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Abstract 
In recent years, many systolic algorithms have been proposed as solu- 

tions to computationally demanding problems in signal and image 
processing and other areas. Such algorithms exploit the regularity and 
parallelism of problems to achieve high performance and low I/O require- 
ments. Since systolic algorithms generally consist of a few types of 
simple processors, or systolic cells, connected in a regular pattern, they 
are less expensive to design and implement than more general machines. 

This advantage is offset by the fact that a particular systolic system can 
generally be used only on a narrow set of problems, and thus design cost 
cannot be amortized over a large number of units. One way to approach 
this problem is to provide a programmable systolic chip (PSC), many 
copies of  which can be connected and programmed to implement many 
systolic algorithms. 

The systolic environment, by virtue of its emphasis on continuous, 
regular flow of data and fairly simple per-cell processing, imposes new 
design requirements for programmable processors which are quite dif- 
ferent from those found in a general-purpose system. This paper 
describes the CMU PSC, a single-chip microprocessor suitable for use in 
groups of tens or hundreds for the efficient implementation of a broad 
variety of  systolic arrays. The processor has been fabricated in nMOS, 
and is undergoing testing. 

1. Introduction 
This paper describes the architecture and applications of a single-chip 

microprocessor, the CMU programmable systolic chip (PSC). Large 
numbers of these chips are to be used in the implementation of a broad 
spectrum of systolic algorithms I1, which typically achieve high perfor- 
mance by exploiting regularity and parallelism in the computations which 
they perform. The PSC is tailored to the I/O and computational require- 
ments of  this family of algorithms. 

The PSC project, initiated in October of 198l, had several motivations. 
Among these are: 

• Exploration of a new region of the computer design space: 
The I/O and computation demands placed on a building-block 
processor for systolic arrays are quite different from those 

placed on conventional processors. Together with the emerg- 
ing feasibility of sizable memories and significant computa- 
tional power on single chips, these factors lead to new 
resource tradeoffs. 

Programmable implementation of systolic arrays: Because 
they consist of  regular layouts of  simple cells, systolic arrays 
are generally easier to design and implement than more 
general-purpose machines. However, since a particular sys- 
tolic system is limited to a narrow set of problems, its 
development cost cannot usually be shared among many 
units. It is therefore desirable to have a programmable 
building-block, as shown in Figure 1, which can be used to 
construct many different types of arrays, reducing develop- 
ment costs to microcoding and circuit board layout. The 
PSC, in its current form, represents an efficient and flexible 
means of implementing a class of  high-performance special- 
purpose devices. More specialized PSCs (e.g., tailored for 
signal processing or data processing) could be even more ef- 
ficient. In addition to aiding in the actual application of sys- 
tolic arrays, PSCs will also be useful in design of and ex- 
perimentation with new systolic algorithms. 

*Work performed while visiting CMU. 
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Figure 1: PSC: A building-block chip for systolic arrays. 

Rapid implementation of novel architectures: The develop- 
ment of  the PSC design, from the initial idea to a silicon 
layout, took slightly less than a year in a university environ- 
ment. The design has been simulated at the register transfer 
and layout levels. Demonstration arrays should be opera- 
tional, allowing for two silicon runs, in an additional eight 
months. This project demonstrates the exciting opportunities 
presented by custom LSI and VLSI--fairly complex ex- 
perimental architectures can actually be built and tested with 
a reasonable amount of time and effort. The process of 
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designing the PSC has also helped in evaluation of the design 
tools used at CMU, and has suggested directions for improve- 
ment. 

Section 2 of this paper discusses the demands placed on processors to 
be used for implementing systolic arrays and the design issues which arise 
from these demands. Section 3 describes the architecture of the PSC. 
Sections 4 and 5 discuss the applications of the chip and compare it with 
alternative means of implementation. Section 6 discusses possible refine- 
ments and specializations of the PSC concept. Details of the implemen- 
tation of the chip are available in a companion paper 6. 

2. Design Goals and Issues 
The primary goal of the PSC architecture was to support reasonably ef- 

ficient implementation of a very broad variety of systolic algorithms. To 
this end, a set of target applications was chosen. An obvious candidate 
was the field of signal and image processing; problems in this area often 
demand real-time solution and manay systolic algorithms for such 
problems have already been designed" 12. Another choice was error 
detection and correction coding, Reed-Solomon coding 14' 16 in particular. 
In addition, sort/merge of large files was chosen as a representative of 
data-processing applications. 

