense that if transaction T 1 is not t\\"o
phase locked, then there is another transaction, TJ, such
that the pair: T j , T2 } is unsafe. ~

However, in [SK] another safe policy, the tree policy
(TP), was proposed, llere the entities are arranged in a
rooted tree, and transactions access whole subtrees of en
tities. A transaction r nlay access unconditionally the
root of its subtree by fIrst locking it. Subsequently, T
may lock an entity only if its father in the tree is presently
locked. Notice that TP is a .!cuni{v of policies (one for
each underlying tree) rather than a single locking policy.
It may result in transactions that are not two-phase
locked, and still it is provably safe.

In this paper we enlbark on a theoretical exanlination
of locking policies and safety in general. In Section 2 we
describe our nlodel and fornlally define our ternlinology.
Section 3 is devoted to the following question: Is locking
a good concurrency control primitive? We present an
answer (very simple analytically), which we interpret as
negative. In particular, we show that the set of schedules,
that are possible responses of any concurrency control
mechanism based on locking must satisfy a very rigid
"obliviousness" condition, which appears to forbid the
use of any sophisticated nlethodology of increasing paral
lelism.

In Sections 4 and 5 we characterize safe locking poli
cies. We first give a characterization of safety for the case
of two transactions. In doing so, we employ a geometric
methodology reminiscent of that used by Dijkstra for
studying deadlocks [CES).

Here we use it in a very different way to study incorrect
cOlnpletions, ignoring deadlocks. Besides its independent
interest and elegance, the two-transactions solution is the
building block for solving the general case (Section 5), It
turns out that a locking policy defined on d > 2 transac
tions is safe iff all of its restrictions to two transactions
are safe, plus a combinatorial condition. This conlbina
torial condition is shown to be NP-hard [Ka, GJL but it is
simple enough to have interesting corollaries. For exanl
pie, the safety of 2PL and TP follows very easily. Furth
ernlore a generalization of TP called digraph policy (DP, in
which the entities are arranged on a directed acyclic graph
instead of a tree) is also shown safe.

It can be trivially shown that if no structure is to be inl
posed on the entities - i.e., a policy must remain safe
under any arbitrary renanling of the entities - then 2PL
is essentially necessary for safety. Now, locking policies
like TP and [)P get around this by inlposing a structure (
a tree and a [)AG respectively) on the entities. In prac
tice, such structures may reflect either a physical (e.g.
trees or DAG's of pointers) or a logical (e.g. flow of con
sistency constraints) organization of the entities. The
idea in TP and [)P is to take advantage of this structure
so as to gain parallelisnl. Are all safe locking policies,

287

then, expressible as policies operating on appropriately
generaL "nice" (in sonle intuitive sense) structures?
The answer for the general case is nlost likely "no", (un
less NP = co-NP) since safety was shown to be NP-hard.
Therefore in Section 6 we restrict our attention to a na
tural subclass of locking policies called L -policies. L
policies are those that can be stated in tern1S of conditions
that deternline whether a given entity can be locked or
not- based on the portion of the transaction up to this
point. We sho\v that safe L -policies can be nl0deled by a
certain policy lIP that operates on appropriately defined
hypergraphs.

We also exan1ine the issue of deadlocks (Section 7), It
was known that TP is deadlock-free [SKl. llere we ex
tend this to sh()\v that I)P is deadlock-free, and that, in
fact, it is the n10st general safe and deadlock-free policy
for a pair of transactions. However, we show that decid
ing whether a set of transactions is not deadlock-free is
NP-complete. even when the transactions are restricted to
be two-phase locked. We show that for safe L -policies
freedonl fronl deadlock depends only on the order in
which entities are locked (and not on where they are un
locked, i.e. how safety is enforced), and describe sonle
ways for achieving freedon1 fronl deadlock.

2 [)EFINITIONS

A transaction systenl T = : T1,· .. , Td J is a set of transac
tions. A transaction T I = (Ttl.,,,. T"n) is a sequence of ac-

I

tions. Each action ~/ has associated with it an entity,
Xu E E, where E is a set of entities. The xu's need not
be distinct.

Each action ~.1 is thought of as the indivisible execu
tion of the following

The first instruction stores the current value of Xu to a lo
cal variable tu, not in E, and the second changes Xu in
the most general possible way based on all available local
(to the transaction) infornlation. The tu's are all distinct.
We let R (T) be the set {xu:j=l., ... ,tn,}.· A schedule s of T

is a pernlutation of all steps of T such that j < k ~ tn, inl
plies s (~j) < s (TIA). The set of all schedules in S. s is
called serial if- for all i and j<,n l s(~/)+l = S(Tt./tl).

Two schedules are equivalent if they are equivalent as
parallel progranl schenlata with uninterpreted .(u's. s is
serializable (notation: s ESR) if it is equivalent to sonle
serial schedule.

Deciding serializability of a schedule s is known to be
NP-conlplete if we distinguish between reading and writ
ing steps [Pa, PBR], but can be easily done in our nl0de!
as follows [EGLTI]: Construct a digraph D(s) by
corresponding a node VI to each transaction ~' and draw
ing an arc (TI , Tj) whenever, in the schedule s, ~ up
dates an entity before Tj does. Then s is serializable iff
D (s) is acyclic. A locked transaction systetn L (T) is a spe
cial augn1ented version of the (ordinary) transaclion sys
tenl T. The 0 perat () r L pe rf0 rnl ing this augnlen1ati() n is

called locking. The entItIes of L (T) are E U L ~'. where
L V is a set of special entities called locking variables - in
tuitively, the locking bits of the entities. L transfornls
each transaction T, in T to L (T,) by inserting pairs of
'''lock X '" unlock X" steps, where X E LV. The step
"lock X" has the tlxed interpretation "X := if X = 0
then 1 else error": sinlilarly for "unlock X". The set of all
schedules of L (T) is denoted by L (S).

