
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

1985

Experience with the CMU programmable systolic
chip
Allan L. Fisher
Carnegie Mellon University

H. T. Kung

Kenneth Sarocky

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Recommended Citation
, , , -

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F1560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 8 5 - 1 6 1

Experience with the CMU Programmable Systolic Chip

Allan L. Fisher, H. T. Kung, and Kenneth Sarocky

Department of Computer Science, Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

The CMU programmable systolic chip (PSC) is an experimental microprogrammable
chip designed for the efficient implementation of a variety of systolic arrays. The PSC has
been designed, fabricated, and tested. The chip has about 25,000 transistors, uses 74 pins,
and was fabricated through MOSIS, the DARPA silicon broker, using a 4 micron nMOS
process. A modest demonstration system involving nine PSCs is currently running. Larger
demonstrations are ready to be brought up when additional working chips are acquired.

The development of the PSC, from initial concept to a silicon layout, took slightly less
than a year, but testing, fabrication, and system demonstration-took an additional year. This
paper reviews the PSC, describes the PSC demonstration system, and discusses some of the
lessons learned from the PSC project

IntrQdutfiQq

Using massive parallelism and pipelining, the systolic array concept1 allows a system
impiementor to design extremely efficient machines for specific compulations. But for some
applications such as computer vision that call for hundreds of subroutines to be used
routinely, it is impractical to produce a new systolic array processor for each subroutine. In
this case, programmable systolic array processors must be used to provide the required
flexibility.

However, to make a processor programmable takes additional hardware. This concern is
especially significant for systolic arrays, as their performance relies on the use of large num­
bers of cells in the array. To be cost-effective, each cell should use as few chips as possible.

The purpose of the PSC project has been to study the feasibility and issues of implement­
ing a cell (for a variety of systolic arrays) with one single, programmable chip, as depicted in
Figure 1. A particular systolic cell can be implemented by microprogramming a PSC, and

(To appear in Microarchitecture of VLSI Computers, Martinus Nijhoff Publishers,
1985)

1

PSCs can be connected at the board level.to build systolic arrays of many different

Figure 1. PSC: a building-block chip for a variety of systolic arrays.

The PSC is perhaps one of the first microprogrammable chips designed to be used in
large groups. Besides being an architectural experiment, the PSC- project also represents a
major chip design experiment in a university environment. Prior to the PSC project, CMU
had no experience in designing chips of this scale. The experience resulting from the project,
with respect to both the architecture and design of the PSC, has been invaluable.

This paper reports some of these experiences, describes the current PSC demonstration
system, and explains how the PSC implements the systolic array in the demonstration system
to perform convolution or filtering operations. In the next section, we first give a brief
overview of the PSC. Detailed descriptions of the PSC architecture and design have been
reported in other papers. 2 , 3* 4

The PSC project started in October of 1981. In order to ensure sufficient flexibility to
cover a broad range of applications and algorithms, we chose at that time an initial set of
target applications for the PSC to support, including signal and image processing, error
correcting codes, and disk sorting. The demands of these applications have resulted in the
following design features:

• 3 eight-bit data input ports and 3 eight-bit data output ports.

• 3 one-bit control input ports and 3 one-bit control output ports.

• Eight-bit ALU with support for multiple precision and modulo 257 arithmetic.

• Multiplier-accumulator (MAC) with eight-bit operands and 16-bit accumulator.

many rbCs car
types and sizes.

PSC: A Programmable Systolic Chip

• 64-word by 60-bit writable control store.

• 64-word by 9-bit register file.

• Three 9-bit on-chip buses.

• Stack-based microsequencer.

Note that no conventional, commercially available microprocessor components fulfill the
needs of such a programmable systolic chip. Unlike the PSC, conventional microprocessors
do not have fast, on-chip multiplier-accumulator circuits which are crucial for high-speed
signal and image processing, they do not have enough off-chip I/O bandwidth and on-chip
bus bandwidth to pass data from chip to chip with a speed sufficient to balance the computa­
tion speed, they are not equipped with I/O ports for passing "systolic control bits," they are
not suited for the modular arithmetic needed in applications such as error-correction, and
they usually do not have on-chip RAM for program memory. A number of more specialized
processors having some of these features have appeared in the past several years, but none
has all of them.