Given these goals, the following design issues were considered: 

• Locality and flexibility of control: For some systolic arrays, 
including many signal processing and matrix arithmetic al- 
gorithms, simple global control would be sufficient. 
However, many other algorithms require different actions in 
different phases (e. g., loading of coefficients), as well as 
data-dependent actions within each systolic cycle. 

• Chip count: Keeping a systolic cell on a single chip has two 
advantages. First, it allows the functional blocks of the 
processor to operate together without paying the time and 
pinout penalty of off-chip communication. Second, it allows 
systolic arrays to be constructed with small chip count. The 
possibilities for putting more than one cell on a chip seem 
limited for the near future; given fairly complex processors, 
advances in miniaturization will probably be more usefully 
spent on increased word size and functional capability. This 
situation obviates the need for on-chip configurability--sys- 
tern configuration (or reconfiguration) is done at the board 
level. 

• Primitive operations: The primitive arithmetic, logical and 
control operations which a processor can perform are critical 
to its efficiency. In particular, fast multiplication is needed 
for the effective implementation of most signal and image 
processing algorithms. Provisions for multiple-precision 
arithmetic can extend a processor's utility. 

• Intercell communication: A principal feature of systolic arrays 
is the continuous flow of data between cells. Efficient im- 
plementation of such arrays requires wide I/O ports and data 
paths. Provision must also be made for the transmission of 
pipelined, or systolic control signals. 

• Internal parallelism: Partition of a processor's function into 
units which can operate in parallel enhances performance. 

• Control structure: Horizontally microprogrammed control 
structures provide flexibility in programming new applications 
and promote parallelism within a processor. The usual draw- 
back of horizontally microprogrammed architectures, dif- 
ficulty in programming, is eased by the fact that systolic al- 
gorithms have very simple basic cycles and hence short 
microprograms. 

• Word size: Individually programmed processors are subject to 
a tradeoff in word size: small word sizes lead to an imbalance 
between the hardware devoted to control and that devoted to 
data paths, and large words lead to large chips with large 
pinout and low yield. 

3. PSC: A Programmable Systolic Chip 
Based on the considerations discussed above, we have designed and 

laid out in nMOS (using Mead-Conway design rules 15) the PSC, a single- 
chip programmable systolic processor. Since this processor is an ex- 
perimental prototype, rather than a production version, we set the goal of 
keeping the design simple and general, albeit at the cost of pincount and 
ultimate performance. Nonetheless, as discussed in Section 5, the chip as 
designed already represents a cost-effective means of implementation for 
many systolic algorithms. 

Processor structure 
The processor consists of a collection of communicating functional 

units, all of which may operate in parallel. This collection is made up of 
a microcode RAM and microsequencer, a register file, an ALU, a 
multiplier-accumulator (MAC), and three input and three output ports. 
As schematized in Figure 2, data communication among the units takes 
place on three independent buses; control and status lines are separate. 
Each bus can be written by one of eight sources and be read by any of 
ten destinations. This organization supports a significant amount of on- 
chip parallelism; a multiplication with accumulation, an addition, a 
memory fetch, and interchip I/O can take place concurrently in one in- 
struction cycle. The parallelism-limiting effect of having only three 
buses, as opposed to eight, is alleviated by the fact that a value on a bus 
is often used more than once, and by the ability of each of the functional 
units to hold its inputs over more than one cycle. 

bus 1 

bus 2 

bus 3 

Figure 2: Bus structure of the PSC 

Word size 
In order to keep the chip small and hence keep pinout and yields 

reasonable, a modest word size of eight bits for arithmetic was chosen. 
Most data paths in the chip, however, are nine bits wide. The ninth bit 
can be used to tag data, to store control information, or as the most sig- 
nificant bit of a number modulo 257 for coding applications. In order to 
support arithmetic on larger numbers, facilities are also provided for 
multiple-precision computation: the multiplier and ALU have provisions 
for setting a carry in to the low-order bit, and the ALU can cycle its carry 
out into its carry in for the next operation. 

I/O ports 
Each of three input and three output ports contains nine bits, eight of 

which are data, with the ninth available for data or control. The ninth bit 
of each input port is available as a condition code for microprogram 
branching. This is often used as a tag bit for variable-length data or as a 
systolic control bit for loading and unloading of stored values. The ninth 
bit of each output port may be set as a literal, as the most significant bit 
of a nine-bit bus value, or as the most recent value of an incoming ninth 
bit. 

