
OTIC FILE COPY "/
CML'-CS-83-166 TI1

Fault-Tolerance and Two-Level Pipelining

IN in VLSI Systolic Arrays

i .T. Kung and Monica S. Lam

S1 1990

11Cb November 1983

DEPARTMENT
of

COMPUTER SCIENCE

[ ... N STATEM,,T A
Approved for public releasel

Diatnuucn tJrjimted

90 05 14 1i
Carnegie-Mellon University

W>* /~........... ..... 1IJ4 ll"



CMU-CS-83-166

Fault-Tolerance and Two-Level Pipelining

in VLSI Systolic Arrays

H. 'r. Kung and Monica S. Lam

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

November 1983 Ac:esioa For

NTIS CRA&
DTIC TAB 0
Unanto'ced 0

JustiliCA101, ...-.

By ..

DistributiOll I
Availability Codes

Avail andlor
Dist special

To appear in Proceedings of the Conference on Advanced Research in VLSI, MIT, January 1984.

This research was supported in part by the Office of Naval Research under Contracts N00014-76-C-0370, NR
044-422 and N00014-80-C-0236, NR 048-659, and in part by !he Defense Advanced Research Projects Agency
(DoD), ARPA Order No. 3597, monitored by tbe Air Force Avionics Laboracory under Contract F33615-81-
K-1539.

APPROVE-D F-':': L .. ... .E
DISTRIDUTiC', U LitEZ



( / Abstract

This paper addrcsscetwo i rtnt issues in systolic array dcsigns: fault-tolerancc and two-lcvcl pipclin-

ing. The proposed "systolic fault-tolerant scheme maintains the original data flow pattern by bypassing
defective cells with a few registers. As a result, many of the desirable properties of systolic arrays (su'ch as
local and regular communication between cells) are preserved. Two-level pipelining refers to the use of
pipelined functional units in the implementation of systolic cells. This paper addresses the problem of
efficiently utilizing pipelined units to increase the overall system throughput. We show that both of these
problems can be reduced to the same mathematical problem of incorporating extra delays on certain data
paths in originally correct systolic designs. We introduce the mathematical notion of a cut which enables us to

handle this problem effectively. -

K The results obtained by applying the techniqugs described in this paper are encouraging. When applied to
systolic arrays without feedback cycles, the arrays can tolerate large numbers of failures (with the addition of
very little hardware) while maintaining the original throughput. Furthermore, all of the pipeline stages in the
cells can be kept fully L:ilized through the addition of a small number of delay registers. However, adding

delays to systolic arrays with cycles typically induces a significant decrease in throughput. In response to this,
we have derived a new class of systolic algorithms in which the data cycle around a ring of processing cells.

systolic ring architecture has the property that its performance degrades gracefully as cells fail. Using our
theory for arrays without feedback and the ring architecture approach for those with feedback, we have )

olerant and two -level pipelining schemes for most systolic arrays.

As a side-effect of developing the ring architecture approach we have derived several new systolic al- -'

gorithms. These algorithms generally require only one-third to one-haf of the number of cells used in
previous designs to achieve the same throughput. These new systolic algorithms include ones for LU-
decomposition, QR-decomposition and the solution of triangular linear systems.
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1. Introduction

The progression towards increasingly large and complex integrated circuits has bcen accompanied by

smaller device geometries and larger dies, which in turn have led to a decrease in integrated circuit yield. A

strategy for increasing the yield involves the de., ', of integrated circuits whose correctness does not require

100 percent of the constituent circuits to be correct. Such approaches fall under the heading of "fault-

tolerant" or "restructurable" techniques, and are typically characterized by the inclusion of redundant func-
tional elements and the ability to modify the interconnection structure of the constituent elements. These

techniques are particularly important, and frequently applied, in the area of wafer scale integration. A

number of different techniques exist for modifying the interconnection structure of integrated circuits. They

range from static, pre-packaging approaches (e.g., adding a layer of metalization, laser crcated/dcleted

connections) to more dynamic approaches that can be applied after packaging (e.g., fusible links, transistor

switching devices)1.

Fault-tolerant methods are particularly important to systolic array implementations. A unique property of

the systolic approach is that as the number of cells grows, the system performance increases proportionally.

Thus it is desirable for a systolic array to have as many cells as a given problem can effectively utilize.

However, when the number of cells is large, it is inevitable that some of them may fail. Therefore it Is

important that the systolic arrays be designed to function correctly in spite of the fact that some cells may not

(see Figure 1-1 (a)). This paper addresses the problem of how to tolerate the defects once they are located.