The set L (5) of schedules is entrusted to a special
scheduler M, called the lock Inanager: the output set of
schedules fronl Mis M(L(S)): fornlally, M(L(S)) is the
set of all schedules in L (S) that leave invariant the predi
cate

f\ X=O.
\. i= L ~

Now, if R is a set of schedules fronl L (5), let L I (R) be
the same set with the ""lock" - ""unlock" steps removed.
Then the class of schedules L I(M(L(S))) abbreviated
o (L), is the output set of the locked transaction systenl
L (T) and is a nleasure of the parallelisnl supported by
L (T). L (T) is called s~fe if 0 (L) C SR.

.3 A (~HARAl'TERIZATION ()F LOCKIN(;

~1ow general output sets 0 (L) can be produced by in
creasingly sophisticated lockings L? To study this, let us
generalize locking to d-Iocking. In d-Iocking the locking
variables nlay assunle d values 0,1 ,... ,d-l, and the
locked state is d--l. In other words, any proper subset of
the d transactions nlay share a variable. Trivially, ordi
nary locks can be sinlulated by d-Iocks in that the sanle
output set nlay be achieved (ignoring deadlocks for the
time being).

For a prefix p of a schedule s. let steps (p) be the set of
transaction steps involved in p. We call a class C' of
schedules order obliviolls if whenever SIS~ E C, s\s~ E (',
and steps(S1) = stepsCs.\) then also SI s~ E C'. This condi
tion states that once a history has executed several steps.
it has ""forgotten" the exact order. as far as nlenlbership
in C is concerned.

Theoretn 1. C=() (L d) for sonle d-Iocking L d itT C' is
order-oblivious.

Corollary 1. If C=O(L) for sonle ((Hdinary) locking
L, then C is order-oblivious.

In fact, an exact characterization is inlnlediate.
Corollary 2. C=O (L) for sonle locking L ifl all projec

tions of C to pairs of transactions are order-oblivious.

4 THE (iEOMETRY ()F L()('KIN(;

For the subsequent Sections we shall aSSUI1le that all
locked transaction systenls are we11-.lorlned, in that

1) There is a natural isonlorphisnl between E and
LV via the mapping x-X, y- Y, etc. Then
""lock X" will be abbreviated as L.x·, and ""unlock
X" as Ux.

2) All variables are locked at nlost once in each tran
saction.

288

3) If T;/ is not a Lx or Ux step, then it is included in
a Lxll - Ux,/ pair of steps.

We \vill assunle also that

4) Any Lx- Ux pair of steps contains a step T;, with
xl/=x.

These assunlptions are nlade invariably throughout the
literature on locking. By "'transaction system" we shall
henceforth understand "'well-fornled locked transaction
systenl" with 4) satisfled.

Consider a transaction system T = {TI , T2}

A point p in the coordinated plane (Figure 1)
represents a possible state of progress made towards exe
cuting T I and T2• The lock-unlock instructions of the
systenl T have the effect of creating a forbidden region
(possibly disconnected) which is the union of rectangular
blocks (Figure 1). The region D is one of deadlock,
whereas U is unreachable, yet not in any block. A
schedule S corresponds to an increasing curve fronl 0 to
F that avoids all blocks (still Figure 1), (For the sake of
infornlality we will disregard the point that all such
"curves" nlusl be staircase), The two serial histories are
the curves OTIF and OT2F. At this point we need a
lenlnla:
Lelnlna Two schedules are equivalent iff they can be
transformed to one another by a sequence of "'switch
ings" of adjacent steps not involving the sanle entity.

A "switching" is shown in Figure 2. If such a switch
ing is illegal in that XI, = X2j, then it cannot be perfornled
because of a forbidden block. It turns out that schedule
equivalence is the same with curve hOlnotopy; two curves
are honlotopic if they can be transfornled to one another
by continuous transfornlations within the rectangle
OT1FT2 avoiding all blocks. Hence we have (see Figure
3):

Theoreln 2. T is unsafe iff there exists an increasing
block-avoiding curve fronl 0 to F that separates two
blocks.

Let R be any region (possibly disconnected). Call two
points (XI ,Yl) and LX-~'Y2) incolnparable if
LXI-X2) (YI--Y2) <0 (Figure 4, points p and q). Then R
is closed if, for any two connected inconlparable points
Lx I ,y I) and (x 2,y2) in R, the po in ts Lx- I ,y~) and (x2,y1)

are also in R. The closure of R is the (well-detlned)
snlallest closed region containing R (Figure 5), We ha ve

Theoren13. T is safe iff the closure of the forbidden re
gion is connected.

Corollary 3. T can be checked for safety in 0 (11"\) tinle.
In fact. this can be done in 0 (nlognloglogn) tinle [Lil.

Notice how intuitive 2PL beconles now. 2PL says that all
blocks I11USt contain the point P whose projections PI and
P2 are the phase-shift points of the transactions T1 and T2

(see Figure 6). Thus the blocks are connected, and 2PL
correct.

5 THE d>2 CASE

('onsider now a set of d> 2 locked transactions
T = {T\, ... , TdL and detlne the graph G(T) = (T,E),where

[T;, Tj 1 E E iff the transactions T1 and T, have an entity
in conlnlon. 1fthe restriction of T to any pai r of transac-

unlock X

F

........-...---..,..--.•.~... _,..~.~_ ..~-~--_.~------,,--, T1

Figure 2
o

Figure 1unlock Y

unlock X·· . ,.

D
F

/1
I

a

Fie:ure 3

Figure 5
289

unlocking

phase

t
p - .-2,

locking I
I

phase ~

_ ... ----

I

•
I

L. «__IDm_. "': ."'..- • no," ""'_ __$_--..I!I)."
o locking phase ~ 4 unlocking phase T1

PI

Figure 6

l ~/

\' " . '
$.•••.

Q ..
~ IIIIlf~-·_··· ..~./:!L--..J-'-__.:.. .._-~

q4

Q
I 3 ,-....-"•.. " ...

