
Architecture of the PSC: A Programmable Systolic Chip

Allan L. Fisher, H. T. Kung, and Louis M. Monier
Department of Computer Science, Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Yasunori Dohi*
Department of Computer Engineering, Yokohama National University

Tokiwadai, Hodogaya-ku, Yokohama, 240 Japan

Abstract
In recent years, many systolic algorithms have been proposed as solu-

tions to computationally demanding problems in signal and image
processing and other areas. Such algorithms exploit the regularity and
parallelism of problems to achieve high performance and low I/O require-
ments. Since systolic algorithms generally consist of a few types of
simple processors, or systolic cells, connected in a regular pattern, they
are less expensive to design and implement than more general machines.

This advantage is offset by the fact that a particular systolic system can
generally be used only on a narrow set of problems, and thus design cost
cannot be amortized over a large number of units. One way to approach
this problem is to provide a programmable systolic chip (PSC), many
copies of which can be connected and programmed to implement many
systolic algorithms.

The systolic environment, by virtue of its emphasis on continuous,
regular flow of data and fairly simple per-cell processing, imposes new
design requirements for programmable processors which are quite dif-
ferent from those found in a general-purpose system. This paper
describes the CMU PSC, a single-chip microprocessor suitable for use in
groups of tens or hundreds for the efficient implementation of a broad
variety of systolic arrays. The processor has been fabricated in nMOS,
and is undergoing testing.

1. Introduction
This paper describes the architecture and applications of a single-chip

microprocessor, the CMU programmable systolic chip (PSC). Large
numbers of these chips are to be used in the implementation of a broad
spectrum of systolic algorithms I1, which typically achieve high perfor-
mance by exploiting regularity and parallelism in the computations which
they perform. The PSC is tailored to the I/O and computational require-
ments of this family of algorithms.

The PSC project, initiated in October of 198l, had several motivations.
Among these are:

• Exploration of a new region of the computer design space:
The I/O and computation demands placed on a building-block
processor for systolic arrays are quite different from those

placed on conventional processors. Together with the emerg-
ing feasibility of sizable memories and significant computa-
tional power on single chips, these factors lead to new
resource tradeoffs.

Programmable implementation of systolic arrays: Because
they consist of regular layouts of simple cells, systolic arrays
are generally easier to design and implement than more
general-purpose machines. However, since a particular sys-
tolic system is limited to a narrow set of problems, its
development cost cannot usually be shared among many
units. It is therefore desirable to have a programmable
building-block, as shown in Figure 1, which can be used to
construct many different types of arrays, reducing develop-
ment costs to microcoding and circuit board layout. The
PSC, in its current form, represents an efficient and flexible
means of implementing a class of high-performance special-
purpose devices. More specialized PSCs (e.g., tailored for
signal processing or data processing) could be even more ef-
ficient. In addition to aiding in the actual application of sys-
tolic arrays, PSCs will also be useful in design of and ex-
perimentation with new systolic algorithms.

*Work performed while visiting CMU.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the A C M copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

Figure 1: PSC: A building-block chip for systolic arrays.

Rapid implementation of novel architectures: The develop-
ment of the PSC design, from the initial idea to a silicon
layout, took slightly less than a year in a university environ-
ment. The design has been simulated at the register transfer
and layout levels. Demonstration arrays should be opera-
tional, allowing for two silicon runs, in an additional eight
months. This project demonstrates the exciting opportunities
presented by custom LSI and VLSI--fairly complex ex-
perimental architectures can actually be built and tested with
a reasonable amount of time and effort. The process of

© 1 9 8 3 A C M 0 1 4 9 - 7 1 1 1 / 8 3 / 0 6 0 0 / 0 0 4 8 5 0 1 . 0 0 48

designing the PSC has also helped in evaluation of the design
tools used at CMU, and has suggested directions for improve-
ment.

Section 2 of this paper discusses the demands placed on processors to
be used for implementing systolic arrays and the design issues which arise
from these demands. Section 3 describes the architecture of the PSC.
Sections 4 and 5 discuss the applications of the chip and compare it with
alternative means of implementation. Section 6 discusses possible refine-
ments and specializations of the PSC concept. Details of the implemen-
tation of the chip are available in a companion paper 6.