The fault detection problem, requiring a totally different set of techniques such as voting and self-testing, Is

beyond the scope of this paper.

(a)

(b)

mpy-

Figure 1-1: Two problems addressed in the paper: (a) fault-tolerance
for arrays with faulty cells and (b) two-level pipelining
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INTRODUCTION

High throughput floating-point multiplier and adder circuits typically employ three or more pipeline

stages 2. Systolic cells implemented using these units form a second level of pipelining in the pipelined

organization of systolic arrays (see Figure 1-1 (b)). This additional level of pipclining can greatly increase the

system throughput: it is therefore important to be able to systematically transform existing systolic array

de.signs assuming single-stage cells to ones with pipelined cells.

We will show that both the fauit-tolerance and the two-level pipclit;ing problems can be solved by the same

mathematical reasoning and techniqiies. Our results imply that once a "generic" systolic algorithm is

designed, other versions of the algorithm (for execution on arrays with failed cells, or for implementation

using different pipelined processing units) can be systematically derived. The techniques of this paper can

also be applied to other computation structures, such as FFT processor arrays and parallel sorting processors.

In the next section we will introduce our approach, using as an example the simplest type of systolic arrays

(uni-directional linear arrays). We will discuss our solutions for all systolic arrays without feedback in section

3, and then for those with feedback in section 4. Section 5 includes a summary and some concluding remarks.

2



2. Fault-Tolerance and Two-Level Pipelining for Uni-directional Linear
Arrays

Figure 2-1 depicts a systolic array4 for the convolution computation with four weight- wj, ... ,w4. In this

array the data flow only in one direction, that is, both x, and yj move from left to right (with x, going through

an additional "delay register" following each cell). This is an example of a systolic array without feedback

cycles-an array where none of the values in any data stream depends on the preceding values in the same

stream. (For an example of an array with feedback cycles, see Figure 4-1 (a)).

4  W3 x2

Y2 Yi
Figure 2-1: Uni-directional linear systolic array for convolution

Suppose that the third cell from the left in the array of Figure 2-1 were to fail. As depicted in Figure

2-2 (a), we would replace the defective cell with two "bypass" registers (shown in dotted lines)-onc for the

x-data stream, one for the y-data stream. To solve a problem of the same size, the defective array must have

one more cell to tompensate for the failed cell. It can easily be shown that the new array correctly solves the

same problem at the original computational rate of one output per cell cycle. For example, y1 picks up w4.x4,

w.x 3 and w.x2 at the first, second and fourth cell respectively. The only difference is that the latency of the

solution is increased by one cycle. Figure 2-2 (b) depicts the cell specification for this fault-tolerant scheme,

using reconfigurable links. Note that the input/output register in a systolic cell can be used as a bypass

register in case the cell fails. Therefore no extra registers are need.d to implement this fault-tolerant -herne.

(b,)

_X X X (a).
4 :Uzi

Figure 2-2: (a) Defective cell replaced with registers and (b) cell specification

A basic assumption of this paper is that the probability of the interconnection links and registers failing is

negligible. This is reasonable because these components are typically much simpler and smaller than the cells

themselves and can be implemented conservatively.

In the proposed scheme data move through all the cells. At failed cells, data items are simply delayed with

3



UNI-DIRECrIONAI. LINEAR ARRAYS

bypass registers for one cycle, and no computation is performed (Figure 2-3 (a)). We refer to fault-tolcrant

schemes of this type as systolic fault-tolerant schemes in view of the fact that data travel systolically in a

defective array from cell to cell, at the original clock speed.

For uni-directional linear arrays, the systolic fault-tolerant scheme proposed here has the distinct advantage

that all live cells can be utilized (Figure 2-3 (a)). As illustrated by Figure 2-3 (b). fault-tolerant schemes

previously proposed in the literature either suffer from low utilization of live cells s5 6.'7.8, or reduced through-

put due to a slower system clock required by the fact that the communication between logically adjacent cells

can now span an arbitrarily large number of failures 9' 10. Moreover, as will be shown in the next section, this

systolic fault-tolerant technique can be generalized to two-dimensional arrays.

(a)

(b)

Unused cells Long connection

Figure 2-3: (a) Systolic and (b) previous fault-tolerant schemes frr uni-directional linear arrays

We now examine more carefully the idea behind our fault-tolerant scheme for the linear array of Figure

2-2. Because of the unit delay introduced by the bypass registers, all the cells after the failed one receive data

items one cycle later than they normally would. Since both the x- and y-data striams are delayed by the same

amount, the relative alignment between the two data streams remains unchanged. Thus, all the cells after the

third one receive the same data and perform the same function, with a one-cycle delay, as would the cell

preceding it in a normal array. For this reason, an n-cell, uni-directional, linear array with k defective cells

will perform the same computation as a edect array of n- k cells.