In order to keep the clock period short, interchip communication is 
pipelined (or overlapped) with instruction execution. Thus a value which 
is computed in a given cycle can be used on the same chip in the next 
cycle, but not until the cycle after that on a neighboring chip. The effect 
on system performance is to increase latency (in clock cycles, though not 
necessarily in real time) but to reduce the time needed for each pipeline 
stage. 

Control part 
The mieroprogram memory consists of 64 60-bit words of dynamic (for 

circuit density) RAM. The 60 bits in a horizontal microinstruction are 
divided as follows: 

• 9 bits to set bus contents. 

• 20 bits for control of functional unit input registers. 
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• 9 bits for off-chip control registers. 

• 10 bits for control of ALU, multiplier, and register file. 

• 3 bits to control program branching. 

• 9 bits to provide a literal branch address, literal data to the 
bus, or condition code selection for branching. 

The microsequencer is able to fetch instructions in sequence, branch to a 
literal address, branch to one of four locations depending on any two of 
twelve condition code bits, and push and pop addresses to and from a 
subroutine stack. 

Arithmetic 
The ALU performs standard arithmetic and logical operations: addition, 

subtraction, logical AND, etc.. It also allows its carry in bit to be set, 
either as part of its opcode or as its previous carry out, as an aid to 
multiple-precision computation. A typical complement of condition code 
outputs is supplied to the microsequencer. Arithmetic is performed in 
twos complement notation, except that an "unsigned subtraction" opera- 
tion is available for eight-bit character comparisons and normalization of 
numbers modulo 257. 

The multiplier-accumulator multiplies two eight-bit numbers and adds 
them to a 16-bit accumulator, a third eight bit input, or zero to produce a 
sixteen bit output. The numbers used may be signed (in twos 
complement) or unsigned, independently. 

Register f i le 
The register file consists of 64 nine-bit words of dynamic RAM. One 

word may be read or written in each cycle. In order to remove the 
RAM's delay from the chip's critical path, the register file is pipelined 
one cycle behind the rest of the chip; thus an address must be supplied 
one cycle before the addressed value is needed. This does not appear to 
pose a performance penalty, since register file accesses seem in general to 
be uniform and predictable. 

Microcode loading 
All microcode is loaded through a shift register, which can also be 

used for functional testing of the chip. 

In summary, then, the design of the PSC responds to the issues dis- 
cussed in the previous section as follows: 

• Locality and flexibility of control: The microprogrammed 
control described provides a very high degree of flexibility. 

• Chip count: The processor is designed and implemented as a 
single chip. 

• Primitive operations: The processor has hardware which allow 
it to perform multiplication, other arithmetic operations 
(including multiple precision), and branching and subroutine 
control very efficiently. 

• Intercell communication: The three sets of I/O ports provide 
high-bandwidth data flow between neighboring cells, and ef- 
ficiently support the passing of systolic control bits. 

• Internal parallelism: The ports, ALU, multiplier, program 
memory and data memory all function simultaneously. The 
parallel bus structure allows a number of disjoint computa- 
tions to proceed simultaneously. 

• Microprogrammed control: The horizontal organization of the 
microcode allows all of the functional units to be utilized in a 
single cycle. 

• Word size: The eight/nine bit format chosen represents a 
reasonable compromise in terms of size, yield and utility. As 
section 4 shows, eight-bit PSCs can already be very useful. 
Longer words will be used for future PSCs, especially as 
silicon feature sizes shrink, in order to make them useful to a 
broader class of applications. 

As we discuss in Section 5, existing microprocessors fall short of meeting 
these criteria in several ways. 

4. Applications 
The PSC can be used as the basic systolic cell for many systolic sys- 

tems in many application areas. In this section we give a flavor of how it 
is applied in two target applications, and discuss its cost-effectiveness 
with respect to these applications. These and other applications have 
been implemented in microcode; this code has been simulated by ISPS ] 
simulators and used to evaluate architectural specifications of the chip. 
We estimate that a commercial nMOS implementation of the PSC could 
operate with a cycle time of 200 ns; our first implementation should run 
within a factor of two of this speed. We shall assume the 200 ns period 
in our performance estimates. 

Note that for each of these applications it is always possible to develop 
a more special-purpose, and thus more efficient, chip than the PSC. The 
point of the PSC project, however, is to show that with a carefully 
chosen architecture, a rather general-purpose chip such as the PSC can 
still achieve very competitive performance results for each individual 
problem in a wide variety of application areas. 

