734

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 8, AUGUST 1985

Synchronizing Large VLSI Processor Arrays

ALLAN L. FISHER, MEMBER, IEEE, AND H. T. KUNG

Abstract — Highly parallel VLSI computing structures consist
of many processing elements operating simultaneously. In order
for such processing elements to communicate among themselves,
some provision must be made for synchronization of data transfer.
The simplest means of synchronization is the use of a global clock.
Unfortunately, large clocked systems can be difficult to implement
because of the inevitable problem of clock skews and delays, which
can be especially acute in VLSI systems as feature sizes shrink.
For the near term, good engineering and technology im-
provements can be expected to maintain the feasibility of clocking
in such systems; however, clock distribution problems crop up in
any technology as systems grow. An alternative means of en-
forcing necessary synchronization is the use of self-timed asyn-
chronous schemes, at the cost of increased design complexity and
hardware cost. Realizing that different circumstances call for dif-
ferent synchronization methods, this paper provides a spectrum of
synchronization models; based on the assumptions made for each
model, theoretical lower bounds on clock skew are derived, and
appropriate or best possible synchronization schemes for large
processor arrays are proposed.

One set of models is based on assumptions that allow the use of
a pipelined clocking scheme where more than one clock event is
propagated at a time. In this case, it is shown that even assuming
that physical variations along clock lines can produce skews
between wires of the same length, any one-dimensional processor
array can be correctly synchronized by a global pipelined clock
while enjoying desirable properties such as modularity, expand-
ability, and robustness. This result cannot be extended to two-
dimensional arrays, however; the paper shows that under this
assumption, it is impossible to run a clock such that the maximum
clock skew between two communicating cells will be bounded by
a constant as systems grow. For such cases, or where pipelined
clocking is unworkable, a synchronization scheme incorporating
both clocked and “asynchronous” elements is proposed.

Index Terms — Clock skew, processor arrays, synchronization,
systolic arrays, VLSI complexity.

I. INTRODUCTION

N describing a processor array algorithm, it is often con-
venient to picture the processors as running in lock step.
This synchronized view, for example, often makes the defini-
tion of the structure and its correctness relatively easy to

Manuscript received September 24,1982; revised September 19, 1984. This
work was supported in part by the Office of Naval Research under Contracts
N00014-76-C-0370, NR 044-422 and N00014-80-C-0236, NR 048-659, in part
by the Defense Advanced Research Projects Agency (DOD), ARPA Order
3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-81-K-1539, in part by a National Science Foundation Graduate Fellow-
ship, and in part by an IBM Graduate Fellowship.

The authors are with the Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA 15213.

follow: computations proceed in discrete steps which may
be cleanly characterized. Perhaps the simplest means of
synchronizing an ensemble of cells is the use of broadcast
clocks. A clocked system in general consists of a collection
of functional units whose communication is synchronized by
external clock signals. A variety of clocking implementations
are possible; the essential point is that by referring to the
global time standard represented by the clock, communicat-
ing cells can agree on when a cell’s outputs should be held
constant and when a cell should be sensitive to its input
wires. When different cells receive clock signals by differ-
ent paths, they may not receive clocking events at the same
time, potentially causing synchronization failure. These
synchronization errors due to clock skews can be avoided by
lowering clock rates and/or adding delay to circuits, thereby
slowing the computation. The usual clocking schemes are
also limited in performance by the time needed to drive clock
lines, which will grow as circuit feature size shrinks relative
to total circuit size. Therefore, unless operating at possibly
unacceptable speeds, very large systems controlled by global
clocks can be difficult to implement because of the inevitable
problem of clock skews and delays.

As a practical aside, we should note that at current LSI
circuit densities, clock distribution is still a solvable prob-
lem. Two somewhat pessimistic studies of which we are
aware [3], [5] do not take into account either the tricks that a
circuit designer can use to reduce the RC constant of his clock
tree or the promise of multiple-layer metallization and low-
resistance silicides. Given these factors, it seems that the
usual clocking schemes should remain feasible for on-chip
synchronization in the near term. Moreover, for some spe-
cific structures, such as one-dimensional arrays, clocking
can be effectively used even in the presence of large signal
propagation delays (see Section V-A). ,

An alternative approach to clocking is self-timing [10], in
which cells synchronize their communication locally with
some variety of “handshaking” protocol. It is easy to con-
vince oneself that any synchronized parallel system where
cells operate in lock step can be converted into a correspond-
ing asynchronous system of this type that computes the same
output — the asynchronous system is obtained by simply let-
ting each cell start computing as soon as its inputs become
available from other cells. The self-timed asynchronous
scheme can be costly in terms of extra hardware and delay in
each cell, but it has the advantage that the time required for
a communication event between two cells is independent of
the size of the entire processor array. A serious disadvantage
of fully self-timed systems is that, given current digital de-

0018-9340/85/0800-0734$01.00 © 1985 IEEE

FISHER AND KUNG: SYNCHRONIZING LARGE VLSI PROCESSOR ARRAYS

sign methodology, they can be difficult and expensive to
design and validate.