~T
1_5"-.o·-f------_~--_.--_---_ _.....-..----__WllI__.__~~

Figure 7
290

Figure 8

tionSIS Incorrec t (i.e., it vi 0 Iates The0 renl 3), thenthe
overall systenl is incorrect. So, let us assunle that for all
[~, Tj 1 E £ the closure of the forbidden region in the
T,- T; plane is either equivalent to OT,F (s' in Figure 7)

or to OT;F (s" in Figure 7). In the fornler case we write
T, <s Tj~ in the latter Tj<s ~.

Lefnfna s is serializable iff the < s relation is acyclic.
Therefore for T to be safe, for each directed cycle that

corresponds to an undirected cycle in G (T) there nlust be
a reason why no s exists that has this sanle cycle in the
graph of <\. Intuitively, the reason is that there is a con
tradiction in the order in which the curve of s intersects
the prisnls with bases nlarked p\,p2,... ,QJ,Q4 in Figure 6.
This is captured as follows: with each pair ([T" TjL
l Tj , Tk]) of edges in E we associate a digraph B'ik' The
vertices of this digraph arc the vertices of the Pm and Qn
regions (see Figure 7). There is an arc fronl u to v iff
(a) either 1I is a Pm or v is a qn (or both), and (b) the
Trcoordinate of u is snlaller than the Ti-coordinate of v.
The construction is illustrated in Figure 7. Finally, if C is
a directed cycle corresponding to a sinlple undirected cycle
in G (T), we let Be be the union of all Blik digraphs for all
consecutive triples (~, T1 , Tk) of C. The result is the fol
lowing:

Theorell1 4. T is safe iff
(a) the restrictions of T to all pairs of transactions are
safe, and
(b) for all directed cycles C corresponding to undirected
minimal cycles in G (T) the digraph Be has a cycle.

One can now derive extrenlely easy proofs of correct
ness of different locking policies, based on Theorenl 4:

C-'orollary 4. Any transaciion syslenl obeying 2PL is
safe.
Proqr That any transaction systcnl obeying 2PL satisfies
Theorem 3 is inlmediate. ('ondition (b) of Theorenl 4
follows fronl the fact that in 2PL the graphs B,jk are conl
plete bipanite. []

Corollary 5. A.ny transaction systenl obeying TP is safe.
Proo./.: Since the conlnlon variables of any t\\JO transactions
l'CHnl a rooted tree in TP, condition (a) 0 f Theo re nl 4 is
trivial. Condition (b) also follows easily fronl the tree
structure. 0

Consider now the following special case in which any
two transactions have at n10st one variable in conlnlon -
or, equivalently, the closure of the forbidden region on all
planes is either en1pty or rectangular.

Corollary 6. Under the above assunlptions T is safe iff
the restrictions of T to every biconnected con1ponent of
G (T) obeys 2PL.

291

Another consequence of Theorem 4 is an algorithm for
checking a transaction system for safety.

Corollary 7. Checking a transaction system T for safety
can be done in tinle polynon1ial in the number of minimal
cycles of G (T) .

In generaL of course, G (T) will have an exponential
nun1ber of n1ininlal cycles, and thus Corollary 7 does not
imply a genuine polynomial-time algorithm. In fact, such
an algorithnl is quite unlikely in view of the next result:

Theorefn 5. Testing a transaction system for nonsafety
is NP-conlplete.

Thus Corollary 6 suggests a polynonlial-time algorithm
for a special case of the NP-conlplete safety problem: the
case in which any two transactions have at most one enti
ty in comnlon. It turns out that safety is NP-complete
even if we restrict any two transactions to have at most
two entities in con1n10n.

6 L()(:KIN(; P()LICIES AND L-POLI(:IES

2PL is a locking polic:y. Intuitively it is a set of rules
which govern but do not conlpletely specify the transfor
nlation of any transaction systenl to a locked one. Furth
er, these rules have the desirable property that they focus
on each individual transaction, and do not regulate the in
teraction of any two or nlorc transactions. A locking policy
P is a nlapping from the set of transactions on E to the
power set of (well-forn1cd) locked transactions on E,
which satistles the property: if T E P(T) then T and T
contain exactly the same actions in the same order. The
locking policy P is safe if for any finite set T = {T, ,... , Tm }

of transactions with P(T,) ~ 0, for all i, any set
T = IT1 , ••• , Tm } of locked transactions with f: E P(~)

is safe. The locking pattern p (T) of a locked transaction
T is the subsequence of T formed by deleting its actions.
It can be viewed as a set of intervals each one associated
with an entity x EE which is locked in the internlediate
steps (See Figure 8).

An interval I associated with entity x is an action inter
val if there is an action on x in I. It is easy to see that if
T is a safe locked transaction system and we rearrange in
each transaction some actions within their action intervals
in any way, then the resulting system T' will also be safe.
In other words, safety of a locked transaction system
depends only on the locking patterns and the action inter
vals of its transactions.

Thus, we can view a locking policy P as a collection of
locking patterns together with their action intervals. In

this paper we will consider a locking policy P as a collec
tion of locking patterns allowed by P without a
specitication of which are the action intervals. In other
words, we assunle that if f E P(T), for some transaction
T, then there is another transaction T' which acts on all
the entities locked by 1', and 1" E P(T') with
p (T) = p (7"). The reason for this assumption is the fol
lowing: One could define policies that use for locking, any
set L V of special variables - not related to the set E of
entities It is easy to see that any such policy P can be em
bedded 'to a locking policy p' which locks only entities (by
expanding the set E of entities and the policy P in an ap
propriate way). We don't know if there are any non
artificial such policies. I t is very easy however to con
struct many artificial ones, and our assumption serves to
rule out such policies. (Note however that our complexi
ty and sufficiency results carryover to the general set
ting.)

For simplicity we are going to assume that each pattern
has at most one interval associated with each entity. It
should be easy for the reader to modify the statements of
the theorems, whenever necessary, in order to handle
patterns with multiple intervals. We shall use the term
transaction to refer both to a locked transaction T with an
action on an entity x in the interval associated with x,
and to the pattern of T. We will use the term policy P to
refer (1) to a mapping from unlocked to locked transac
tions, as in the definition we gave, and (2) to a collection
of transactions - i.e. locked transactions or their patterns
- which form the image set of this mapping. If ~ is a
class of structures on £ (e.g. relations, graphs, etc.) a
structured policy ~p operating on ~ is a family of locking
policies, one for each structure D E~.