With optimized circuit and layout designs, the PSC should operate at a cycle time of no
more than 200 ns, although the prototype PSCs we now have are found to be three to eight
times slower. Reasons for this are discussed below. Assuming a 200 ns period, microcode
examples indicate the following performances:

• A decoder of Reed-Solomon error-correction codes 5 , 6 that can correct up to 16
erroneous bytes in 256-byte blocks can be implemented with 112 PSCs with a
throughput of 8 Mbits/second. Encoding at the same rate can be achieved with
only 32 chips. The fastest existing decoder of which we are aware operates at 1
Mbit/second and uses 500 chips.

• A digital filter (FIR or IIR) with eight-bit data and coefficients and k taps can be
computed with k PSCs, taking one sample each 200 ns. For a 40 tap filter, this
amounts to 400 million operations per second (MOPS), counting each inner
product step (eight-bit multiply, 16-bit add) as two operations. This is equivalent
to 600 MOPS for pure eight-bit arithmetic.

• For applications requiring more accuracy, a filter with 16-bit data and eight-bit
coefficients and m taps can be computed with m PSCs, taking one sample each
1.2 fts. Thus with 40 PSCs, a 40 lap filter can be computed at a rape of 67 MOPS,
counting each inner product step as two operations. This is equivalent to 200
MOPS for eight-bit arithmetic.

• A disk sorter implemented with 17 PSC chips and 16 Mbytes buffer memory can
achieve an order of magnitude of speed-up over conventional minicomputers.

Use of the PSC in Implementing Systolic Arrays for Convolutions

The current demonstration system for the PSC performs two-dimensional (2-D) convolu­
tions using general 3x3 kernels. In this section wc describe briefly how the PSC is used to
implement a systolic array for 2-D convolutions.

3 UNIVERSITY LIBRARIES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

Mathematically, the 2-D convolution problem with a kxlc kernel is defined as follows:

Given the 2-D kernel of weights H^/S 1,2 kj= 1,2 py and the 2-D input
image jt£,/= 1 .2 , . . . ,mj = 1,2 n, with £ < m a n d / ? < n ,

compute the output image j> , j t r= l ,2 m— £ + 1, s = 1 , 2 , . . . , n - p + 1 , defined
by

/=0 7=0

The 2-D convolution problem is one of the most computation-intensive tasks in signal
and image processing. For example, a 2-D convolution using a general 9x9 kernel requires
81 multiplications and 80 additions to generate each pixel in the output image.

1-D Convolution Implementation

We first illustrate a systolic array design for the one-dimensional (1-D) convolution •
problem, which is simpler than the 2-D one. The 1-D problem is defined as follows:

Given the sequence of weights { Ĥ .Ĥ w*}, and the input sequence {xl$x2 JCJ,

compute the result sequence iyity2 yn+i-k} defined by

Figure 2 depicts one of the well-known systolic arrays1 for the case fc=3.

(a)
Y 6

1 1
Y 3 >

I 1 1 1
1 Y4»
K — H

i Y 2 1

H- - H

1 1
h- - - «

Xs ! w i | X4 *>

- ^ Y o u t - Y

Xoijt Y ^ Y m + W X i n

Figure 2. (a) Systolic array for 1-D convolutions, and (b) its cell definition.

We can program the PSC to implement each of the systolic cells; the program takes only
one instruction to implement all the operations depicted in Figure 2(b). After an initializa­
tion phase in which the weights are loaded, the inner loop of the algorithm uses One PSC
microinstruction, coded as follows:

(b)

Y j ^ i 1
. y «
K - H

4

Busl=Sda, Bus2=Sdb, p ' i3=Lo,
SdaOut=Val3, SdbOut=Va>2,
MacX=Hold, MacY=Val2, MacZ=Vall, MacOp=AddZ,
Jump=OnCC0, CCO=Sca, ScaOut=Pass .