An advantage that self-timed systems often enjoy, in addi-
tion to the absence of clock skew problems, is a performance
advantage that results from each cell being able to start com-
puting as soon as its inputs are ready and to make its outputs
available as soon as it is finished computing. This allows a
machine to take advantage of variations in component speed
or data-dependent conditions allowing faster computation.
This advantage will seldom exist in regular arrays such as
systolic systems, however, for two reasons.

1) Usually, each cell in a regular array performs the same
kind of computation as every other cell; thus, there is little
opportunity for speed variation.

2) In cases where variations do exist, the throughput of
computation along a path in an array is limited by the slowest
computation on that path. The probability that a worst case
computation will appear on a path with k cells is 1 — p*
where p is the probability that any given cell will not be
performing a worst case computation. This quantity ap-
proaches unity as k grows, so large arrays will usually be
forced to operate at worst case speeds.

The result of these considerations is that clocking is gener-
ally preferable to self-timing in the synchronization of highly
regular arrays. This paper derives techniques for syn-
chronizing large arrays, using clocking where possible and
preserving some of the advantages of clocked schemes where
clocking breaks down.

II. BASIC ASSUMPTIONS

The basic model that we will use for considering syn-
chronization of VLSI processor arrays is as follows.

Al) Intercell data communications in an ideally syn-
chronized processor array, in which all processors operate in
lock step, are defined by a directed graph COMM, which is
laid out in the plane. Each node of COMM, also called a cell,
represents a cell of the array, and each directed edge of
COMM, called a communication edge, represents a wire
capable of sending a data item from the source cell to the
target cell in every cycle of the system. Any two cells con-
nected by a communication edge are called communicating
cells. ’

A2) A cell occupies unit area.

A3) A communication edge has unit width.

We now add assumptions which provide the basis for
clocked implementations of ideally synchronized arrays.

A4) A clock for a clocked processor array is distributed by
arooted binary tree CLK, which is also laid out in the plane.
A cell of COMM can be clocked if the cell is also a node of
CLK.

AS5) A clocked system may be driven with clock period
o + § + 7 where o is the maximum clock skew between any
two communicating cells, & is the maximum time for a cell’s
outputs to be computed and propagated to a communicating
cell, and 7 is the time to distribute a clocking event on CLK.

This assumption is an abstraction of properties common to

735

all clocking schemes. The detailed relationships between
these parameters and other more specific parameters such as
flip-flop setup and hold times depend on the exact clocking
method used. An exact representation of minimum clock
period might be something like max(7, 20 + §) in a particu-
lar case, but such formulas will exhibit the same type of
growth with respect to system size as the simple sum used
here.

Note that if we adopt the usual convention that the clock
tree is brought to an equipotential state before a new clock
event is transmitted, eliminating clock skew can lead only to
a constant factor increase in performance since it must always
be true that o < 7. In particular, speed of light consid-
erations impose the following condition.

A6) The time T required to distribute a clocking event on
a clock tree CLK in a particular layout is bounded below by
a - P where @ > 0is a constant and P is the (physical) length
of a longest root-to-leaf path in CLK.

Thus, since the clock tree must reach each cell in the array,
large arrays which are synchronized by equipotential clock-
ing must have clock periods at least proportional to their

. layouts’ diameters. Note that in the remainder of this paper

we will relate transmission delays to wire length; delays are
caused by other factors, of course, but we choose to treat
them together as a “distance” metric.

In the case where an array grows too big for its clock tree
to be driven at the desired speeds due to the time needed to
bring long wires to an equipotential state, it is possible to take
advantage of the propagation delay down a long wire by
having several clock cycles in progress along its length. This
mode of clocking is often used in large mainframe comput-
ers, but not; to our knowledgé, on chips. The electrical prob-
lems of passing a clean signal on a chip in this fashion are
severe, due to analog phenomena such as damping and reflec-
tions. We can instead simulate this behavior by replacing
long wires with strings of buffers, which will restore signal
levels and prevent backward noise propagation. These buff-
ers are spaced a constant distance apart; a good candidate is
that distance which will cause wire delays between buffers to
be of the same size as a buffer’s propagation delay. This
allows us to replace assumption A6) with the following.

A7) If CLK is a buffered clock tree, the time 7 required
to distribute a clocking event on a particular unbuffered seg-
ment of CLK is the maximum delay through a buffer and its
output wire. Thus, 7 is a constant independent of the size of
the array.

To ensure that successive clock events remain correctly
spaced along the clock path, we make the following assump-
tion.

A8) The time for a signal to travel on a particular path
through a buffered clock tree is invariant over time.

The following section describes two clock skew models
based on the above assumptions, and Sections IV and V
explore the problem of clocking under these models. Section
VI considers the case where assumption A8) does not hold,
and hence condition A6) holds rather than condition A7).
Section VII briefly discusses the practicality of the models
and the results obtained.