Theorem 5 of the previous section, besides suggesting
that testing safety is in general probably intractable, tells
us also something about the limitations of "nice" locking
policies.

Intuitively, a "nice" structured policy ~p operating on a
set of structures ~ should possess several properties, such
as: (1) the set of structures ~ should be efficiently recog
nizable (e.g. trees, graphs, DAGs, etc.), (2) the policy
should be operating in polynonlial tinle: i.e. for each
D E~, and for every unlocked transaction T, the J11apping
DP(T) of the corresponding policy DP should be con1
putable by a (nondeterministic) algorithm running in po
lynomial time in IDI and 1£1. Let us say that a structure
D of ~ covers a set T of transactions if DP (regarded as a
set of transactions) includes T. Theorem 5 then inlplies
that unless NP = co-NP, no "nice" structured policy can
cover all safe transaction systenls in a succinct way, i.e.
there will always be transaction systenls T that need a
very large structure D of ~ (not bounded by any polyno
mial in IT I) to be covered. '[his nleans in particular that
"nice" policies operating on simple structures, such as
trees, graphs, etc., cannot possibly cover all safe transac
tion systems.

In this Section we will focus on a natural class of poli
cies, one that includes all locking policies proposed thus
far, and show that all policies in the class can be covered
by a "nice" structured policy.

We say that a locking policy P is an L-policy if P can be

292

described by a set of conditions that state whether a given
entity can be locked at a certain moment in a transaction,
depending on the portion of the transaction up to this
moment. In other words, with each entity x there is as
sociated a set W(x) of prefixes of transactions~ a transac
tion T is in P iff for each entity x referenced by T, the
prefix of T to the left of Lx belongs to W(x), For exam
ple, the two-phase locking policy has for every x EE,
W(x) = {1'1 T does not contain any unlock steps}.

A truncation of a transaction T at the j-th step is a
transaction T' that agrees with T in the first j steps, and
then unlocks (in any order) the entities locked by T
through the j+ I-th step. The closure under truncation
Ct (T) of a transaction system T is
Ct(T) = T U [U Tr(T)L where Tr(T) is the set of

rET

truncations of a transaction T. A system T is closed under
truncation if Ct(T) = T. Thus a policy P is an L-policy if
(when viewed as a transaction system) it is closed under
truncation.

We will show that if a system T that is closed under
truncation is not safe, then it has a particular nonserializ
able schedule~ one in which all transactions of T but one
are executed serially. A hypergraph H = (N,F) has a set
of nodes N and a set of hyperedges F. Each hyperedge is
a subset of N. With every transaction system T we can
associate a hypergraph H(T), which has one node for
each entity and a hyperedge R (T) for each transaction T
of T. Let us denote by L r (i) the set of entities locked by
T through step i.

Theorem 6. A transaction system T, that is closed
under truncation, is safe if and only if for every T ET,

and x, y in R (T) such that Ux occurs in T before Ly,
the set Lr(Ly) (or equivalently LT(Ux)-{x}) separates x
from y in H(T),

Corollary 8. Given a transaction system T, we can test in
polynomial time if its closure under truncation is safe.

We will now detIne a policy and show as an exanlple
how the criterion of Theorem 6 can be used to show its
safety.
DAG polic:y(DP): The entities are arranged on
(correspond to the nodes of) a single source directed acy
clic graph (DAG) D.

The rules of the policy arc as follows:
(I) First lock is arbitrary,
(2) Subsequently, an entity x can be locked only if (a) all
its fathers (immediate predecessors) have been men
tioned in the transaction up to this point, and (b) at least
one father is currently locked.
(3) Each entity is locked at most once. *

Formally, a transaction T with at most one interval asso
ciated with each entity, is in DP iff
x E R (T) => [RT(Lx) = 0] or [F(x) (: Rr(Lx) and
F (x) n L T (Lx) ;r. 0 L where F (x) is the set 0 f fa the rs
of x in D.
Thus, if the underlying DAG D is a rooted tree, I)P be
comes the tree policy.

* We nlention this here explicitly because it is an essential part of
the rules. in order to guarantee safety of DP.

If T is any transaction following OP" and z the first en
tity locked by T" then an easy induction can show that"
(j) z is an ancestor of R (T): in fact z dominates all ele
ments of R (T)" i.e. any path from the source of D to an
element x of R (T) has to pass through z (See [AHUl
p.210L and
(ij) for each x in R (T)" all nodes that are ancestors of x
and descendants of z are in Rr(Lx>.

Let us prove now that DP is a safe policy. Suppose it is
not. Then there is a transaction T and entities x and y of
it such that Ux occurs before Ly in T" and Lr(Ly) does
not separate x from y in H(DP). Let R (T1) " ..• " R (Tk) be
an x-y path that avoids Lr(Ly) with xE T1 and yE Tk .

Since y is not the first entity locked by T"
F(y) n Lr(Ly) ;If:. 0. Since Lr(Ly) n RTk(Uy) = 0"

we have F(y) ct Rr (Ly), and therefore y must be the
k

tirst entity locked by Tk . Let Xk -I be an element of
R(Tk I) n R(Tk) such that
F(Xk-l) n R(Tk - 1) n R(Tk) = 0. Since Xk 1 is not the
first element locked by Tk we have F(Xk-l) ~ R(Tk),

F(Xk I) n R (Tk - I) = 0, and therefore Xk-l must be the
first element locked by Tk - 1. Thus by property (j) of DP,
y is an ancestor of R (Tk) U R (Tk . I). Proceeding similar-

k

ly we can deduce that y is an ancestor of U R (Tj), and
j=1 .

consequently of x. But then by property (ij) of DP"
y E R r (Lx) contradicting the rule that each entity is

locked at most once.