Because of space limitation, in this section we describe only two ap- 
plications: a digital filtering algorithm is described in some detail, and a 
system for Reed-Solomon coding is described at a higher level of abstrac- 
tion. A companion paper 6 briefly describes sort/merge and file fin- 
gerprinting applications. For more information and for other examples, 
the reader is referred to a forthcoming paper on applications. 

4.1. Digital Filtering in Signal and Image Processing 
Many digital signal and image processing applications require high- 

speed filtering capabilities. Mathematically, a filtering problem with 
h + k taps is defined as follows: 

given the weights {Wl,W 2 ..... Wh}, {r l ,r  2 ..... rk}, the initial values {Y0, 
Y-! ,...,Y-k+ 1} and the input data {x! ,...,Xn}, 

compute the output sequence {Yl ,Y2,'",Yn + l-h} defined by 
~ h  k 

Yi = j=l  wjxi+j-1 + ~ j =  1 rjYi-j. 

If the {ri} are all zero, then the problem is called a finite impulse 
response (FIR) problem, and otherwise an infinite impulse response (IIR) 
problem. It is known that both types of filtering can be performed by 
systolic arrays 8' 9, I I. Figure 3 illustrates a systolic array for FIR filtering 
for h = 3 .  

(a) 
Y7 ) Y6 
x6) 

Y i ~ ' ~ -  1 Yo~t Yout ~- y 
Xout ~" Xin (b) 

Xi Xo~t Y ~ Yin +W. Xin 

Figure 3: (a) Systolic FIR filtering array and (b) its cell definition. 

Based on this scheme, digital filters (FIR or IIR) with eight-bit data 
and weights and m taps can be computed with a linear systolic array com- 
posed of m PSCs, taking one sample each 200 ns. Thus with 40 PSCs, a 
40 tap filter can be computed at a rate of 400 million operations per 
second (MOPS), counting each inner product step (eight-bit multiply, 16- 
bit add) as two operations. This is equivalent to 600 MOPS for pure 
eight-bit arithmetic. 

We now describe a particular example in which the PSC is 
programmed as a systolic cell for a systolic FIR filtering array. The 
program takes only one instruction to implement the operations depicted 
in 3(b). After an initialization phase in which the weights are loaded, the 
inner loop of the algorithm uses only one PSC microinstruction, coded as 
follows: 
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Busl=Sda, Bus2=Sdb, Bus3=Lo, 
SdaOut =VaI3, SdbOut =Val2, 
MacX=Hold, MacY=Val2, MacZ=Vall, MacOp=AddZ, 
Jump=OnCCO, CCO=Sca, ScaOut=Pass. 

The lines of this microinstruction have the following effects, all in a 
single cycle: 

1. Bus 1 carries Yin, read from systolic data port A, bus 2 
carries Xin , read from port B, and bus 3 carries Your from the 
previous operation, available as the output of the MAC. 

2. Output port A receives Your from the previous operation (the 
value on bus 3), and port B receives Xout=Xin. 

3. The MAC holds the cell's weight in its x register, sets its y 
register to Xin (the value on bus 2), and sets its z register to 
Y/n (the value on bus 1). It then computes x . y+z ,  or 
W "Xin + Yin" This value will be sent to output port A during 
the next cycle. 

4. The instruction loops in place until systolic control signal A 
arrives, meaning it is time to reinitialize. Control then passes 
to the next intruction, and the control bit is sent on to the 
neighboring cell. 

For applications requiting more accuracy, a filter with 16-bit data and 
eight-bit coefficients and m taps can be computed with m PSCs, taking 
one sample each 1.2 Ixs. Thus with 40 PSC chips, a 40 tap filter can be 
computed at a rate of 67 MOPS, counting each inner product step as two 
operations. This is equivalent to 200 MOPS for eight-bit arithmetic. 

If higher performance is needed, one-dimensional systolic filtering ar- 
rays can be stacked together to form two-dimensional arrays. In this case 
the system host must have sufficiently high I/O bandwidth that multiple 
data streams can be fed into a two-dimensional systolic array simul- 
taneously. Similar comments apply to other one-dimensional systolic ar- 
rays discussed below. 

4.2. Error-Correcting Codes 
Among various error-correcting codes, Reed-Solomon codes are most 

widely used today for deep space communications, where burst errors oc- 
cur frequently 14' 16. A popular Reed-Solomon code, which for example 
has been adopted by the European Space Agency, is a scheme in which a 
codeword consists of 224 message symbols followed by 32 parity sym- 
bols. This code can correct up to 16 symbol errors per codeword through 
a decoding process. 