The lines of this microinstruction have the following effects, all in a single cycle:

1. Bus 1 carries Yin, read from systolic data port A, bus 2 carries Xim read from port
B, and bus 3 carries Yout from the previous operation, available as the output of
the MAC.

2. Output port A receives Yout from the previous operation (the value on bus 3),
and port B receives X^^X^

3. The MAC holds the cell's weight W in its x register, sets its y register to Xin (the
value on bus 2), and sets its z register to Yin (the value on bus 1). It then
computes x-y+z, or W-A^H- Yin. This value will be sent to output port A
during the next cycle.

4. The instruction loops in place until systolic control signal A arrives, meaning it is
time to reinitialize. Control then passes to the next instruction, and the control
bit is sent on to the neighboring cell.

2-D Convolution Implementation

The above systolic array design for 1-D convolutions can be generalized to designs for
2-D convolutions. In particular, we will use a linear systolic array of k? cells to perform 2-D
convolutions using kxk kernels. This systolic array will have the nice "scalable" property
that its interface with the outside world is independent of k. That is, when the kernel size is
increased, we need only expand the linear array accordingly, without changing its I/O inter­
face. There exist at least two such "scalable" systoiic array designs for the 2-D convolution
problem, one requiring a memory associated with each systolic cell to buffer one line of
image,7 and the other one requiring no such memory for each cell.8 For implementation
simplicity we use the latter one.

The input image xtj is fed to the systolic array in columns 2k-l pixels high, and the
output image yg is generated by the systolic array in swaths which are k pixels high. As
depicted in Figure 3, pixels from the input image enter the systolic array in two jc-data
streams—the jcfy with odd j come in with the top x-data stream, and the Xy with even j come
in with the bottom x-data stream. In each cycle, a cell will choose a value from one of the
two jc-data streams to multiply by the weight stored in that cell. The simple rule is that a cell
should use values from one x-data stream for k consecutive cycles before switching to the
other stream; and continue alternating in this manner. By utilizing the systolic control ports
provided by the PSC, a control signal can be sent conveniently from cell to cell to signal the
switching from one *-data stream to the other for each cell. It takes no more than two PSC
instructions to implement all the cell operations depicted in Figure 3. This implies for
example that 2-D convolutions with 9x9 kernels can be implemented by 81 linearly con­
nected PSCs, capable of producing one output pixel every 400 ns assuming a state-of-the-art
design.

5

- X y > X43

. A l i

* ??3J

5 l««

X l 3 v
r - n
1 • 1
W . J

?-33

X S K
r - 1

r - 1

u - J

X 3 K

: J
* ??3J

5 l««

r - n
1 • 1
W . J

?-33
X 2 2^

r - 1

r - 1

u - J

/

: J
* ??3J

5 l««
N

r - n
1 • 1
W . J

?-33

r - 1

r - 1

u - J

s : J
* ??3J

5 l««

r - n
1 • 1
W . J

?-33

r - 1

r - 1

u - J
/

: J

X o u t :" X; X X i B

Xout : " x; x : " x l n

y 0ut :- Ĵ n • W X 1 n OR y i n * W X 1 n .

Figure 3. Linear systolic array for 2-D convolutions and its cell definition.

For large kernels, it is necessary to save partial results y\ in double or higher precision to
ensure numerical accuracy of the computed results. As for the case of systolic arrays for 1-D
convolution,1 this can be achieved most cost-effectively by using a dual of the design in
Figure 3. where partial results yt stay in cells but the xj and move from cell to cell in the
same direction but at two speeds. With this dual design, high-precision accumulation can be
effectively achieved by the on-chip multiplier-accumulator chruit, and the number of bits to
be transferred between cells is minimized. We of course still need to transfer the final
computed values of the yt out of the array, but they, being the final results, can be truncated
and transferred in single precision. It is generally preferable to have the wy rather than the x(

going through an additional register in each cell, since there are two jc-data streams but only
one weight stream. In fact the communication cost for the weight stream can be totally
eliminated if the register file of the PSC is large enough to hold a complete weight table.