2. Design Goals and Issues
The primary goal of the PSC architecture was to support reasonably ef-

ficient implementation of a very broad variety of systolic algorithms. To
this end, a set of target applications was chosen. An obvious candidate
was the field of signal and image processing; problems in this area often
demand real-time solution and manay systolic algorithms for such
problems have already been designed" 12. Another choice was error
detection and correction coding, Reed-Solomon coding 14' 16 in particular.
In addition, sort/merge of large files was chosen as a representative of
data-processing applications.

Given these goals, the following design issues were considered:

• Locality and flexibility of control: For some systolic arrays,
including many signal processing and matrix arithmetic al-
gorithms, simple global control would be sufficient.
However, many other algorithms require different actions in
different phases (e. g., loading of coefficients), as well as
data-dependent actions within each systolic cycle.

• Chip count: Keeping a systolic cell on a single chip has two
advantages. First, it allows the functional blocks of the
processor to operate together without paying the time and
pinout penalty of off-chip communication. Second, it allows
systolic arrays to be constructed with small chip count. The
possibilities for putting more than one cell on a chip seem
limited for the near future; given fairly complex processors,
advances in miniaturization will probably be more usefully
spent on increased word size and functional capability. This
situation obviates the need for on-chip configurability--sys-
tern configuration (or reconfiguration) is done at the board
level.

• Primitive operations: The primitive arithmetic, logical and
control operations which a processor can perform are critical
to its efficiency. In particular, fast multiplication is needed
for the effective implementation of most signal and image
processing algorithms. Provisions for multiple-precision
arithmetic can extend a processor's utility.

• Intercell communication: A principal feature of systolic arrays
is the continuous flow of data between cells. Efficient im-
plementation of such arrays requires wide I/O ports and data
paths. Provision must also be made for the transmission of
pipelined, or systolic control signals.

• Internal parallelism: Partition of a processor's function into
units which can operate in parallel enhances performance.

• Control structure: Horizontally microprogrammed control
structures provide flexibility in programming new applications
and promote parallelism within a processor. The usual draw-
back of horizontally microprogrammed architectures, dif-
ficulty in programming, is eased by the fact that systolic al-
gorithms have very simple basic cycles and hence short
microprograms.

• Word size: Individually programmed processors are subject to
a tradeoff in word size: small word sizes lead to an imbalance
between the hardware devoted to control and that devoted to
data paths, and large words lead to large chips with large
pinout and low yield.

3. PSC: A Programmable Systolic Chip
Based on the considerations discussed above, we have designed and

laid out in nMOS (using Mead-Conway design rules 15) the PSC, a single-
chip programmable systolic processor. Since this processor is an ex-
perimental prototype, rather than a production version, we set the goal of
keeping the design simple and general, albeit at the cost of pincount and
ultimate performance. Nonetheless, as discussed in Section 5, the chip as
designed already represents a cost-effective means of implementation for
many systolic algorithms.

Processor structure
The processor consists of a collection of communicating functional

units, all of which may operate in parallel. This collection is made up of
a microcode RAM and microsequencer, a register file, an ALU, a
multiplier-accumulator (MAC), and three input and three output ports.
As schematized in Figure 2, data communication among the units takes
place on three independent buses; control and status lines are separate.
Each bus can be written by one of eight sources and be read by any of
ten destinations. This organization supports a significant amount of on-
chip parallelism; a multiplication with accumulation, an addition, a
memory fetch, and interchip I/O can take place concurrently in one in-
struction cycle. The parallelism-limiting effect of having only three
buses, as opposed to eight, is alleviated by the fact that a value on a bus
is often used more than once, and by the ability of each of the functional
units to hold its inputs over more than one cycle.

bus 1

bus 2

bus 3

Figure 2: Bus structure of the PSC

Word size
In order to keep the chip small and hence keep pinout and yields

reasonable, a modest word size of eight bits for arithmetic was chosen.
Most data paths in the chip, however, are nine bits wide. The ninth bit
can be used to tag data, to store control information, or as the most sig-
nificant bit of a number modulo 257 for coding applications. In order to
support arithmetic on larger numbers, facilities are also provided for
multiple-precision computation: the multiplier and ALU have provisions
for setting a carry in to the low-order bit, and the ALU can cycle its carry
out into its carry in for the next operation.