The above reasoning also implies that the correctness of a uni-directional linear array is preserved, if the

4



UNI-DIRuCI'IONAL LINEAR ARRAYS

same delay of any length of time is introduced uniformly to all the data streams between two adjacent cells.

This result is directly applicable to the implementation of two-lcvcl pipclincd arrays. We can interpret the

stages in a given pipclincd processing unit as additional delays in tie communication between a pair of

adjacent cells.

Consider. for example, the problem of implementng the systolic array of Figure 2-1 using the pipclincd

multiplier and adder of Figure 1-1 (b). Since the adder is now a three-stage pipeline unit instead of a

single-stage unit, two additional delays are introduced in the .- data path. Thus each cell requires a total

number of four delay registers be placed in the x-data path-one is implicit in the original cell definition, one

is the delay register in the original algorithm design, and the rest to balance the extra delays in the y-data

stream. The resulting two-level pipelined array is depicted in Figure 2-4. This two-level pipelined scheme

was proposed previously 3, but we show it here as a special case of a general theory.

X XS X

w4"4

w4 .x as add add add

Figure 2-4: Two-level pipelined systolic array for convolution,
using pipelined arithmetic units of Figure 1-1 (b)



3. Systolic Arrays without Feedback Cycles

3.1. The Out Theorem
The' ,ults of the preceding section can be easily derived from a general theory formulated in terms of a

mathematical notion called a cut. We model a systolic array as a directed graph, with the nodes denoting the

combinational logic and the edges the communication links1 . The edges arc weighted by the number of

registers on the links. We say that two designs are equivalent if, given an initial state of one design, there exists

!or the other design an initial-state such that (with the same input from the host) the two designs produce the

same output values (although possibly with a different delay). In other words, as far as the host is cuncem,.d

the designs are interchangeable provided the differences in the timing of the output ore taken into account.

We define a cut to be a set of edges that "partitions" the nodes into two disjoint sets, the source set and the

destination set, with the property that these edges are the only ones crossing the boundary and are all directed

from the source to the destination set.
Theorem 1: (Cut Theorem) For any design, adding the same delay to all the edges in a cut and

to those pointing from the host to the destination set of the cut will result in an equivalent design.

Proof: Let S be the original design partitioned by a cut into sets A and B, the'source and the
destination set respectively. Let S' be the same as S (with its corresponding sets A'I and B'), with
the difference that d delays are now added onto de edges in the cut.

We will show that S and S' are equivalent in that if we properly initialize S', the output values
from A and A' are identical starting from time 4. Similarly the output values from B and B' are
identical, except that the latter lag behind by dcycles.

We define the initial state of A' (at time 4) to be identical to the state of A at time 4. Since none
of the edges in the cut feed into A', directly or indirectly, nodes in .' behave exactly the same way
as the corresponding ones in A and thus produce the same outputs. Therefore, all the inputs
arriving at B' are the same as those arriving at B, except that they lag behind by dcycles due to the
additional delay registers. If we can define an initial configuration for B' such that at time 4 + 4 It
reaches the same configuration as B at to, then nodes in B' will behave the same way as the
corresponding ones in B with a dcycle delay.

We will now proceed to show that such an initial configuration can indeed be defined. First, we
let the initial state of B' be identical to the state of B at time k- d. Associated with each input
edge into set B', e', are the registers r(el) ... ,rd(e'), where the contents of rj(e') are moved to
rj+(e.)every cycle. We let the initial values of these registers r(eJ,... rd(e) be the values of the
corresponding edge in S at time 4-1,;-2, ... , ;-d respectively. This implies that the behavior
of B' from time tto t0+d-1 is identical to that of B from 4-dto k-1 and thus the configura-
don of B' at ;+dand that of Bat kare identicl. D

Since we are concerned with only adding extra delay, to an optimized design, we do not need the generality

in Leiserson and Saxe's retiming lemma12' 13. Thus the result we need requires a far simpler proof.