Note that in generating adjacent output swaths, some input pixels are fed into the systolic
array twice. To avoid having to bring these pixels out from memory twice, a cache that can
hold Jfc— 1 lines of input pixels can be used, as shown in Figure 4.

k . j

MEMORY

Figure 4. Use of cache to buffer lines from the input image.

PSC Demonstration System

Figure 5 depicts the current PSC demonstration system built around a SUN workstation.
The system includes a PSC array board capable of holding 25 or more PSCs. As of May

6

1984, this board hosts a onc-dimcnsional systolic, array of nine PSCs, performing 2-D con­
volutions using 3x3 kernels on a video image of 512^512 8-bit pixels. Several 3x3 Gaussian
and Laplacian kernels have been implemented for the demonstration. In the demonstration,
512x512x8 displays arc processed at the rate of one display every 1.8 seconds. Using the
"scalability" of the systolic array design as described in the previous section, the demonstra­
tion system can run at this speed regardless of the kernel size (assuming of course that there
are as many PSCs in the PSC array board as the kernel size). For instance, with 25 PSCs the
demonstration system can perform 2-D convolutions using 5x5 kernels still in the same 1.8
seconds. Indeed, it is our plan to do such a demonstration, as soon as enough working chips
are acquired.

<

CAMERA

FRAME
BUFFER

512x512x8

CONTROL I

DIGITIZER

DATA

BUFFER
MEMORY
16Kx8 e —

PSC ARRAY

1

MULTIBUS

Figure 5. PSC demonstration system.

The host system for the demonstration is the SUN workstation that controls the PSC
array board through its MULTIBUS interface. A huffer memory board buffers data for the
PSC array board. Matrox graphics boards are used to perform the frame buffering and video
A-to-D, D-to-A functions. The limited bandwidth of the Matrox DMA imposes one of the
speed limits for the demonstration system. Besides the PSCs themselves, the PSC array
board also contains a finite state controller, clock drivers, microcode loading circuitry, and
address generation circuitry for the buffer memory board.

The demonstration system operates as follows:

1. The SUN's 68010 processor initializes the PSC array by writing to its control
registers, which are mapped into the Multibus address space.

2. The 68010 loads the microcode of each PSC individually.

3. The 68010 initializes the Matrox graphics boards.

4. The Matrox VAF-512 board grabs one frame of video data from the camera, and
loads it into the frame buffer.

7

5. The 68010 initiates a DMA transfer of five video lines from the frame buffer to
the PSC buffer memory.

6. When above transfer is complete, the 68010 starts the PSC array, at a buffer
address which it has supplied.

7. The PSC array reads in five lines of data, and produces three lines of output,
writing it into the buffer. The 68010, meanwhile, initiates a DMA transfer of the
next three lines of data into the buffer, which takes place in parallel with the PSC
processing.

8. The 68010 periodically checks the status of the PSC array, and, upon sensing the
DONE flag, restarts the array at the next buffer location. It then begins a DMA
transfer of output data into the Matrox frame buffer. When the output transfer
is completed, the 68010 initiates another DMA of input data to the PSC buffer,
and waits for the PSC DONE flag.

Hindsights

The design of the PSC is a moderately large project by university standards. As of
August 1984, the total effort has been about 4 man-years, with the following rough break­
down: architecture (1), logic and circuit design (.5), layout (.7), testing (.5), demonstration
system (.8), and tool development (.5).