Each symbol is defined over a finite field of 257 elements, denoted by 
GF(257), and thus is encoded with 9 bits. Any number less than 256 is 
represented as usual by 8 bits, and the number 256(=-1) by 9 bits as 
1000000002 . We call this representation "normalized form". Arithmetic 
is performed on numbers in normalized form, and gives a result in nor- 
malized form. The basic pattern is to test if one of the operands is equal 
to 256--in which case a special treatment is applied--then operate on 8 
bits and normalize the result. 

Before a message is transmitted, it is first encoded. It is well known 
that encoding a message, i.e., obtaining parity symbols from the given 
message symbols, is equivalent to a polynomial division. It can therefore 
be carried out with the systolic division array described in 1°. Since in 
this case the divisor--the generator polynomial in the terminology of 
error-correcting codes--is monic, no cell in the systolic array needs to 
perform a numerical division. Each cell is basically the same as used in 
the systolic filtering array discussed above, except that integer arithmetic 
modulo 257 is used. 

Decoding, which is much more complex than encoding, is usually done 
in four steps. We will not describe the steps in detail here; the reader is 
referred to the texts on error-correcting codes cited earlier. In the follow- 
ing we simply point out that each step corresponds to some polynomial 
computation over the finite field GF (257) that can be effectively carried 
out by systolic arrays. 

• Syndrome computation is to compute the syndrome polyno- 
mial S(x) of degree 31. The problem is equivalent to that of 

evaluating a polynomial of degree 255 at 32 points. Using 
Homer's rule, this can be done by a systolic array where each 
cell holds one of the 32 points and accumulates results as the 
coefficients of the polynomial flow through the array 9. 

• Solution of  the key equation is to find two polynomials, the 
error locator polynomial to(x ) and error evaluator polynomial 
tr(x), with degto< 16 and degtr--  < 16, such that the key 
equation, 

oo(x ) --= o'(x ) S (x) [ mod x 32 ], 

is satisfied. This problem can be solved by a systolic array 
for computing extended greatest common divisors% 

• Error location is to find the roots of t r ( x ) =0 ,  which will 
identify the locations of errors in the received message. 
Finding the roots is most efficiently done by simply evaluat- 
ing tr(x) at every point in GF (257), since the size of the field 
is small. Again as in the syndrome computation, based on 
Homer's rule we can use a systolic array for carrying out the 
polynomial evaluation. Now since the degree of the polyno- 
mial is small and the number of the points where the polyno- 
mial is to be evaluated is large, we use a "dual" systolic 
design where each cell holds one coefficient of the polyno- 
mial and the points flow along the array. 

• Error evaluation is to evaluate the amplitude of each error 
found in the previous step, by evaluating ~o(x)/tr'(x) at the 
roots of a (x )=0 .  This again calls for polynomial evalua- 
tion. 

Figure 4 illustrates that all the steps mentioned above can be imple- 
mented with appropriate systolic arrays made up of the same PSCs, with 
different microcode for each array. We estimate that by using a linear 
array of 112 PSCs, Reed-Solomon decoding can be performed with a 
throughput of 8 million bits per second. 

t polynomial I msg evaluation 
systolic array 

• S(x) 

x32 1 polynomiaIGcD 
systolic array 

a 

i oo' nomi ' [ I I I 
evaluation evaluation evaluation 

systolic array systolic array systolic array 

I ~ (X) by a'(x) o-(x) = I 
I 

divide if 0 
I 

I > error vector 
Figure 4: Systolic decoder for Reed-Solomon code 

Encoding is much easier; it requires only about 16 PSCs to achieve the 
same throughput. As far as we know, the fastest existing Reed-Solomon 
decoder with the same mathematical characteristics uses about 500 chips 
but achieves a throughput of no more than 1 million bits per second. 
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5. Implementation Alternatives 
The PSC represents only one possible means of implementation of sys- 

tolic algorithms. Alternatives include board-level implementation from 
existing parts, full custom LSI implementation, and implementation using 
existing microprocessors. Existing systolic a~ray implementations span 
this spectrum. Early test implementations 7' were full custom single- 

devices, as is the GEC correlator chip 5. In an intermediate purpose range 
of flexibility are the ESL systolic processor "' 19 and a forthcoming ESL 
systolic chipset for floating-point matrix computations, both of which are 
programmable for a range of signal processing tasks. At the very general 
end of the spectrum is the Naval Ocean Systems Center systolic array 
testbed 4, 17, 18, which is assembled out of general-purpose microproces- 
sors and can use both one- and two-dimensional array communication 
structures. 