SYSTOLIC ARRAYS WITHOUT FEEDBACK CYCLES

We will demonstrate that despite its simplicity, the cut theorem is a powerful and convenient tool for

designing fault-tolerant and two-level pipelincd systolic arrays. For example, as dcpicted in Figure 3-1 (a),

the edges between, any two adjacent cells of a uni-directional linear array form a cut. Hcn.. by the cut

theorem, we can see immediately that both the defective array of Figure 2-2 (a) and the two-level pipclincd

array of Figure 2-4 are equivalent to the original array of Figure 2-1. Figure 3-1 (b) depicts a less obvious cut,

consisting entirely of all the output edges from the multipliers. This implies that the convolution array will

function correctly regardless of the number of pipeline stages present in the multipliers (provided the number

is the same for all the multipliers in the array). For instance, if all the four-stage multipliers in Figure

2-4 were replaced with ten-stage multipliers, the resulting systolic convolution array would still be correct.

(a)

Y3 Y2 IJ

(b)
X6X5  X X

Figure 3-i: Two types of cuts for a uni-directional linear systolic array for convolution

3.2. Systolic Fault-Tolerant Schemes for Two-Dimensional Arrays

We first illustrate the basic techniques by considering the rectangular array of Figure 3-2 (a) where the data

move downwards and to the right. Among many other applicaticns, this array can perform matrix multiplica-

don with either an operand or the partial result matrix stored in the array during the computation. Any curve

whose slope at any point is within 90 degrees defines a cut, as illustrated in Figure 3-2 (b).

(a) (b)

1 2 3 4 12 3 4

5 6 7 8 5 6 7 8

91 1

-13 s 1 1 13 1 4 15 16

Figure 3-2: (a) Rectangular systolic array without feedback loops and (b) examples of cuts
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SYSTOLIC ARRAYS WITHOUT FEEDBACK CYCIES

Suppose that cells 3, 6, 9 and 13 were faulty, as depictcd in Figure 3-3 (a). Figure 3-3 (b) illustrates that cell

7 could receive data from its new neighbors, cells 2 and 5, via bypass registers at cells 3 tnd 6. Figure 3-3 (c)

shows that the resultait array can be viewed as a 4x3 systolic array where a unit delay is added to all the edges

in a cut. Therefore by the cut theorem, this defective array is equivalent to a flawless 4x3 array.

(a) (b) (c)

58 8

0 I : 0 11 10 1I 12

14~ RI: 14 IS 1 i 16

Figure 3-3: (a) Systolic array with defective cells, (b) systolic fault-tolerant scheme.
using bypass registers and (c) the corresponding cuts

Our simulation results show that while the utilization of the live cells for the above scheme using only

bypass registers can be poor, it is greatly improved if an additional "delay register" is provided in each cell.

Figure 3-4 (a) depiLts a diagonal failure pattern, for which it is possible to prove that no systolic fault-tolerant

procedure using only bypass registers can achieve a high utilization of the live cells. If we could introduce an

extra delay on each of the data paths other than those on the diagonal, then as shown in Figure 3-4 (b), all the

live cells were utilized. We can view this array as a 4x3 array with an additional delay on every edge in the

cuts shown in Figure 3-4 (c), thus it is equivalent to a perfect 4x3 array by the cut theorem.

(a) (b)

2 3 4 -l.i 2 3 4 J.2 3 4

5 7 8 5 H-

Figure 341 1 10 12

13 1_ 13 14 15

Figure 3.4: (a) Failures on the diagonal, (b) fault-tolerance with delay registers,
denoted by black dots and (c) the corresponding cuts

A more realistic example is given in Figure 3-5 (a), where 28 cells in a Ix10 array fail. If only bypass

registers are uscd, it seems that the largest square array that one can implement is 6x6, as depicted by Figure

3-5 (b). However, if one delay register is allowed for each data stream at each cell, it is possible to implement

a 7x7 array, as depicted by Figure 3-5 (c).



SYSTOLIC ARRAYS WITH OUT I1I:)h1ACK CYC.IS

a)

0 0 0.0 0 0 a 0 0

0 00 0 0 0 0 0

00 000

0.0 0 0 0 0 0

0000 0 0

0 00 0 00 0 0

00 000 0

0 0 0 0 0 0 0
0 00 0 00 0

b') (b')

1 I 1 2 4 4

2 3 3 3 1 1

1 2 3 2 2 3
4 2 1 1

S 2 2 1 3 3 2

1 1 $

(ce)

Figure 3-5: (a) Live cells, (b) 36 cells linked to form (b') using only bypass registers and
(c) 49 to form (c') if one extra delay register is provided. (Black dots represent delay registers

and the weight on each edge indicates the amount of delay)

* In general, the more delay registers are provided, the better the utilization. Study is currently underway to

examine the -tradeof!s between the amount of" hardware required and the utilization of the live cells at
different failure rates. We note that for systolic arrays made of programmable cells such as the CMU
Programmable Systolic Chip (PSC)14, 15, implementing programmable delay in the data path is straightfor-

ward and requires no extra circuitry. If the necessary channel width is also provided, any arbitrary assignment

scheme can be implemnented. In particular, the previous upper bound results16' 17 on the maximum connec-

29



SYSTOLIC ARRAYS WIT!IOUT FEEDBACK CYCLES

tidn length for the reconfiguration of two-dimensional systolic arrays can be directly translated into upper

bounds on the maximum programmable delay needed for each data path through each cell.