I/O ports
Each of three input and three output ports contains nine bits, eight of

which are data, with the ninth available for data or control. The ninth bit
of each input port is available as a condition code for microprogram
branching. This is often used as a tag bit for variable-length data or as a
systolic control bit for loading and unloading of stored values. The ninth
bit of each output port may be set as a literal, as the most significant bit
of a nine-bit bus value, or as the most recent value of an incoming ninth
bit.

In order to keep the clock period short, interchip communication is
pipelined (or overlapped) with instruction execution. Thus a value which
is computed in a given cycle can be used on the same chip in the next
cycle, but not until the cycle after that on a neighboring chip. The effect
on system performance is to increase latency (in clock cycles, though not
necessarily in real time) but to reduce the time needed for each pipeline
stage.

Control part
The mieroprogram memory consists of 64 60-bit words of dynamic (for

circuit density) RAM. The 60 bits in a horizontal microinstruction are
divided as follows:

• 9 bits to set bus contents.

• 20 bits for control of functional unit input registers.

49

• 9 bits for off-chip control registers.

• 10 bits for control of ALU, multiplier, and register file.

• 3 bits to control program branching.

• 9 bits to provide a literal branch address, literal data to the
bus, or condition code selection for branching.

The microsequencer is able to fetch instructions in sequence, branch to a
literal address, branch to one of four locations depending on any two of
twelve condition code bits, and push and pop addresses to and from a
subroutine stack.

Arithmetic
The ALU performs standard arithmetic and logical operations: addition,

subtraction, logical AND, etc.. It also allows its carry in bit to be set,
either as part of its opcode or as its previous carry out, as an aid to
multiple-precision computation. A typical complement of condition code
outputs is supplied to the microsequencer. Arithmetic is performed in
twos complement notation, except that an "unsigned subtraction" opera-
tion is available for eight-bit character comparisons and normalization of
numbers modulo 257.

The multiplier-accumulator multiplies two eight-bit numbers and adds
them to a 16-bit accumulator, a third eight bit input, or zero to produce a
sixteen bit output. The numbers used may be signed (in twos
complement) or unsigned, independently.

Register f i le
The register file consists of 64 nine-bit words of dynamic RAM. One

word may be read or written in each cycle. In order to remove the
RAM's delay from the chip's critical path, the register file is pipelined
one cycle behind the rest of the chip; thus an address must be supplied
one cycle before the addressed value is needed. This does not appear to
pose a performance penalty, since register file accesses seem in general to
be uniform and predictable.

Microcode loading
All microcode is loaded through a shift register, which can also be

used for functional testing of the chip.

In summary, then, the design of the PSC responds to the issues dis-
cussed in the previous section as follows:

• Locality and flexibility of control: The microprogrammed
control described provides a very high degree of flexibility.

• Chip count: The processor is designed and implemented as a
single chip.

• Primitive operations: The processor has hardware which allow
it to perform multiplication, other arithmetic operations
(including multiple precision), and branching and subroutine
control very efficiently.

• Intercell communication: The three sets of I/O ports provide
high-bandwidth data flow between neighboring cells, and ef-
ficiently support the passing of systolic control bits.

• Internal parallelism: The ports, ALU, multiplier, program
memory and data memory all function simultaneously. The
parallel bus structure allows a number of disjoint computa-
tions to proceed simultaneously.

• Microprogrammed control: The horizontal organization of the
microcode allows all of the functional units to be utilized in a
single cycle.

• Word size: The eight/nine bit format chosen represents a
reasonable compromise in terms of size, yield and utility. As
section 4 shows, eight-bit PSCs can already be very useful.
Longer words will be used for future PSCs, especially as
silicon feature sizes shrink, in order to make them useful to a
broader class of applications.

As we discuss in Section 5, existing microprocessors fall short of meeting
these criteria in several ways.

4. Applications
The PSC can be used as the basic systolic cell for many systolic sys-

tems in many application areas. In this section we give a flavor of how it
is applied in two target applications, and discuss its cost-effectiveness
with respect to these applications. These and other applications have
been implemented in microcode; this code has been simulated by ISPS]
simulators and used to evaluate architectural specifications of the chip.
We estimate that a commercial nMOS implementation of the PSC could
operate with a cycle time of 200 ns; our first implementation should run
within a factor of two of this speed. We shall assume the 200 ns period
in our performance estimates.