Board-level and full custom LSI implementations may be preferable to 
the PSC approach where performance requirements are very stringent. 
The disadvantages of these approaches are mainly in design cost 
(especially for custom LSI) and, for board-level implementations, costs of 
packaging, power dissipation, and physical size. 

The alternative approach closest in spirit to the use of PSCs is the use 
of existing microprocessors. Conventional microprocessors cover such a 
wide range of applications that it may seem a good idea to use them for 
building systolic arrays. In fact this turns out to be false, since 
microprocessors would perform very poorly in this context--in many 
cases, the PSC works an order of magnitude faster. The reasons for this 
failure reside in the differences between the PSC and conventional ~Ps: 
I/O facilities, on-chip program memory, internal parallelism, parallel mul- 
tiplier and systolic control bits. No commercially available ~P that we 
are aware of combines all of the above properties. Instead, we can find a 
large variety of machines, all called "microprocessors," that have only 
one or two of those features. 

If we try to implement systolic algorithms using an existing 
microprocessor, we come up with many possibilities: 

• Most common microprocessors, either on 8 bits (Z80, 6800, 
8080 families) or larger (68000, 16000, iAPX 432 families), 
have no internal program or scratch pad RAM (usually a few 
registers), no hardware multiplier, and at most two ports: an 
address port and a data port. In order to be used in systolic 
arrays, each processor would need external memory chips, 
I/O devices and a few components for inter-chip communica- 
tion. Such devices could be built, but at high cost in chip 
count, power dissipation, and space. Also, conventional 
microprocessors provide large instruction sets and complex 
addressing schemes, but cannot be programmed at the 
microcode level; as a result, even simple operations take 
several cycles. Finally, I/O is a serious bottleneck since the 
same ports are used for fetching operands and instructions 
and for inter-chip communication. 

• Signal processing microprocessors (NEC 7720, TMS320, 
Hitachi HSP) usually have an on-chip program memory in 
ROM, a small data memory, and (for the most recent ones) a 
parallel multiplier. They also show some amount of internal 
parallelism since they can perform a multiplication- 
accumulation and increment an address register at the same 
time. However, their structure is often too specialized to use 
them in applications other than signal processing, and the I/O 
problem is also present; none have the off-chip bandwidth 
necessary for systolic array communication. 

• Single-chip micro-computers (8020, 8749) are, in some 
respects, superficially similar to the PSC. They have an on- 
chip ROM program memory, a small RAM for data, and up 
to three bidirectional ports (used serially, however, not 
simultaneously). They can be used with few external com- 
ponents, as opposed to microprocessors that need an external 
memmy and I/O devices in order to function. However, they 
are serial machines with simple instruction sets (the instruc- 
tion "multiply" is absent), and suffer from the same I/O bot- 
tleneck as traditional microprocessors. 

• Bit-slice microprocessors form a last family. Of course, one 

could make a PSC out of several of them and many external 
parts, and this could have been an alternative to the im- 
plementation of a chip. However, the result would be un- 
economical in most applications because of the large chip 
count and accompanying size, fabrication, and power costs. 

As an example of the effects of serial execution and data access, con- 
sider the filtering example of Figure 3. A microprocessor equipped with 
a multiplier and the ability to perform an I/O operation to either of its 
neighbors in a single cycle would need at least 10 instruction cycles to 
perform this inner loop (4 for I/O and 6 for branching, arithmetic, and 
data movement). Counting the overhead of instruction fetching and 
decoding, it is extremely unlikely that such a processor, implemented in 
similar technology, would have a smaller instruction cycle time than the 
PSC; hence the PSC's orgar~ization allows it to operate at least ten times 
faster in this case. For Reed-Solomon encoding, a standard la,P would 
execute at least four times as many instructions as the PSC. Most sys- 
tolic algorithms seem to produce instruction ratios in the range between 
4:1 and 10:1. 

We see from these considerations that current microprocessor architec- 
tures are not well-suited to the construction of systolic arrays. The key 
points, again, that favor the PSC structure are: 

• The large number of ports (including systolic control) used in 
parallel. 