For the case of two-dimensional arrays, the cut theorem does not lead directly to an effective procedure to

obtain a functional array from a defective one. The following theorem, which can be proven to be equivalent

to the cut theorem, is useful for this purpose:

Theorem 2: If a systolic design is obtained from an other one by adding delays to some of its
edges, then these two designs are equivalent if the total delay added to all the paths between any
two nodes is the same.

Proof: The result follows directly from the retiming lemma of Leiserson and Saxe 12. by assign-
ing the lag of a node to be the to tal amount of delay added to any of the paths linking the host to
the node. 03

For a rectangular or hexagonal array with no feedback cycles (as depicted by Figures 3-2 (a) and 3-6 (a)),

the condition in Theorem 2 holds if and only if it holds in every unit square or triangle respectively. There-

fore we have a simple criterion for deriving equivalent designs which relies only on "local information". It is

used in the heuristic program that generated the configurations of Figure 3-5 (b) and (c).

3.3. Two-Level Pipelining for Two-Dimensional Systolic Arrays

We consider a hexagonal systolic array that can perfr ,m band matrix multiplication 8, as depicted in figure

3-6 (a).

(a)(b

Figure 3-6: (a) Hexagonal systolic array without feedback loops and (b) original cell definition

Two results follow directly from the cut theorem:

1. It is easy to see that the edges under each dashed line in Figure 3-6 (a) define a cut. Every vertical
edge, representing the output from an adder (Figure 3-6 (b)), intersects two dashed lines while any
other edge intersects only one. Thus by the cut theorem, if the number of pipeline stages in all the
adders is increased by 2k, then for each cell, k delays must be added to the other data paths.
Figure 1-1 (b) depicts the case when k= 1.

2. Consider the output edges of all the multipliers in the array. Like those in the one-dimensional

10



SYSTOLIC ARRAYS WITIIOUTITTIIBACK CYCLES

convolution array (Figure 3-1 (b)), these edges define a cut since none of the outputs from the
adders arc fed back into the multipliers. By the cut theorem. we can conclude that systolic cells
can be implemented using pipelined multipliers of any number of stages without any further
modification provided the number of stages is the same for all the multipliers.

n



4. Systolic Arrays with Feedback Cycles

As previously noted, a cut partitions the nodes of a graph into two sets with data flowing uni-directionally

between them. Thus a cut cannot cross feedback cycles in systolic arrays. This is the same as saying that
"retiming" preserves the total number of registers in a cycle12. In other words, it is impossible to add extra

delays on edges in a feedback cycle for fault-tolerance and pipelining purposes. In this section we describe a

new technique for treating systolic arrays with feedback cycle. Such arrays include systolic designs for

LU-decomposition19, QR-decomposition20, triangular linear systems19 and recursive filtering2t .

4.1. Computation of Simple Recurrences-An Example of Cyclic Systolic Arrays
To illustrate the basic ideas, we consider the computation of the following simple recunence of size n-1:

given the initial values IYo, Y-11 ... Y-n+21
compute the output sequence {y, y .... } as defined ty

Y1= =y n-

Although summation is used here, the computational structure presented below generalizes to any associative

operator. An n-cell systolic array with feedback cycles21 is capable of performing this simple recurrence

computation of size up to n-i. Depicted in Figure 4-1 (a) is such an array where n=6. The partial sums

move down the array from left to right picking up the completed results that move in the opposite direction.

The computation of each sum is completed when it reaches the end of the array. Note that this is a 2-slow

system, in the sense that only half its cells are active at all time.

Figure 4-1: Linear array with feedback: (a) original array, (b) reduced throughput and (c) single failure

A naive attempt at achieving fault-tolerance involves slowing the system down even further. In the array of

Figure 4-1 (b) data pass through an extra register per cell. This is a 4-slow system, performing the same

computation as the 2-slow version, but at half its throughput. Suppose that the third cell from the left were to

fail. The original function of the array could be preserved by simply allowing cells 2 and 4 to communicate

through a bypass register (as illustrated in Figure 4-1 (c)). A drawback of this approach is that the perfor-

12



SYSTOLIC ARRAYS WITI I FEEDBACK CYCLES

mance of the array degrades rapidly with respect to tie number of consecutive failed cells that need to be

tolerated. Note that systolic arrays with feedback cycles are initially 2- or 3-slow in general, and in order to

tolerate k consecutive failures, the throughput must be further decreased by a factor of k+ 1.