A directed hypergraph DH = (N,F) is a hypergraph,
each hyperedge A of which has a node specified as its
head. The rest of the nodes of A form its tail. The
underlying hypergraph of DH is simply H = (N,F)
without head-tail specitlcation. When we'll talk about
"paths," "cycles," "separators," etc. in a directed hyper
graph we are referring to the underlying hypergraphs.

Hypergraph policy (HP): The entities are arranged in a
directed hypergraph H. The rules are:
(1) First lock arbitrary,
Subsequently, an entity x can be locked iff
(2) There is a hyperedge A of H with head x, whose tail
has been mentioned in the transaction up to this point,
and
(3) For each y previously unlocked, the set of entities
that are currently locked separate x fronl y.

Corollary 9. An L-policy is safe if and only if it is
covered by the hypergraph policy for sonle directed hyper
graph H.

Proql Both directions follow trivially fronl Theorenl 6.
However let us construct from an L -policy P a directed
hypergraph without redundant hyperedges. For each
transaction T. let I(T) be the entity locked last by T. H
has a hyperedge R (T) with head /(T) if there is no tran
saction T' of P such that R (T') C R (T) and
I(T) ER (T'). Clearly HP on this hypergraph H covers
P.D

Exaillpies

1. Two-phase poli(v The hypergraph H is a conlplete
synlmetric digraph (a clique). In order that a hypergraph

293

H be nontrivial" i.e. have HP(T) ~ 0 for at least one T
whicn acts upon more than one entities, H must have at
least one arc (hyperedge of cardinality ~). Then the
clique is the only hypergraph that has all possible auto
morphisms (i.e. 2PL is the only nontrivial safe L-policy
that treats all entities uniformly).
2. Tree policy. The hypergraph constructed above is the
underlying tree.
3. DAG policy. The dominator of a node x is the
(unique) lowest ancestor of x that dominates x. The
hypergraph of DP contains for each node x a hyperedge
Ax with head x. The tail of Ax is the set of all ancestors
of x that are descendants of its dominator. Although a
DAG can be more easily visualized than a hypergraph,
the hypergraph makes explicit restrictions that are "hid
den" in the rules of the policy: if we want to act in a tran
saction T upon entity x then we have to lock beforehand
all of Ax, unless the rest of entities acted upon by Tare
all dominated by x. Also the hypergraph shows that rule
2(b) of DP is stricter than necessary: it could be replaced
by 2(b') at least one ancestor of x but not of its domina
tor is currently locked. 0

Since a general hypergraph can have an exponential
number of hyperedges, the question that arises is wheth
er there is a more succinct representation of L -policies.
We will show that there are "too many" distinct (incom
parable) L -policies, and therefore this is not the case.
We will call two safe policies P I ,P2 distinct if there is no
safe policy PJ that includes both of them. A safe L
policy is maxitna! in L if there is no other safe L-policy
that includes it. For example, an L-policy whose hyper
graph contains an arc (x,y) but not the symmetric arc
(y,x) is not maximal in L. On the other hand HP
operating on a symmetric digraph (an undirected graph)
can be shown to be maximal in L. Maximality of a policy
P in L does not imply that P is maximally safe: in fact it
is easy to see that 2PL is the only maximally safe L
policy.

Letntna.lf PI ;If:. P2 are two safe L-policies, maximal in
L, then PI and P2 are distinct.

Corollary /0. There is a doubly exponential number (in
lEI) of (mutually) distinct safe L-policies.

The results of this section can help also answer ques
tions such as the one examined in [KS]: If ~P is a partic
ular L -policy operating on a set of structures .l, tInd the
set of structures .l' C .l for which .lP is safe. Since.lP
is an L -policy, we can construct as in the proof of Corol
lary 9 a set H of hypergraphs, one for each structure of
.l. The problem then reduces to tlnding the set of struc
tures .l! for which rule (3) of II P is enforced by .lP. For
exanlple. in [KS] .l is the set of directed graphs, and .lP
is the policy with rules
(I) First lock arbitrary,
(2) Subsequently entity x can be locked if there is a fa
ther y of x that is currently locked.

It was shown there that .lP is safe if and only if the
underlying grap)1 of the digraph is a tree. Let us see how
this result can be derived from Corollary 9.
The hypergraph H that corresponds to a digraph I) is
clearly D itself. For a digraph D, rule (2) of .lP implies
rule (3) of HP if and only if for every x EE, for every

possible transdclioll T of -.1P with x rf R (T). and for every
y E R (T) such that r--+ x.~' separates R (T) fronl x
(again "separa les" refers to the underlying graph (i of [))_
since by the rules of -.1P we can unlock all of R (T)but y,
and then lock x (and this is the worst that can happen).
Since any pair of ddjacellt (in (i) nodes can be R (T) for
sonle TE~P, for every arc y -- x, node y nlust separate
x fn)nl all nodes adjacent in (i to y: i.e. every edge of (i

is a bridge and (i is a tree. Con versely, if y separates x
fronl all the nodes adjacent to y, then it separates x also
fronl all the nodes of R(T) with xrtR(T), yER(T),
since the subgraph of (i induced by R (T) is connected.

7 FREEll(lM FR(lM (lEAllL()('K

A {JOrlial schedule s of a transaction systenl
T = [TI, ... ,TmJ is a legal schedule of any preflces of the
transactions of T. The slaleJ(s) ofa partial schedule s is
the vector <.!l'''' ..!m> that describes the next step to be
executed for each transaction of T. The state J is a
deadlock slate if for all i the .il-th step of every unfinished
transaction Tl is LXI for sonle entity 'X'l locked at J. A
transaction systenl T - and the associated policy P - is
deadlock~f;'ee if the state J (s) of any partial schedule s of
T is not a deadlock state. In other words any partial
schedule of T can be extended to (is a prefiX of) a (conl
plete) schedule of j.

F~ r0 nl a pa rt ia I scheduIe sol' T we can construc1. as wit h
a conlplete schedule, a directed graph D C~) by
corresponding a node l', to each transaction Tl , and hav
ing an arc (VI' vi) labelled x, if ~ locks x in s before Tj

does (even if the Lx step of T/ has not been executed yet
in 5). Then T is safe and deadlock-free ifl' for every par
tial schedule s of -;, the digraph D (s) is acyclic.