• Internal program and data memory: I/O bandwidth is fully 
available for transfer of data between chips. In our ex- 
amples, the ratio (number of input+output)/(number of 
instructions) is high, often larger than 1. Also, typical 
programs are short and can fit into a small control memory. 

• Horizontal microprogramming: large microinstructions 
provide effective internal parallelism. This is possible only 
because of the rich interconnection pattern (3 internal global 
buses). 

• Systolic control: this is indispensable for systolic algorithms, 
and is costly in instruction cycles and I/O bandwidth for con- 
ventional ~Ps. 

• Multiplier: this is critical for high performance in numerical 
applications. 

6. Concluding Remarks 
This paper reports an initial investigation of the architecture space of 

programmable systolic arrays and processors, which seem to represent an 
important point on the generality-performance-cost tradeoff curve. The 
PSC prototype will be extremely useful in further research in this area, by 
supporting detailed experimental applications studies which are underway. 

One promising area of further investigation is the design of more spe- 
cialized PSCs. The present design is not, for example, optimally suited 
to the sorting problem--the large multiplier sits idle, and off-chip 
memory addressing is somewhat cumbersome. Thus it might be reason- 
able to design a small family of PSCs, each well-suited to a particular 
range of applications. 

Another logical step is the design of more powerful PSCs. Larger 
word size and hardware floating point capability would greatly extend the 
PSC's utility in signal and image processing. Assuming that a 16-bit 
multiplication takes twice as long as an eight-bit multiplication (true for 
most bit-parallel multipliers), it is possible to build a 16-bit PSC with the 
same I/O-computation balance as the current system by multiplexing I/O 
through eight-bit ports. This alleviates the pinout problem often as- 
sociated with larger word sizes. 

Yet another task is the refinement of the existing PSC design. The 
current multiplier uses the naive bit-parallel design, and its layout could 
be improved. Since the architecture was settled, several possible en- 
hancements have suggested themselves. One is the addition of small 
FIFOs at the I/O ports, which would serve to reduce bus usage within 
chips for data that need to be delayed. Another is the augmentation of 
the register file to two or more ports; some multiple-precision computa- 
tions seem to be memory-bound. It might also be possible to provide 
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more effective bus bandwidth by providing specialized buses for high- 
utilization paths. All of these issues will need further detailed applica- 
tions studies to resolve them. 

The programming task presents a higher-level problem. As for most 
horizontally microprogrammed machines, writing optimal or near-optimal 
programs for the PSC is a difficult exercise. We hope that microcode 
compilers for the PSC will be easier to produce than for some other 
machines, since they will be able to take advantage of the brevity and 
simplicity of typical systolic cells' programs. 

Finally, there remains the possibility of different organizations for 
programmable systolic arrays. Despite the fact that it is a building-block 
for highly specialized, non-conventional systolic architectures, the design 
of the PSC itself is based mostly on standard principles. It is possible 
that alternative structures, such as bit-serial arrays, could also serve as 
building-blocks for many systolic algorithms. This avenue of research 
deserves exploration. 

Acknowledgments 
The PSC project has profited greatly from the assistance of Monica 

Lam, Onat Menzilcioglu, Hank Walker, and John Zsarnay in particular, 
and the VLSI design community at CMU in general. The dynamic RAM 
used for the control store and register file was designed by Hank Walker. 

This research was supported in part by the Defense Advanced Research 
Projects Agency (DoD), ARPA Order No. 3597, monitored by the Air 
Force Avionics Laboratory under Contract F33615-81-K-1539. A.L. 
Fisher was supported in part by an NSF graduate fellowship and in part 
by an IBM graduate fellowship. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

References 

Barbacci, M.R., "Instruction Set Processor Specifications (ISPS): 
The Notation and Its Application," IEEE Transactions on Com- 
puters, Vol. C-30, No. 1, January 1981, pp. 24-40. 

Blackmer, J., P.Kuekes and Frank, G., "A 200 MOPS Systolic 
Processor," Proceedings of SPIE Symposium, Vol. 298, Real-Time 
Signal Processing IV, The Society of Photo-optical Instrumen- 
tation Engineers, August 1981. 

Brent, R.P. and Kung, H.T., "Systolic VLSI Arrays for Polyno- 
mial GCD Computation," Tech. report, Carnegie-Mellon Univer- 
sity, Computer Science Department, May 1982. 