Note that for each of these applications it is always possible to develop
a more special-purpose, and thus more efficient, chip than the PSC. The
point of the PSC project, however, is to show that with a carefully
chosen architecture, a rather general-purpose chip such as the PSC can
still achieve very competitive performance results for each individual
problem in a wide variety of application areas.

Because of space limitation, in this section we describe only two ap-
plications: a digital filtering algorithm is described in some detail, and a
system for Reed-Solomon coding is described at a higher level of abstrac-
tion. A companion paper 6 briefly describes sort/merge and file fin-
gerprinting applications. For more information and for other examples,
the reader is referred to a forthcoming paper on applications.

4.1. Digital Filtering in Signal and Image Processing
Many digital signal and image processing applications require high-

speed filtering capabilities. Mathematically, a filtering problem with
h + k taps is defined as follows:

given the weights {Wl,W 2 Wh}, {r l ,r 2 rk}, the initial values {Y0,
Y-! ,...,Y-k+ 1} and the input data {x! ,...,Xn},

compute the output sequence {Yl ,Y2,'",Yn + l-h} defined by
~ h k

Yi = j=l wjxi+j-1 + ~ j = 1 rjYi-j.

If the {ri} are all zero, then the problem is called a finite impulse
response (FIR) problem, and otherwise an infinite impulse response (IIR)
problem. It is known that both types of filtering can be performed by
systolic arrays 8' 9, I I. Figure 3 illustrates a systolic array for FIR filtering
for h = 3 .

(a)
Y7) Y6
x6)

Y i ~ ' ~ - 1 Yo~t Yout ~- y
Xout ~" Xin (b)

Xi Xo~t Y ~ Yin +W. Xin

Figure 3: (a) Systolic FIR filtering array and (b) its cell definition.

Based on this scheme, digital filters (FIR or IIR) with eight-bit data
and weights and m taps can be computed with a linear systolic array com-
posed of m PSCs, taking one sample each 200 ns. Thus with 40 PSCs, a
40 tap filter can be computed at a rate of 400 million operations per
second (MOPS), counting each inner product step (eight-bit multiply, 16-
bit add) as two operations. This is equivalent to 600 MOPS for pure
eight-bit arithmetic.

We now describe a particular example in which the PSC is
programmed as a systolic cell for a systolic FIR filtering array. The
program takes only one instruction to implement the operations depicted
in 3(b). After an initialization phase in which the weights are loaded, the
inner loop of the algorithm uses only one PSC microinstruction, coded as
follows:

50

Busl=Sda, Bus2=Sdb, Bus3=Lo,
SdaOut =VaI3, SdbOut =Val2,
MacX=Hold, MacY=Val2, MacZ=Vall, MacOp=AddZ,
Jump=OnCCO, CCO=Sca, ScaOut=Pass.

The lines of this microinstruction have the following effects, all in a
single cycle:

1. Bus 1 carries Yin, read from systolic data port A, bus 2
carries Xin , read from port B, and bus 3 carries Your from the
previous operation, available as the output of the MAC.

2. Output port A receives Your from the previous operation (the
value on bus 3), and port B receives Xout=Xin.

3. The MAC holds the cell's weight in its x register, sets its y
register to Xin (the value on bus 2), and sets its z register to
Y/n (the value on bus 1). It then computes x . y+z , or
W "Xin + Yin" This value will be sent to output port A during
the next cycle.

4. The instruction loops in place until systolic control signal A
arrives, meaning it is time to reinitialize. Control then passes
to the next intruction, and the control bit is sent on to the
neighboring cell.

For applications requiting more accuracy, a filter with 16-bit data and
eight-bit coefficients and m taps can be computed with m PSCs, taking
one sample each 1.2 Ixs. Thus with 40 PSC chips, a 40 tap filter can be
computed at a rate of 67 MOPS, counting each inner product step as two
operations. This is equivalent to 200 MOPS for eight-bit arithmetic.

If higher performance is needed, one-dimensional systolic filtering ar-
rays can be stacked together to form two-dimensional arrays. In this case
the system host must have sufficiently high I/O bandwidth that multiple
data streams can be fed into a two-dimensional systolic array simul-
taneously. Similar comments apply to other one-dimensional systolic ar-
rays discussed below.