Let us consider a deadlock state J. There is a set of
transactions: T I , TA 1 such that the next step of T/ is L.'(l

where Xl is currently locked by ~ \ 1 (x/ E L Ii \ I (L.'(/. I)) -

See Figure 9.

T I : LxI,. LXI UXA

T~: LXI Lx) UXI

Figure 9

Thus in the partial schedule S, transaction T, accesses
x/ 1 before T! 1: if S could possibly' finish in any way then
the resulting schedule would not be correct. In other
words, deadlocks prevent sonle wrong schedules fronl
fin ish in g. Let us shC)\V that the I) /\(i pol icy is deadI()ck
free usi ng this fact.

Theorenl 7. The [)ACj policy is deadlock-free.
Proof' Suppose S is a partial schedule, of T l , .. ·, Tk

deadlocked at state J where the next step of each 7~ is
Lx, as in Figure 9. We can assunle without loss of gen
erality that Lx, is the last locking step of~. Suppose that
for sonle i. the transaction ~' obtained fronl ~ by IllOV-

ing the Ux/ 1 step right before the LXI step is also a tran
saction of the I)/\(i polic~'. Then the partial schedule S
could be extended to a nonserializable schedule of the
systenl [U: TIll u :~'l. contradicting the safety of the

//:,

I)/\Ci policy. Therefore. for each i, x/ ! lllust be a father
of XI' \vh ich inlplies that the [) ;\(i has a cycle :XI, .. · ,XI,. l

If we tlloditled the [).J\Cj policy by changing the locking
rule (2) into: (2') an entity x can be locked if at least one
fat her of x is CLl rren tly locked, and all fathers of x are
tllentioned until the Ux step, then the nlodifled policy
(\\'hich is not an L -policy any nlore) is safe. However, it
is easy to see that it is not any nlore deadlock-free: post
poning the locking of sonlC fathcr of x allows a (partial)
schedule to start wrongly, and then be stopped later on by
a deadlock.

Tes1 i II~ for freedolll fronl deadlock

We will now characterize safety and freedonl fronl
deadlock for a pair of transactions. If FeE is a set of
entities, the restriction ql' T 011 F, is the sequence of steps
ofT that in v0 Iveentit ies fro nl F.

Theorenl 8. T = (TI , T2 J is a safe and deadlock-free pair
of transactions if and only if the restrictions T 1 • T~', of
T1 and T~ on their conlnlon entities (R (T1) (, R (T2))

follow the I)ACj policy for sonle [)/\Cj [) on
R (T 1) n R (T]). [Note that entities referenced only by
one of the transactions do not affect safety or freedonl
fronl deadlock.]

It is not hard to sec that the tree policy does not suffice
to cover all safe and deadlock-free pairs of transactions.

LJnfort unately freedonl fronl deadlock cannot be test
ed efnciently (and characterized) in general even for L
policies:

Theorell1 9. It is NP-C0111plete to decide whether a set
of two phase transactions is not deadlock-free.

InSection 5 \\'e showed that safe tyean be tested in
tinle polynonlial in the l1unlber of nlininlal cycles. The
direct analogue of this result for freedonl fronl deadlock
does not hold however. The reason for this difference is
the fa ct that il' a tran saction systenl is not safe thenth is is
due to SOllle chordless cycle, whereas deadlock nlay be
possible due to scnne cycle with chords. even though all
chordlcss cycles arc deadlock-free. Thus the correcl
analogue or Theoretll 4 and ('orollary 7 is:

TheorCIl1 10. Freedonl froIll deadlock of a safe transac
tion systenl can be decided in tinle polynoIllial in the
nunlber of cycles.

[)eadlock-free L-policies

Theorellz 11. If j is a safe transaction systenl that is
closed under truncation, then-; is deadlock-free if and
only if there do not exist transactions 1'1, ... I A. and enti-
ties XI-· ... XI,., \vhere
x, (R (~) (I R (l~. I) I U R (7~ II and

/.~ /. i I I

R r (L.'(/) i"1 [U R (Ti)] 0.
, 1//

Fronl Theorenl I I it follows that whether a safe L
policy is deadlock-free or not depends only on the order

294

y

Figure 11

in which enlttles get locked, and not on how the unlock
steps are placed within the transactions. More fornlally
we have:

C'orollary 11. Suppose that T = : T
1

, ••• , TI11 I and
T' = ITI',· ... ~r/} arc two safe transaction systenls that arc
closed under truncation, and such that for every i, there
is a j, where T;' locks the s,une entities as ~ in the sanle
order. Then, if T' is deadlock-free, then so is T.

Note that Corollary 11 is not true for general policies
(systems that are not closed under truncation). A conse
quence of Corollary 11 is that if JI is the underlying
directed hypergraph of a safe L -policy which uses the full
freedolll of rule (2) of flP, then whether P is deadlock
free or not depends only on II and not on how rule (3) of
HP is enforced (how safety is ensured in P). Thus the fol
lowing two problenls are suggested by this fact : (1)
characterize those directed hypergraphs H for which HP is
deadlock-free, and (2) tind the "correct" restriction of rule
(2) 0 f HP for freed0 III fro nl deadIock - "correct" in the
sense that it describes all deadlock-free L -policies (in the
same way that rule (3) of flP is the "correct" rule for
safety). Theorelll 9 (the proof of it rather) inlplies that
there is probably no solution to these problenls that can
be efficiently tested. In the renlainder of this Section we
will give a partial answer to these problenls, and show
how Corollary 11 can be used to prove the freedolll fronl
deadlock of L -policies.

With every transaction systelll T we can associate a
directed graph D(T) as follows: the nodes of D(T) are the
entities, and there is an arc (x ,y) if there is a transaction
T of T that starts by locking .x- and references J:'. Suppose
that T is safe and deadlock-free. Then. it is easy to see
that

(a) D (T) is a(vclie.

(b) Il'x is an ancestor ql'y, then in all transactions that
contain both x and y, x gets locked before y.