As often occurs in large, experimental system projects, the nature and demands of the
PSC project did not become clear to us until the project was more than half-way through.
We are pleased that the chip works and a modest demonstration system is running. At the
same time, it is disappointing that up to now we have not been able to run large demonstra­
tions, or to do experiments with many applications such as the decoder implementation for
Reed-Solomon error-correction codes.

The PSC has not been applied on a large scale for two basic reasons. First, fabrication
yield of the PSC has been low and has varied substantially over different MOSIS runs, and as
a result it is difficult to predict when we will have a large number of working chips. Second,
as the first of its kind, the PSC has no sophisticated software and interface support. This has
prevented substantial applications from being brought up on the PSC at this time.

There were also many problems encountered in building, testing, and demonstrating the
PSC. Some of these problems are inherent to the fact that the PSC project is experimental,
and that the resources available to the project have been severely limited. (As far as we can
tell, the cost of the PSC project is no more than one hundredth of the development cost of a
typical commercial microprocessor!) However, there are a number of things that we would
definitely do differently next time. In the following we discuss some of these hindsights
under three categories: architecture, design, and management

Architecture

The PSC architecture seems to be very well-suited to the implementation of a wide
variety of systolic algorithms. The 64 instruction words available accommodate most

8

straightforward computations, and suffice even for such complex cell computations as those
found in the systolic Rccd-Solomon decoder. The processor's control structure imposes very
little overhead relative to the arithmetic heart of the computation; instruction fetch occurs in
parallel with execution. Concurrency and parallel I/O result in much smaller instruction
counts than for conventional microprocessors. Finally, the incorporation of control and
communication circuitry onto the same chip as the arithmetic units achieves a large savings
in chip count over systems built with standard parts. A PSC equivalent built with LSI
arithmetic, memory and control and with 'ITL latches and multiplexers would require on the
order of one hundred chips, and a similarly constructed single-purpose cell for even a slightly
complicated algorithm would require a dozen chips.

However, the current PSC architecture is not completely optimized, partially for reasons
of simplicity and flexibility that were considered important in view of the experimental
nature of the PSC project. As our insights into the nature of systolic computation have
increased, we have found several improvements that can be made. Some of the improve­
ments described below have already been incorporated into the design of the CMU Warp
processor, now under development. * 1 0

For simple computations, the PSCs arithmetic, internal communication and external
communication capacities are fairly well balanced. For more complex algorithms, the most
common limiting factor in program performance is the number of buses. Adding more
buses would be quite expensive in area needed for routing and for code storage and distribu­
tion; for a general-purpose part, this expense would probably not be justified. Other pos­
sibilities would be to use some specialized buses, to allow a single bus to be broken into
independent parts, or to multiplex the use of the buses within a machine cycle. One other
option, which seems to be very useful in the frequent case where a value needs to be delayed
as it enters or leaves a cell, would be to put small programmable delays on the chip's input or
output ports.

Another limitation is in the bandwidth of the register file. Only one word can be read or
written in a cycle, making the storage and retrieval of intermediate results time-consuming
compared to computation. Possible improvements include the use of multiported registers.

For large filtering problems where large numbers of terms may be accumulated at each
cell, the multiplier-accumulator needs a high-precision accumulator. Preferably, the width of
the accumulator should be at least 24 bits.

One way to reduce the cost of a PSC-based system would be to reduce the chip's comple­
ment of I/O pins, 54 of which are dedicated to the data ports. The PSCs use of three input
and three output ports is due mainly to simplicity considerations: almost all systolic
algorithms* data flows can be implemented in a straightforward way with a minimum of
control. Since all six ports are needed simultaneously only for rather simple algorithms
where communication dominates computation by a large factor, it may be possible to reduce
the pincount of the chip without greatly reducing its overall performance. This could be
achieved by multiplexing bidirectional ports (perhaps four), at a modest cost in control
complexity.

Another area where the cost of the PSC might be reduced is in microcode space. Again
for reasons of simplicity and flexibility, no attempt was made to squeeze the microinstruction
size by limiting the number and kind of operations the PSCs parallel functional units could

9

perform. While this is a useful property for an experimental system, it would be advan­
tageous fcr production chips to sacrifice some flexibility for higher yield (due to smaller size)
or more words of data or instruction memory.