4.2. Error-Correcting Codes
Among various error-correcting codes, Reed-Solomon codes are most

widely used today for deep space communications, where burst errors oc-
cur frequently 14' 16. A popular Reed-Solomon code, which for example
has been adopted by the European Space Agency, is a scheme in which a
codeword consists of 224 message symbols followed by 32 parity sym-
bols. This code can correct up to 16 symbol errors per codeword through
a decoding process.

Each symbol is defined over a finite field of 257 elements, denoted by
GF(257), and thus is encoded with 9 bits. Any number less than 256 is
represented as usual by 8 bits, and the number 256(=-1) by 9 bits as
1000000002 . We call this representation "normalized form". Arithmetic
is performed on numbers in normalized form, and gives a result in nor-
malized form. The basic pattern is to test if one of the operands is equal
to 256--in which case a special treatment is applied--then operate on 8
bits and normalize the result.

Before a message is transmitted, it is first encoded. It is well known
that encoding a message, i.e., obtaining parity symbols from the given
message symbols, is equivalent to a polynomial division. It can therefore
be carried out with the systolic division array described in 1°. Since in
this case the divisor--the generator polynomial in the terminology of
error-correcting codes--is monic, no cell in the systolic array needs to
perform a numerical division. Each cell is basically the same as used in
the systolic filtering array discussed above, except that integer arithmetic
modulo 257 is used.

Decoding, which is much more complex than encoding, is usually done
in four steps. We will not describe the steps in detail here; the reader is
referred to the texts on error-correcting codes cited earlier. In the follow-
ing we simply point out that each step corresponds to some polynomial
computation over the finite field GF (257) that can be effectively carried
out by systolic arrays.

• Syndrome computation is to compute the syndrome polyno-
mial S(x) of degree 31. The problem is equivalent to that of

evaluating a polynomial of degree 255 at 32 points. Using
Homer's rule, this can be done by a systolic array where each
cell holds one of the 32 points and accumulates results as the
coefficients of the polynomial flow through the array 9.

• Solution of the key equation is to find two polynomials, the
error locator polynomial to(x) and error evaluator polynomial
tr(x), with degto< 16 and degtr-- < 16, such that the key
equation,

oo(x) --= o'(x) S (x) [mod x 32],

is satisfied. This problem can be solved by a systolic array
for computing extended greatest common divisors%

• Error location is to find the roots of t r (x) =0 , which will
identify the locations of errors in the received message.
Finding the roots is most efficiently done by simply evaluat-
ing tr(x) at every point in GF (257), since the size of the field
is small. Again as in the syndrome computation, based on
Homer's rule we can use a systolic array for carrying out the
polynomial evaluation. Now since the degree of the polyno-
mial is small and the number of the points where the polyno-
mial is to be evaluated is large, we use a "dual" systolic
design where each cell holds one coefficient of the polyno-
mial and the points flow along the array.

• Error evaluation is to evaluate the amplitude of each error
found in the previous step, by evaluating ~o(x)/tr'(x) at the
roots of a (x)=0 . This again calls for polynomial evalua-
tion.

Figure 4 illustrates that all the steps mentioned above can be imple-
mented with appropriate systolic arrays made up of the same PSCs, with
different microcode for each array. We estimate that by using a linear
array of 112 PSCs, Reed-Solomon decoding can be performed with a
throughput of 8 million bits per second.

t polynomial I msg evaluation
systolic array

• S(x)

x32 1 polynomiaIGcD
systolic array

a

i oo' nomi ' [I I I
evaluation evaluation evaluation

systolic array systolic array systolic array

I ~ (X) by a'(x) o-(x) = I
I

divide if 0
I

I > error vector
Figure 4: Systolic decoder for Reed-Solomon code

Encoding is much easier; it requires only about 16 PSCs to achieve the
same throughput. As far as we know, the fastest existing Reed-Solomon
decoder with the same mathematical characteristics uses about 500 chips
but achieves a throughput of no more than 1 million bits per second.