The recurrence of size n-1 computed by an n-cell bi-directional linear array (illustrated in Figure 4-1 (a)),

can also be implemented on an n/2-cell ring with uni-directional data flow (as in Figure 4-2). Tie systolic

ring works as follows. The n12 most recently computed results arc stored in each of the n/2 cells, while the

next n/2 partial sums travel around the ring to meet these stored values. A sum is completed as it travels past

the cell with the most recently stored value. It is then deposited in the next cell, which contained the oldest

value. Meanwhile, the computation of a new value begins in the next successive cell. Figure 4-2 (a) indicates

that y3 has just been added to Y4. Figure 4-2 (b) shows the result of the next cycle-the final value of y4 has

replaced y,, while y7 is ready to pick up its fiist term, y2. Like the bi-directional systolic array of Figure 4-1 (a),

this systolic ring has a computational rate of one output every two cycles. However, since all its cells are active

at any time, only half as many cells are needed.

(a) (b)

Y6 Y,

4! Y

A A

Figure 4-2: Two consecutive spapshots of a systolic ring

More importantly, the throughput of this structure degrades gracefully as the number of defective cells
increases. For example, for an array of size n with one cell failure, the reduction in throughput is only

1/(2n- 1) of the original. A defective ring of 5 cells with 2 failures is illustrated in Figure 4-3. As in an

acyclic array, each failed cell in the ring is bypassed with a single register. This ring can solve a problem of

size 6 at a throughput of 3 outputs every 8 cycles. In this example, the final values of y4, Y and y7 are
produced at time instants to, t+2, +5 and ko+8, respectively.

4.2. Performance of Systolic Rings

We have shown in the previous section that the ring structure is suitable for solving simple recurrences

where each result is dependent on a fixed number of previous results. This characterizes many of the

problems solved by systolic arrays with feedback. Before we propose ring algorithms for these problems, we

first analyze the performance of the genera l ring structure. The performance measures of primary interest are

the data throughput rate and the amount of hardware required. We will show that a fully functional ring

13
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Figure 4-3: Defective systolic ring with 2 faulty cells

* typically requires only a fraction of the hardware required by other proposed algorithms and achieves the

same throughput. Furthermore, systolic rings are much more amenable to the addition of fault-tolerant

features and a second level of pipelining.

To dissociate the issue of the problem size a ring can handle from the analysis of the data throughput, we

will first consider the hypothetical case of an "infinite" structure. By "infinite", we mean that this structure

has at least as many cells as the number of results we want to compute. Since each cell is used to store only

one result, there is no feedback, and this structure can be viewed as a uni-directional linear array. Therefore

we can apply the previously derived results to analyze the performance in case of cell failures.

If the ring is flawless, the output stream of each cell is fed directly into the next, and a result is produced

every two cycles (independent of the problem size). Let us consider the case where we have k failures every m

cells. Similar to the previous case, a defective cell in a ring can be bypassed with a register. While this

procedure does not change the functionality of the algorithm, all the actions of the cells following a failed cell

are delayed, relative to the one preceding it, by one extra clock cycle. As a result, the action of every

(m- k) th live cell has a relative delay of k cycles. Therefore, while a perfect array stores a result in each of the

m- k consecutive cells every 2(m- k) cycles, an impaired array stores a result in each of the m- k live cells

every 2(m-k)+ k cycles.

Leuna 3: A perfect array of "infinite" size can solve a recurrence problem of any size at a
throughput rate of 1/2. If k out of every m cells fail, the throughput is reduced to
(m-k)/(2m- k). *

In this "infinite" array, each cell is only active for a period of n clock cycles. Moreover, the ith live cell Is

activated by the arrival of the ith result. Since every result depends on the value of the preceding result, a cell

can be activated only after the activation of the preceding cell. Consequently, the string of active cells is

always contiguous and its length is the product of the duration of the active period and the throughput rate. If

a finite ring is used to solve a particular problem and its size is no smaller than the length of the active string,

then it is virtually equivalent to this "infinite" structure. Therefore we have the following results:

14
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Theorem 4: A perfect ring of size P.i can solve recurrences of sizcs up to 21n- I at a throughput
rate of 1/2. If k cells fail, it can solve problems of sizes op to 2m- k-1 at a throughput rate of
(m-k)/(2m-k). In other words, the reduction in throughput due to the k failures is only
k/(2m- k) of thc original.