Let F) (x) be the set of fathers y of x, for which there
is a transaction T that starts with y. contains x, and there
is no ancestor z of x in Rr(Lx)-y. [)enote by D'(T) the
subgraph of D(T), where the arc (y,x) is in D'(T) if
there is a transaction T starting with y, containing x, and
such that F 1(x)n[R T (Lx)-y] = 0. (D'(T) has the sallle
transitive closure as D (T), but is not necessarily its transi
tive reduction.) ('learly every transaction T of T has the

295

property:

(c) II' x ER (T) is not the ./irst enti(V locked by T, then at
least S()lne ,(ather y (~I' x in D' (T) is referenced by T
bl~/hre Lx.

('onsClluent ly every transact ion T references a connected
subgraph of D' (T) which can be reached fronl the first
entity locked by T. For exanlplc, if T is the tree policy,
then D'(T) is the tree itself: in general if T is the hyper
graph policy on a (directed) graph (1, then D'(T) is the
graph C.. 1fT is the [) ACJ poIicy, the n D' (T) is the do III i
nator tree of the [)AC;. In generaL if P is an L-policy
with D'(P) a tree (not necessarily rooted), then P is
deadlock-free (by ('orollary 11 and the freedolll fron1
deadlock of the tree policy). This is not the case however
for general policies. For exanlple, if T = (T], T2 } ,where
T

1
: LA L(' UA LB UB U('

T2 : LA LB UA L(' UB lJC'
then D'(T) is the tree of Figure 10, T is safe (but its clo
sure under truncation CdT) is not), and T is not
deadlock-free. A

B0,c
Figure 10

This is not a coincidence: if any such T is deadlock-free,
then it can be extended to a safe (and of course still
deadlock-free) L-policy.

Theoretn 12. Suppose that T is a safe and deadlock-free
transaction syste111 with D' (T) a tree. Then Ct (T) is also
safe and deadlock-free.

Suppose now that T is an L-policy. [)eadlocks n1ay ar
ise because of undirected cycles in D' (T) (cycles in the
underlying undirected graph of D' (T))

In a general D' (T) we can distinguish between two kinds
of cycles - See Figure 11 C.d, (b). A cycle as in Figure
11C.d lllay give rise to a pair of transactions (T1, T2 },

\vhere T1 starts froll1 x and follows the path to y, and T2

starts froll1 z. follows the path to y, and then goes on to
lock .X': thus. T2 does not satisfy condition (b). (N ote
that if T is the hypergraph policy with the graph D' (T) as

the underlying h.ypergraph, then both transactions afC al
lowed.) In this case we have:

Theoret" 13. Let P be a safe L-policy v~;hose digraph
D'(P) is acyclic and contains no (undirected) cycles as in
Figure 11 (b). Then P is deadlock-free if and only if it
satisfies condition (b).

Note that if D' is a tree, then (b) is satisfied autoTllati
cally. Also, note that if a cycle as in Figure 11 (b) exists
in D', and P is the hypergraph policy operating on D',
with condition (b) checked in addition, such a cycle gives
rise to a deadlock. [)eadlock frOTll such a cycle can be
avoided eith(if we lock nodes according to sonle
specified Lll: order or prevent the x, 's fronl being
the tirst COTllr Ii entities of the correspoTlding transac-
tions ~, by f'()f\.:ing the transactions to start locking higher
in the [) A(i L)'. For e xanlple the following ru Ie guaran
tees freedonl fronl deadlock Llssunling that (b) is en
fo rced): if)(ER T (Ly) and xis not anan cestor 0 f y, the n
RT(Ly) and the descendants of x separate x and y in the
underlying graph of D'. Thus, for exanlple, the I)A(,
policy enforces this rule by requiring all fathers of x to be
locked before x (which results in D' (DP) being a tree
rather than the original 1)!\Ci). Note however that the
previous rule (or any other sinlple rule) is not necessary,
because of ou r NP-coTllpleteness resu It of the previous
Section.

N I) IS('llSSI()N

In this paper we exaTllined locking as a concurrency
control Tllechanisnl in database systenls. In Section 3 we
characterized the class of schedules that can be produced
if we usc locking. ('nrollary I is the price in parallelisTll
that we have to pay for the conceptual sinlplicity of
locking-based schedulers. It is a dear price. All sophisti
cated serializability techniques introduced in IPa] involve
sonle notion of "renlenlbering" which transaction read
data fIrst fronl which, and therefore they cannot be inlple
nlented by order-oblivious prinlitives such as locking. In
contrasL all subsets (' of the set of all schedules S can in
principle be the output sets of sonle scheduler. In facL it
is shown in (Pal that there is a polynonlial-tinle scheduler
A such that A LS) =C' iff the set of pretlxes of (' is in P.
It renlains to be seen h()\v well locking can be conlple
Jllented as a concurrency control technique by other,
order-conscious prinlitives such as queues. The SDD-l
systenl [BGRP] is an instance of this.

In Sections 4 and 5 we characterized safety of locked
transaction systenlS , and showed that testing for safety is
an NP-hard task.

In Sections 6 and 7 we analyzed locking as a fllechan
isnl for preserving consistency in a database that has a
given structurc. We showed that safe locking policies that
fall in to a "nat ural" class - the class of those policies that
can be stated in ternlS of conditions that describe when
each entity can be locked - can be described by a certain
policy operating on hypergraphs. This policy nlust visit
entities along the paths of a hypergraph II. In order to
avoid unnecessary cxtra locking, the hypergraph lllust be
chosen to resenlble the structure of the consistency con
straints: i.e. the hyperedges should correspond to the con-

296

sistency constraints (Recall that a transaction can he
vie\ved as the unit of consistency - the set of actions
neededt 0 rectify te Tll po raryincon sis ten cies.) RuIe (3) 0 f
the hypergraph policy then (see Section 6) describes when
an entity can be unlocked before the end of the transac
tion, in order to guarantee safety. The higher the connec
tivity of II is, the less early uTllocking is allowed (but pos
sibly less extra locking nlight be needed). Thus, if H is a
graph, the two extrenle cases are II = conlplete (2PL),
and II = tree (trec policy). How faithfully H should
represent the consistency constraints depends on the in
fornlation available about the particular application: for
exanlple, if entities .x and yare connected by sonle con
straint C' which is rarely violated, i.e. nlost updates on x
and y do not affect C, then it nlight be advantageous not
to represent C' in H in order to achieve a higher degree of
concurrency, at the expense of doing (rarely) sonle extra
locking.