51

5. Implementation Alternatives
The PSC represents only one possible means of implementation of sys-

tolic algorithms. Alternatives include board-level implementation from
existing parts, full custom LSI implementation, and implementation using
existing microprocessors. Existing systolic a~ray implementations span
this spectrum. Early test implementations 7' were full custom single-

devices, as is the GEC correlator chip 5. In an intermediate purpose range
of flexibility are the ESL systolic processor "' 19 and a forthcoming ESL
systolic chipset for floating-point matrix computations, both of which are
programmable for a range of signal processing tasks. At the very general
end of the spectrum is the Naval Ocean Systems Center systolic array
testbed 4, 17, 18, which is assembled out of general-purpose microproces-
sors and can use both one- and two-dimensional array communication
structures.

Board-level and full custom LSI implementations may be preferable to
the PSC approach where performance requirements are very stringent.
The disadvantages of these approaches are mainly in design cost
(especially for custom LSI) and, for board-level implementations, costs of
packaging, power dissipation, and physical size.

The alternative approach closest in spirit to the use of PSCs is the use
of existing microprocessors. Conventional microprocessors cover such a
wide range of applications that it may seem a good idea to use them for
building systolic arrays. In fact this turns out to be false, since
microprocessors would perform very poorly in this context--in many
cases, the PSC works an order of magnitude faster. The reasons for this
failure reside in the differences between the PSC and conventional ~Ps:
I/O facilities, on-chip program memory, internal parallelism, parallel mul-
tiplier and systolic control bits. No commercially available ~P that we
are aware of combines all of the above properties. Instead, we can find a
large variety of machines, all called "microprocessors," that have only
one or two of those features.

If we try to implement systolic algorithms using an existing
microprocessor, we come up with many possibilities:

• Most common microprocessors, either on 8 bits (Z80, 6800,
8080 families) or larger (68000, 16000, iAPX 432 families),
have no internal program or scratch pad RAM (usually a few
registers), no hardware multiplier, and at most two ports: an
address port and a data port. In order to be used in systolic
arrays, each processor would need external memory chips,
I/O devices and a few components for inter-chip communica-
tion. Such devices could be built, but at high cost in chip
count, power dissipation, and space. Also, conventional
microprocessors provide large instruction sets and complex
addressing schemes, but cannot be programmed at the
microcode level; as a result, even simple operations take
several cycles. Finally, I/O is a serious bottleneck since the
same ports are used for fetching operands and instructions
and for inter-chip communication.

• Signal processing microprocessors (NEC 7720, TMS320,
Hitachi HSP) usually have an on-chip program memory in
ROM, a small data memory, and (for the most recent ones) a
parallel multiplier. They also show some amount of internal
parallelism since they can perform a multiplication-
accumulation and increment an address register at the same
time. However, their structure is often too specialized to use
them in applications other than signal processing, and the I/O
problem is also present; none have the off-chip bandwidth
necessary for systolic array communication.

• Single-chip micro-computers (8020, 8749) are, in some
respects, superficially similar to the PSC. They have an on-
chip ROM program memory, a small RAM for data, and up
to three bidirectional ports (used serially, however, not
simultaneously). They can be used with few external com-
ponents, as opposed to microprocessors that need an external
memmy and I/O devices in order to function. However, they
are serial machines with simple instruction sets (the instruc-
tion "multiply" is absent), and suffer from the same I/O bot-
tleneck as traditional microprocessors.

• Bit-slice microprocessors form a last family. Of course, one

could make a PSC out of several of them and many external
parts, and this could have been an alternative to the im-
plementation of a chip. However, the result would be un-
economical in most applications because of the large chip
count and accompanying size, fabrication, and power costs.

As an example of the effects of serial execution and data access, con-
sider the filtering example of Figure 3. A microprocessor equipped with
a multiplier and the ability to perform an I/O operation to either of its
neighbors in a single cycle would need at least 10 instruction cycles to
perform this inner loop (4 for I/O and 6 for branching, arithmetic, and
data movement). Counting the overhead of instruction fetching and
decoding, it is extremely unlikely that such a processor, implemented in
similar technology, would have a smaller instruction cycle time than the
PSC; hence the PSC's orgar~ization allows it to operate at least ten times
faster in this case. For Reed-Solomon encoding, a standard la,P would
execute at least four times as many instructions as the PSC. Most sys-
tolic algorithms seem to produce instruction ratios in the range between
4:1 and 10:1.

We see from these considerations that current microprocessor architec-
tures are not well-suited to the construction of systolic arrays. The key
points, again, that favor the PSC structure are:

• The large number of ports (including systolic control) used in
parallel.