Design

As mentioned earlier, the PSC project was the first major chip design effort at CMU.
The actual process of bringing the PSC from its initial architectural concept to the current
demonstration system has been a great learning experience. Part of the teaching was done by
some serious technical difficulties, which were mostly related to chip operating tolerances
(clock waveform and supply voltage sensitivity), yield and programming.

Electrical design is probably the weakest point in the PSC design. The memories, espe­
cially, have been less than robust over voltage, temperature, and clock waveforms. The yield
problem has been mostly due. to failures in dynamic RAM.

A related problem is the complex timing scheme used, which necessitated many off-chip
clock signals, making speed testing difficult. The complexity of the memory timing scheme
resulted in several patches being applied; it would have been better to clean it up.

A 700 ns cycle time has been observed for-some PSC prototypes, but many of the
prototypes have been found to run around 1.2 /is. One reason that die chip is not as fast as
possible is that performance tuning of the layout was never done, for example, for the
multiplier-accumulator circuit; speed was not one of the project's primary goals, and timing
analysis tools like Berkeley's Crystal 1 1 and Stanford's TV 1 2 were not available. Another
contributor has been a drift in MOSIS circuit parameters. The chip was designed under the
assumption that diffusion resistance was 10 ohms/square, as in Mead/Conway (and as as­
sumed, by default, by Crystal). A number of MOSIS runs have had resistances of 11 or 12
ohms/square. Under this assumption, the microcode bits have an estimated maximum delay
of 50 ns. Recent MOSIS runs have had a diffusion resistance of 40 ohms/square, increasing
that figure to 200 ns.

Since the available simulators capable of handling large numbers of transistors were not
capable of handling the memory and some other features of the chip, full-chip layout simula­
tion was never done. All of the pieces were tested and/or simulated, but test results in some
cases were not available until after the entire chip had been sent off. At the time the chip,
was assembled, the only means available of checking connectivity of the parts was manual
inspection of a 60 page condensed wirelisL This process caught one or two bugs, but one bug
slipped by. Chip testing, though, was fairly straightforward: except for the sequencer, which
could be tested only if the memory worked, everything on the chip was accessible over the
buses.

A lack of good documentation is one reason the design was difficult to change. Another,
bigger reason was the difficulty of routing. The PSC contains a lot of square microns of wire,
painfully drawn by hand. Turnaround time was another factor discouraging major changes.

The chip had only three layout bugs, which were corrected early on; one was in the
memory, one in one set of ALU registers, and one in the multiplier condition code (hard to
notice, since the condition codes are very obscure). There was one logic bug (discounting the
memory's problems, which were mostly electrical); it related to the timing of the sequencer's

10

stack, was generated by a change in memory timing and was caught very late (summer '83)
because of the dependence of circuit testing on the memory and because of a lapse in testing
effort between March and June.

Many of these difficulties could be avoided next time by using appropriate design
methodologies, conservative design styles, and new design tools. Some of the improvements
that we can make seem to be rather "common sense" and obvious now. These include
designing for worst-case technology and avoiding complex timing schemes. Given our
multi-source fabrication through MOSIS, we must be prepared to deal with a relatively large
process variation. Specifically, clever but risky circuit design should not be used. Mead and
Conway simplified design rules exist, in part, for this purpose. The example of diffusion
resistance mentioned earlier shows that pessimistic assumptions are important in the electri­
cal domain, as well. Complex timing should be avoided because it will make the design
difficult to understand, hard to change, and hard to deal with when testing and interfacing to
the chip. The gain in performance through complex timing is hardly worth its cost

As mentioned earlier, new timing aids like Crystal and TV will help remove critical
timing paths. Using modern design workstations, such as Daisy and Mentor, schematics of

. the chip can be fully simulated and documented at the logic level with reasonable effort
Also, these workstations can generate netlists to be compared with those extracted from the
layout using the CMU wirelist comparison program, Gemini. 1 3

A careful floorplan can also make a lot of difference in the quality of the design. Since
useful global routers are still not available, a good floorplan can make the routing problem
much easier. The floorplan should be drafted in the very beginning of the design, and
constantly updated during the design as detailed layout information becomes available.
From the floorplan one can tell if a certain design optimization is worthwhile. Also, the
availability of the updated floorplan can substantially help the communication between a
team of designers.