Bromley, K., Symanski, J.J., Speiser, J.M., and Whitehouse, 
H.J., "Systolic Array Processor Developments," VLSI Systems 
and Computations, Kung, H.T., Sproull, R.F., and Steele, G.L., 
Jr., eds., Computer Science Press, Inc., Computer Science 
Department, Carnegie-Mellon University, October 1981, pp. 
273-284. 

Corry, A.and Patel, K., "A CMOS/SOS VLSI Correlator," 
Proceedings of 1983 International Symposium on VLSI Technol- 
ogy, Systems and Applications, 1983. 

Fisher, A.L., Kung, H.T., Monier, L.M., Walker, H.and Dohi, 
Y., "Design of the PSC: A Programmable Systolic Chip," 
Proceedings of the Third Caltech Conference on VLSI, California 
Institute of Technology, March 1983. 

Foster, M.J. and Kung, H.T., "The Design of Special-Purpose 
VLSI Chips," Computer, Vol. 13, No. l, January 1980, pp. 
26-40, Reprint of the paper appears in Digital MOS Integrated 
Circuits, edited by Elmasry, M.I., IEEE Press Selected Reprint 
Series, 1981, pp. 204-217. A preliminary version of the paper, en- 
titled "Design of Special-Purpose VLSI Chips: Example and 
Opinions," also appears in Proceedings of the 7th International 
Symposium on Computer Architecture, pp. 300-307, La Baule, 
France, May 1980 

Kung, H.T., "Let's Design Algorithms for VLSI Systems," 
Proceedings of Conference on Very Large Scale Integration: Ar- 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

chitecture, Design, Fabrication, California Institute of Technol- 
ogy, January 1979, pp. 65-90, Also available as a CMU Computer 
Science Department technical report, September 1979. 

Kung, H.T., "Special-Purpose Devices for Signal and Image 
Processing: An Opportunity in VLSI," Proceedings of the SPIE, 
Vol. 241, Real-Time Signal Processing III, The Society of Photo- 
Optical Instrumentation Engineers, July 1980, pp. 76-84. 

Kung, H.T., "Use of VLSI in Algebraic Computation: Some 
Suggestions," Proceedings of the 1981 ACM Symposium on Sym- 
bolic and Algebraic Computation, Wang, P.S., ed., ACM SIG- 
SAM, August 1981, pp. 218-222. 

Kung, H.T., "Why Systolic Architectures?," Computer 
Magazine, Vol. 15, No. 1, January 1982, pp. 37-46. 

Kung, H.T. and Leiserson, C.E., "Systolic Arrays (for VLSI)," 
Sparse Matrix Proceedings 1978, Duff, I.S. and Stewart, G.W., 
eds., Society for Industrial and Applied Mathematics, 1979, pp. 
256-282, A slightly different version appears in Introduction to 
VLSI Systems by C.A. Mead and L.A. Conway, Addison- 
Wesley, 1980, Section 8.3. 

Kung, H.T. and Song, S.W., "A Systolic 2-D Convolution 
Chip," Multicomputers and Image Processing: Algorithms and 
Programs, Preston, K., Jr. and Uhr, L., ed., Academic Press, 
1982, pp. 373-384, An extended abstract appears in Proceedings 
of 1981 IEEE Computer Society Workshop on Computer Architec- 
ture for Pattern Analysis and Image Database Management, 
November 11-13, 1981, pp. 159-160 

MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error- 
Correcting Codes, North-Holland, Amsterdam, Holland, 1977. 

Mead, C.A. and Conway, L.A., Introduction to VLS1 Systems, 
Addison-Wesley, Reading, Massachusetts, 1980. 

Peterson, W.W. and Weldon, E.J., Jr., Error-Correcting Codes, 
MIT Press, Cambridge, Massachusetts, 1972. 

Symanski, J.J., "A Systolic Array Processor Implementation," 
Proceedings of SPIE Symposium, Vol. 298, Real-Time Signal 
Processing IV, The Society of Photo-Optical Instrumentation, 
August 1981. 

Symanski, J.J., "Progress on a Systolic Processor 
Implementation," Proceedings of SPIE Symposium, Vol. 341, 
Real-Time Signal Processing V, The Society of Photo-Optical In- 
strumentation, May 1982, pp. 2-7. 

Yen, D.W.L. and Kulkarni, A.V., "Systolic Processing and an 
Implementation for Signal and Image Processing," IEEE Trans- 
actions on Computers, Vol. C-31, No. 10, October 1982, pp. 
1000-1009. 

53 