In our nlodel we viewed a locking policy as an algo
rithnl that takes a transaction - a sequence of actions
and sets locks. It nlight be the case however that the
whole transaction is not known at the beginning, but is
found out dynanlically, i.e. the result of an action deter
nlines subsequent actions. The conditions we gave still
hold if we look at the locked transactions that are pro
duced. In the case of the hypergraph policy, the transac
tion nlust start fronl an entity that can reach all entities
that nlight be needed, and can unlock sonle entity x only
if the set of locked entities at this point separate x fronl
any other entity y that nlight be needed later on (in order
to ensure rule (3)).

Another choice involved in the design of such a policy,
is how rule (3) is enforced: that is one nlight choose not
to use the full freedonl of it in order to get a nlore
efficient policy (at the expense of a loss in concurrency).
For exanlple, in the case of the [)AG policy, we could
just require that when x is locked, then an ancestor of x
but not of its donlinator be locked, instead of requiring a
fat her of x to be locked. This policy is also safe and
deadlock-free (by Theorenl 6 and Corollary II). In gen
eraL C'orollary I I inlplies that the way rule (3) of II P is
enforced does not affect the freedonl fronl deadlock of
the policy.

In this paper we did not distinguish between read- and
write-actions. However probably our results generalize to

this case (where "serializability" is as in [ECjLT1)) in the
sa nle way that 2PLis ge nera Iized in ICi L PTJan d [L W 1.

NOle.

This is the nlerg ing 0 f res ult s () htained independen tIy
by the tirst author (MY) on the one hand, and the second
and third authors (('liP and IITK) on the other. Section
J contains results by ('liP and IITK, whereas Sections 6
and 7 contain results due to MY. Sections 4 and 5 con
tain essentially COTllnlOIl, yet independently obtained
res uIt s: the exposit ion () f these Sec ti() ns fo II 0 ws CII Pand
IITK.

REFERENCES
[AHU] A. V. Aha, 1. E. Hopcroft, and 1. I). UlInlan,

The [)esign and Analysis of Conlputer Algo
ri thnls, Add ison Wes1ey, 1974.

[BCjRP] P. A. Bernstein, M. Goodnlan, 1. B. Rothnie,
and C. H. Papadinlitriou, "Analysis of Serial
izability of SS[)-I: A Systenl of [)istributed
[)atabases (The Fully Redundant-Case)," IEEE
Trans. Soft. Eng. SE-4(3), 154-168, (1978).

[CI)] E. (j. Coffnlan Jr., and P. J. [)en ning, ()pe nil

ing Systenls Theory, Prentice-HaiL 1973.

[eES] E. Ci. Coffnlan Jr., M. 1. Elphick, and A.
Sh0 shanL "Systenls [)eadIock," ('0 nl put in g
Surveys 3(2),67-68, (1971).

[ECiLT1]K. P. Eswaran, 1. N. Gray, R. A. Lorie, and I.
L. Traiger, "The Notions of ('onsistency and
Predicate Locks in a [)atabase Systenl", ('A('M
19(11),624-633, (1976).

[ECiLT2] , "()n the Notions
of Consistency and Predicate Locks", IBM
Research Report RJ 1487, (1974).

[CiJ] M. R. Ciarey and I), S. Johnson, ('onlputers
and Intractability: A Ciuide to the Theory of
NP-Completeness, Freenlan, 1978.

[Ci LPT] 1. N. Gray, R. A. Lorie, G. R. Putzolu, and I.
L. Traiger, "Ciranularity of Locks and [)egrees
of Consistency in a Shared [)ata Base", IBM
Research Report RJ 1654, (1975).

[Ka] R. M. Karp, "Reducibility anlong ('onlbinatori
al Problenls," in Conlplexity of L'onlputer
Computations, R. E. Miller and 1. W. Thatcher
(cds.), Plenunl, 85-103, 1972.

297

[KM] R. M. Karp, and R. E. Miller, "Properties of a
model for parallel computations: determinacy,
ternlination and queuing," SIAM J. Appl.
Math. 14(6), 1390-1410, (1966),

[KS] Z. Kedenl, and A. Silberschatz, "A characteri
zation of [)atabase Graphs adnlitting a sinlple
Locking ProtocoL" Technical report 49,
lJniversity of Texas at [)allas, (1979),

[KP] H. T. Kung and ('. H. Papadinlitriou, "An ()p
tinlality Theory of ('oncurrency ('ontrol for
[)atabases", ACM-SICi MO[) ('onference
(1979).

[L W] Y. E. Lien and P. 1. Weinberger, "('onsistency,
('oncurrency, and ('rash Recovery", ACM
SICiMC)[) Conference (1978).

[Li] W. Lipsk i Jr.. private conlnlunication.

[Pa] C' . II. Papadinl itri() U • "Seria1iza biii tY 0 f Con
current lJpdates", Technical report, Harvard
lJ nive rs it y, (1 978).

[PBR] ('. H. Papadinlitriou, P. A. Bernstein, and J. B.
Rothnie, "('onlputational Problenls related to
I)atabase C'oncurrency Control", Conf. on
Theoretical ('onlputer Science, lJniversity of
Waterloo, 275-282, (1977).

[SK] A. Silberschatz and Z. Kedenl, "Consistency in
Hierarchical [)atabase Systenls", to appear in
JA('M, (1978).

[SLR] R. E. Stearns, P. M. Lewis, and I). J. Rosen
krantz, "('oncurrency Control for [)atabase
Systenls", Proc. of the 17th Annual Synlp. on
Foundations of ('onlputer Science, 19-32,
(1976).