• Internal program and data memory: I/O bandwidth is fully
available for transfer of data between chips. In our ex-
amples, the ratio (number of input+output)/(number of
instructions) is high, often larger than 1. Also, typical
programs are short and can fit into a small control memory.

• Horizontal microprogramming: large microinstructions
provide effective internal parallelism. This is possible only
because of the rich interconnection pattern (3 internal global
buses).

• Systolic control: this is indispensable for systolic algorithms,
and is costly in instruction cycles and I/O bandwidth for con-
ventional ~Ps.

• Multiplier: this is critical for high performance in numerical
applications.

6. Concluding Remarks
This paper reports an initial investigation of the architecture space of

programmable systolic arrays and processors, which seem to represent an
important point on the generality-performance-cost tradeoff curve. The
PSC prototype will be extremely useful in further research in this area, by
supporting detailed experimental applications studies which are underway.

One promising area of further investigation is the design of more spe-
cialized PSCs. The present design is not, for example, optimally suited
to the sorting problem--the large multiplier sits idle, and off-chip
memory addressing is somewhat cumbersome. Thus it might be reason-
able to design a small family of PSCs, each well-suited to a particular
range of applications.

Another logical step is the design of more powerful PSCs. Larger
word size and hardware floating point capability would greatly extend the
PSC's utility in signal and image processing. Assuming that a 16-bit
multiplication takes twice as long as an eight-bit multiplication (true for
most bit-parallel multipliers), it is possible to build a 16-bit PSC with the
same I/O-computation balance as the current system by multiplexing I/O
through eight-bit ports. This alleviates the pinout problem often as-
sociated with larger word sizes.

Yet another task is the refinement of the existing PSC design. The
current multiplier uses the naive bit-parallel design, and its layout could
be improved. Since the architecture was settled, several possible en-
hancements have suggested themselves. One is the addition of small
FIFOs at the I/O ports, which would serve to reduce bus usage within
chips for data that need to be delayed. Another is the augmentation of
the register file to two or more ports; some multiple-precision computa-
tions seem to be memory-bound. It might also be possible to provide

52

more effective bus bandwidth by providing specialized buses for high-
utilization paths. All of these issues will need further detailed applica-
tions studies to resolve them.

The programming task presents a higher-level problem. As for most
horizontally microprogrammed machines, writing optimal or near-optimal
programs for the PSC is a difficult exercise. We hope that microcode
compilers for the PSC will be easier to produce than for some other
machines, since they will be able to take advantage of the brevity and
simplicity of typical systolic cells' programs.

Finally, there remains the possibility of different organizations for
programmable systolic arrays. Despite the fact that it is a building-block
for highly specialized, non-conventional systolic architectures, the design
of the PSC itself is based mostly on standard principles. It is possible
that alternative structures, such as bit-serial arrays, could also serve as
building-blocks for many systolic algorithms. This avenue of research
deserves exploration.

Acknowledgments
The PSC project has profited greatly from the assistance of Monica

Lam, Onat Menzilcioglu, Hank Walker, and John Zsarnay in particular,
and the VLSI design community at CMU in general. The dynamic RAM
used for the control store and register file was designed by Hank Walker.

This research was supported in part by the Defense Advanced Research
Projects Agency (DoD), ARPA Order No. 3597, monitored by the Air
Force Avionics Laboratory under Contract F33615-81-K-1539. A.L.
Fisher was supported in part by an NSF graduate fellowship and in part
by an IBM graduate fellowship.

1.

2.

3.

4.

5.

6.

7.

8.

References

Barbacci, M.R., "Instruction Set Processor Specifications (ISPS):
The Notation and Its Application," IEEE Transactions on Com-
puters, Vol. C-30, No. 1, January 1981, pp. 24-40.

Blackmer, J., P.Kuekes and Frank, G., "A 200 MOPS Systolic
Processor," Proceedings of SPIE Symposium, Vol. 298, Real-Time
Signal Processing IV, The Society of Photo-optical Instrumen-
tation Engineers, August 1981.

Brent, R.P. and Kung, H.T., "Systolic VLSI Arrays for Polyno-
mial GCD Computation," Tech. report, Carnegie-Mellon Univer-
sity, Computer Science Department, May 1982.