Management

Building a prototype research chip in a university environment is very different from the
same task in an industrial environment, in the sense that we are severely limited by resources.
It would be unreasonable to expect that universities have the same level of design support
and engineering skill as semiconductor industry. Graduate students should be involved but
shouldn't be expected to grow old in the course of a project Probably one of the biggest
lessons we have learned from the PSC project is a true appreciation of this limitation in
resources.

But prototype chips, built by universities or not must work in a system, otherwise there
would be very little value in the prototyping. Therefore it is important that we do only those
designs which are within the power of the available people and tools. Designs that industry
does well and that require great skill and experience should be avoided by universities.
Fancy dynamic RAM is an example.

An overall plan for simulation, verification, documentation, testing, and demonstration
should be developed at the very beginning of a project. We must sec to it that there is a very
good chance that the chip will work at reasonable speed in a system for its first silicon, and
that system demonstrations can be brought up without an excessive amount of effort A

11

related issue is the yield problem. We must learn (at last!) to trade architectural features for
reduced die sizes in order to increase yield. These steps are necessary conditions for a large
scale chip to be built successfully and smoothly. It is useful to remind ourselves that univer­
sity prototype chips arc not exempt from that •

The lack of sufficient system support mentioned earlier is a common problem for any
prototype chips. One way to deal with it is to stage research programs so that software and
interface support can be developed first on systems built with off-the-shelf components.
Ideally, prototype custom chips should be built only after system support has already been
developed.

Conclusions

Despite the problems discussed above, the PSC project produced a number of positive
results. The chip works, albeit not as robustly as we would like. From the architectural point
of view, the project demonstrated the "scalability" of systolic array design in the demonstra­
tion system, proved the feasibility of having a programmable "building-block" chip for the
implementation of systolic algorithms and, through setting a concrete benchmark on which
to base improvements, set the stage and provided initial ideas for further work. A natural
step to follow is the development of an industrial version of the PSC. Several companies
have expressed their interests in this. In. theory, companies who produce PSC-like chips
should be able to sell hundreds of copies of the chip to each customer, to form large systolic-
like arrays!

The PSC project did not contribute to the low-level chip design knowledge of the world
at large, but we learned a lot of things locally about chip design, both personally and in terms
of the VLSI community at CMU. This includes not only the lessons mentioned above, but
also the use of new tools and methods. The PSC experience has had profound impacts on
the ways in which how some new CMU chips are being designed, as suggested in the
preceding section.

The PSC is one of the first major chips made through MOSIS to have been integrated
into a system. Work on the PSC also helped the MOSIS community gain experience in
packaging, testing, and medium-volume production.

Acknp*vlpdgmeirt5

The PSC is a result of a team effort; its architecture and design have been reported in
separate papers , 2 , 3 ' 4 on which some of the material of this paper is based. F. H. Hsu wrote
the PSC image processing code for the demonstration system. Some chip testing software
was developed by Monica Lam. The PSC research was supported in part by the Defense
Advanced Research Projects Agency (DoD), ARPA Order No. 3597, monitored by the Air
Force Avionics Laboratory under Contract F33615-81-K-1539. The fabrication of the PSC
has been done through MOSIS, the DARPA silicon broker. 1 4

References

1. Kung, H.T., "Why Systolic Architectures?," Computer Magazine. Vol. 15, No. 1,
January 1982, pp. 37-46.

2. Fisher, A.L., Kung, H.T., Monier, L.M. and Dohi, Y., "The Architecture of a

12

Programmable Systolic Chip," Journal of VLSI and Computer Systems, Vol. 1, No. 2,
1984, pp. 153-169, An earlier version appears in Conference Proceedings of the 10th
Annual Symposium on Computer Architecture, Stockholm, Sweden, June 1983, pp.
48-53.