4.3. Two-Level Pipelining for Systolic Rings

By going through a similar argument as previously presented for the two-lcvcl pipelined array, we can

obtain the following result.

Theorem 5: A systolic ring of m p-stage pipelined culls can solve recurrences of sizes up to
(p+ 1)m- 1 at a throughput rate of 1/(p+ 1). If k of the m cells fail, this ring can solve problems
up to size (p+ 1)m-pk- 1 at a throughput rate of (in- k)/[(p+ l)in-pk]. In other words, the
reduction in throughput is only k/[(p+ 1)m-pk] of the original.

4.4. Other Examples of Systolic Ring Architectures

4.4.1. Solution of Triangular Linear Systems

Let A =(aU) be a nonsingular nxn band, lower triangular matrix with bandwidth q. Suppose that A and an

n-vector b=(bi, .... bj are given. The problem is to solve Ax=b for x=(x,... xnT . This is a typical

recurrence of size q- 1. A ring of q/2 cells is sufficient to solve the problem at a throughput of one result

every two cycles. As a comparison, the previous bi-directional linear systolic array19 has the same throughput,

but it uses twice as many cells. The ring is also more robust-with k failures in a ring of m cells, the

throughput is only reduced from 1/2 to (m- k)/(2m- k).

Figures 4-4 and 4-5 illustrate the data flow pattern of a perfect 3-cell ring and a 4-cell ring with one failure,

respectively, when solving a triangular linear system with bandwidth q=6. While this problem size is the

largest the former ring can handle, the latter one can solve linear systems with bandwidth up to q=7. As a

resIult, the cells in the defective ring of Figure 4-5 are idle one-seventh of the time. In the figure, a cell is

assumed to be idle for one cycle if the input has a "don't care" value.

The final step in the computation of each result (x) involves a subtraction (from bi) and a division (by ag).

This needs to be performed by every cell. To avoid having to provide each cell with a division capability and

an external data path, we precompute the reciprocals of the diagonals outside the ring and send the additional

input (b,) to the cells via a systolic path.

4.4.2. Triangularization of a Band Matrix

,he usefulness of the systolic ring approach is not limited to linear array solutions-Figure 4-6 (a) depicts a

two-dimensional ring structure for triangularizing a band matrix A, with bandwidth w=6 and q=3 sub-

diagonals. This ring structure can perform the QR-decomposition, an important computation for linear least

squares approximation, and solve linear systems stably using neighbor pivotingn.
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Figure 4-4: Systolic ring for solving triangular linear systems

Each ring in the structure of Figure 4-6 is responsible for the elimination of a subdiagonal, with the

bottommost ring handling the bottommost subdiagonal. Consider the operations of a ring, as illustrated by

Figure 4-6 (b). The parameters needed for performing the elimination (which for the QR-decomposition are

the values defining the Givens rotations) pass around the ring after they are generated. Let pt be the

parameter generated by the eleziie,, to he eliminated in row i and the element above it. If the data input aU is

not an element of the subdiagonel to be eliminated, it is updated on the arrival of pt. It is then retained for

one cycle to complte with Pi+, before it is otzpat to the next ring. If aU is to be eliminated, it is computed

with the stored value, .- ij, to get pb which is then passed down the ring. Thus the output of each ring Is the

result obtained by eliminating the last subdiagonal of the input array. The uppermost ring outputs the entries

of the triangular matrix that we want to compute. Note that corresponding to the elimination of each

subdiagonal, a new super-diagonal is created. in the systolic ring, the new elements for this super-diagonal

take the place previously occupied by the elements of the eliminated subdiagonal.
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Figure 4-5: A single failure in a systolic ring for solving triangular linear systems

Unlike the data values circulating the rings in the previous examples, the pt are computed before they are

passed around. However, they have the same property that they are produced every two cycles and need to

meet with w- 1 input values before they can be discarded. Therefore, from our previous analysis, q rings of

w/2 cells each are required for triangularizing a band matrix with bandwidth w and q subdiagonals. For the

case of QR-decomposition, it requires half the amount of hardware and achieves the same throughput of a

previous solution.