Bromley, K., Symanski, J.J., Speiser, J.M., and Whitehouse,
H.J., "Systolic Array Processor Developments," VLSI Systems
and Computations, Kung, H.T., Sproull, R.F., and Steele, G.L.,
Jr., eds., Computer Science Press, Inc., Computer Science
Department, Carnegie-Mellon University, October 1981, pp.
273-284.

Corry, A.and Patel, K., "A CMOS/SOS VLSI Correlator,"
Proceedings of 1983 International Symposium on VLSI Technol-
ogy, Systems and Applications, 1983.

Fisher, A.L., Kung, H.T., Monier, L.M., Walker, H.and Dohi,
Y., "Design of the PSC: A Programmable Systolic Chip,"
Proceedings of the Third Caltech Conference on VLSI, California
Institute of Technology, March 1983.

Foster, M.J. and Kung, H.T., "The Design of Special-Purpose
VLSI Chips," Computer, Vol. 13, No. l, January 1980, pp.
26-40, Reprint of the paper appears in Digital MOS Integrated
Circuits, edited by Elmasry, M.I., IEEE Press Selected Reprint
Series, 1981, pp. 204-217. A preliminary version of the paper, en-
titled "Design of Special-Purpose VLSI Chips: Example and
Opinions," also appears in Proceedings of the 7th International
Symposium on Computer Architecture, pp. 300-307, La Baule,
France, May 1980

Kung, H.T., "Let's Design Algorithms for VLSI Systems,"
Proceedings of Conference on Very Large Scale Integration: Ar-

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

chitecture, Design, Fabrication, California Institute of Technol-
ogy, January 1979, pp. 65-90, Also available as a CMU Computer
Science Department technical report, September 1979.

Kung, H.T., "Special-Purpose Devices for Signal and Image
Processing: An Opportunity in VLSI," Proceedings of the SPIE,
Vol. 241, Real-Time Signal Processing III, The Society of Photo-
Optical Instrumentation Engineers, July 1980, pp. 76-84.

Kung, H.T., "Use of VLSI in Algebraic Computation: Some
Suggestions," Proceedings of the 1981 ACM Symposium on Sym-
bolic and Algebraic Computation, Wang, P.S., ed., ACM SIG-
SAM, August 1981, pp. 218-222.

Kung, H.T., "Why Systolic Architectures?," Computer
Magazine, Vol. 15, No. 1, January 1982, pp. 37-46.

Kung, H.T. and Leiserson, C.E., "Systolic Arrays (for VLSI),"
Sparse Matrix Proceedings 1978, Duff, I.S. and Stewart, G.W.,
eds., Society for Industrial and Applied Mathematics, 1979, pp.
256-282, A slightly different version appears in Introduction to
VLSI Systems by C.A. Mead and L.A. Conway, Addison-
Wesley, 1980, Section 8.3.

Kung, H.T. and Song, S.W., "A Systolic 2-D Convolution
Chip," Multicomputers and Image Processing: Algorithms and
Programs, Preston, K., Jr. and Uhr, L., ed., Academic Press,
1982, pp. 373-384, An extended abstract appears in Proceedings
of 1981 IEEE Computer Society Workshop on Computer Architec-
ture for Pattern Analysis and Image Database Management,
November 11-13, 1981, pp. 159-160

MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-
Correcting Codes, North-Holland, Amsterdam, Holland, 1977.

Mead, C.A. and Conway, L.A., Introduction to VLS1 Systems,
Addison-Wesley, Reading, Massachusetts, 1980.

Peterson, W.W. and Weldon, E.J., Jr., Error-Correcting Codes,
MIT Press, Cambridge, Massachusetts, 1972.

Symanski, J.J., "A Systolic Array Processor Implementation,"
Proceedings of SPIE Symposium, Vol. 298, Real-Time Signal
Processing IV, The Society of Photo-Optical Instrumentation,
August 1981.

Symanski, J.J., "Progress on a Systolic Processor
Implementation," Proceedings of SPIE Symposium, Vol. 341,
Real-Time Signal Processing V, The Society of Photo-Optical In-
strumentation, May 1982, pp. 2-7.

Yen, D.W.L. and Kulkarni, A.V., "Systolic Processing and an
Implementation for Signal and Image Processing," IEEE Trans-
actions on Computers, Vol. C-31, No. 10, October 1982, pp.
1000-1009.

53