3. Fisher, A.L., Kung, H.T., Monier, L.M., Walker, H. and Dohi, Y., "Design of the
PSC: A Programmable Systolic Chip/' Proceedings of the Third Cal tech Conference
on Very Large Scale Integration, Bryant, R., ed., Computer Science Press, Inc., Cali­
fornia Institute of Technology, March 1983, pp. 287-302.

4. Walker, H., "The Control Store and Register File Design of the Programmable Sys­
tolic Chip,*' Tech. report CMU-CS-83-133, Carnegie-Mellon University, Computer
Science Department, May 1983.

5. Mac Williams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, Holland, 1977.

6. Peterson, W.W. and Weldon, E.J., Jr., Error-Correcting Codes, MIT Press,
Cambridge, Massachusetts, 1972.

7. Kung, H.T., Ruane, L.M., and Yen, D.W.L, 'Two-Level Pipelined Systolic Array for
Multidimensional Convolution," Image and Vision Computing, Vol. 1, No. 1,
February 1983, pp. 30-36, An improved version appears as a CMU Computer Science
Department technical report, November 1982.

8. Kung, H.T. and Picard, R.L., "One-Dimensional Systolic Arrays for Multidimen­
sional Convolution and Resampling," VLSI for Pattern Recognition and Image
Processing, Fu, King-sun, ed., Spring-Verlag, 1984, pp. 9-24, A preliminary version,
"Hardware Pipelines for Multi-Dimensional Convolution and Resampling," appears
in Proceedings of the 1981 IEEE Computer Society Workshop on Computer Architec­
ture for Pattern Analysis and Image Database Management, Hot Springs, Virginia,
November 1981, pp. 237-278.

9. Kung, H.T., "Systolic Algorithms for the CMU Warp Processor," Proceedings of the
Seventh International Conference on Pattern Recognition, International Association
for Pattern Recognition, 1984, pp. 570-577.

10. Kung, H.T. and Menzilcioglu, O., "Warp: A Programmable Systolic Array
Processor," Proceedings of SPIE Symposium, Vol 495, Real-Time Signal Processing
VII, Society of Photo-Optical Instrumentation Engineers, August 1984.

11. Ousterhout, J. K., "Crystal: A Timing Analyzer for nMOS VLSI Circuits,"
Proceedings of the Third Caltech Conference on Very Large Scale Integration, Bryant,
R., ed., Computer Science Press, Inc., California Institute of Technology, March 1983,
pp. 57-70.

12. Jouppi, N.P., "TV: Ah nMOS Timing Analyzer," Proceedings of the Third Caltech
Conference on Very Large Scale Integration, Bryant, R., ed., Computer Science Press,
Inc., California Institute of Technology, March 1983, pp. 71-86.

13

13. Ebcling, C. and Zajicck, 0., "Validating VLSI Circuit Layout by Wirelist
Comparison/' Proceedings of J983 IEEE International Conference on Computer
Aided Design. IEEE September 1983, pp. 172-173.

14. Lewicki, G., Cohen, D., Losleben, P. and Trotter, D., "MOSIS: Present and Future,"
Proceedings of Conference on Advanced Research in VLSI, Penfield, P. Jr., cd., Artech
House, Inc., Massachusetts Institute of Technology, Dedham, Massachusetts, January
1984, pp. 124-128.

14

	Carnegie Mellon University
	Research Showcase @ CMU
	1985

	Experience with the CMU programmable systolic chip
	Allan L. Fisher
	H. T. Kung
	Kenneth Sarocky
	Recommended Citation