Figure 4-7 depicts the fault tolerance scheme for such a s',ructure. If the failed cells are covered by k cuts.

then by Theorem 4 the throughput is reduced by k/(w- k. of the original.
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Figure 4-6: (a) Two-dimensional systolic ring structure for matrix triangularization and
(b) two snapshots of the bottommost ring
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Figure 4-7: (a) Failed cells in a ring architecture for matrix triangularization and (b) the corresponding cut
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4.4.3. LU-Decomposition of a Band Matrix

Figure 4-8 depicts a "two-dimensional systolic ring architecture" for the LU-decomposition of a band

matrix. A = LU. For a given matrix A with bandwidth 2q- 1 we need to use q/3 rows of cells, with q cells in

each row. The q/3 most reccntly computed rows of uUs are stored in the cells as they are generated, while the

/is are passed down the rows. Figure 4-9 shows the snapshots of this structure at various stages in the

computition. By viewing this structure as an array of rings, its performance can be analyzed using the result

of Theorem 5 with parameter p= 2. The throughput of this array is the same as the previous design19 which

use, however, three times as many ccll§. Figure 4-10 illustrates how we apply the cu! technique to this array.

Vertical connections have to be provided for linking purposes. Note that if all the faults are covered in k cuts,

the decrease in throughput is only k/(q- 2k) of the original.
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...................... a,aaaaa6a

as% %t %a41  12 % %
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as,1 a4, a233 a 24a,

a. a33 am a,,
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72 a, as$
a 473 6

74 *

75

• a,, a76

Input to bottom row
Figure 48: Systolic ring architecture for LU-decomposition

4.5. General Remarks on Systolic Rings

The systolic ring architecture has some disadvantages over other systolic architectures, but they are compen-

sated for by its superior fault-tolerance performance. One of the possible disadvantages is that we need to

provide an additional data path to unload the values during the computation, as the computed results are

continuously stored in the ring. This is, however, not the case for the triangularization schemes of section

4.4.2.
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Figure 4-9: Snapshots of a ring architecture for LU-decomposition

In many of the conventional cyclic algorithms, only one or a few boundary cells may require, special

processing capability and extra input/output bandwidth: However, with some ring architectures, more cells

are required to assume the role of a boundary cell. Algorithm-dependent methods can sometimes be used to

alleviate the problem of having to provide all these cells with special functionality. For instance, in the

previous example of solving triangular linear systems, instead of providing each cell with the capability to

divide, we precompute the reciprocals of the diagonals.
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(a) (b)

Figure 4-10: (a) Failures in a ring architecture for LU-decomposition and (b) the corresponding cut

Finally we note that the one-dimensional ring can be laid out simply and effectively by folding the array in

half. A cell only communicates with a neighboring cell and thus needs only constant length interconnection

wires. For a two-dimensional ring, such as the one used for LU-dccomposition, it is possible to lay it out by

folding each column in half.
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5. Summary and Concluding Remarks

Systolic arrays arc more specific than general processor arrays, in the sense that data streams in a systolic

array move in a prespecified manner. Making explicit use of this additional information, the systolic fault-

tolerant approach introduced in this paper is usually more effective than other schemes designed for general

processor arrays. In particular the systolic approach requires no increase in interconnection length. This

eliminates a source of inefficiency, such as increased system cycle time or driver area, common to most other

approaches.

For uni-directional linear arrays, our systolic fault-tolerant technique achieves 100% utilization of live cells,

without extra registers nor interconnection links. For two-dimensional arrays without feedback cycles, we

have established the basic theory needed for developing efficient systolic fault-tolerant schemes. We expect

that if one extra delay register is provided for each data stream at each cell, a reasonably good utilization of

live cells can be achieved. We are currently investigating the performance of our techniques for two-

dimensional arrays with different degrees of redundancy.

Although many systolic algorithms with -.edback have been proposed. some of the same problems to which

these algorithms address can also be solved by systolic arrays without feedback. Examples of such problems

include convolution, graph connectivity and graph transitive closure4 23 24. Acyclic implementations usually

exhibit more favorable characteristics with respect to fault-tolerance, two-level pipelining, and problem

decomposition in general.

For problems that have been solved exclusively by systolic arrays with feedback cycles, the paper introduces

a new class of systolic algorithms based on a ring architecture. These systolic rings have the property that the

throughput degrades gracefully as the number of failed cells in the rings increases. Furthermore, as a

byproduct of the ring architecture approach, we have derived several new systolic algorithms which require

only one-third to one-half of the cells used in previous designs while achieving the samf throughput.

We have shown that the two-level pipelining problem in systolic arrays can be solved by the same tech-

niques used to solve the fault-tolerance problem. An important task left for the futore is the development of

software of solving both problems automatically.
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