736

III. Two MODELS oF CLOCK SKEW

Given a basic model consisting of conditions A1) through
AS), plus A7) and A8), the following sections consider the
implications of two models of clock skew. First, in Section
IV we consider the case where clock skew between two cells
depends on the difference in their physical distances from
the root of the clock tree. This difference model corresponds
reasonably well to the practical situation in high-speed sys-
tems made of discrete components, where clock trees are
often wired so that delay from the root is the same for all
cells. Formally, we assume the following.

A9) The clock skew between two nodes of CLK, with
respect to a given layout, is bounded above by f(d) where f
is some monotonically increasing function and d is the posi-
tive difference between the (physical) lengths of the paths on
CLK that connect the two nodes to the root.

This assumption is illustrated in Fig. 1. The two circles
connected by the dashed line have clock skew between them
which is no more than f(d) where d is the length of the
crosshatched segment. This segment represents the differ-
ence between the cells’ distances to their nearest common
ancestor in the clock tree.

As systems grow, small variations in electrical character-
istics along clock lines can build up unpredictably to produce
skews even between wires of the same length. In the worst
case, two wires can have propagation delays which differ in
proportion to the sum of their lengths. Especially since it is
not possible to tune the clock network of a system on a single
chip, Section V considers a model in which the skew between
two nodes depends on the distance between them along the
clock tree. Formally, the summation model (so called be-
cause the distance between two nodes is the sum of their
distances from their nearest common ancestor, while the
difference measure used above is the difference between
those distances) uses the following upper and lower bound
assumptions.

A10) The clock skew between two nodes of CLK, with
respect to a given layout, is bounded above by g(s) where g
is some monotonically increasing function and s is the (phys-
ical) length of the path on CLK that connects the two nodes.

A1l) The clock skew between two nodes of CLK, with
respect to a given layout, is bounded below by 8+ s where
B > 0 is some constant and s is the (physical) length of the
path on CLK that connects the two nodes.

Fig. 2 illustrates these assumptions; here both the upper
and lower bounds on the skew between the two commu-
nicating cells depend on the entire length of the path between
them, which is the sum of their distances to their nearest
common ancestor in the tree.

" The two models of clock skew introduced above can be
formally derived as follows, for the case when both functions
f and g are linear. Let h, and h,, with h; = h,, be the dis-
tances of any two cells to their nearest common ancestor in
the clock tree. Let m + € and m — & be the maximum and
minimum time, respectively, to transmit a clock signal across
a wire of unit length where & corresponds to the variations in
electrical characteristics along clock lines. Then the clock
skew o between the two cells can be as large as

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 8, AUGUST 1985

Fig. 1. Skew in the difference model.

Fig. 2. Skew in the summation model.

o=h(m+ &) — hy(m — €) = (h; — hy)m + (h, + hye.

Noticing that d = h,
we have

_hz,s=h1+h2,andszd20,

'(m+s)'s20'=m°d+5°s2£~s.

We see that the upper and lower bounds correspond directly
to assumptions A10) and A11) used in the summation model,
while the difference model covers the case when terms in-
volving & can be ignored.

IV. CLOCKING UNDER THE DIFFERENCE MODEL

Assuming the basic model defined in Section II, along
with condition A9), which states that the skew between two
cells is bounded above by a function of the difference be-
tween their distances from the root, we note that only a
bounded amount of clock skew will occur if we ensure that all
nodes in COMM are equidistant (with respect to the clock
layout) from the root of CLK. This can be achieved for any
layout for COMM of bounded aspect ratio, without increas-
ing the areas of the layout by more than a small constant
factor, by distributing the clock through an H-tree [8]. This
scheme is illustrated for linear, square, and hexagonal arrays
in Fig. 3, in which heavy lines represent clock edges and thin
lines represent communication edges.

More precisely, we have the following result.

Lemma 1: For any given layout of bounded aspect ratio,
it is possible to run a clock tree such that all nodes in the
original layout are equidistant (with respect to the clock tree)
from the root of the tree, and the clock tree takes an area no
more than a constant times the area of the original layout.

By a theoretical result [1] that any rectangular grid (for
example, an n”* X n'? grid) can be embedded in a square
grid by stretching the edges and the area of the source grid by
at most a constant factor, we have the following theorem.

Theorem 2: Under the difference model of clock skew,
any ideally synchronized processor array with computation
and communication delay § bounded by a constant can be
simulated by a corresponding clocked system operating with
a clock period independent of the size of the array, with no
more than a constant factor increase in layout area.

FISHER AND KUNG: SYNCHRONIZING LARGE VLSI PROCESSOR ARRAYS

(a) (b)

Fig. 3. H-tree layouts for clocking. (a) Linear arrays. (b) Square arrays.
(c) Hexagonal arrays.

V. CLOCKING UNDER THE SUMMATION MODEL

This section relaxes the assumption of the previous section
by using the summation model rather than the difference
model for clock skews. The clock skew between two nodes
of CLK, with respect to a given layout, is related to the
(physical) length of the path on CLK that connects the two
nodes. Note that because the summation model is weaker
than the difference model, any clocking scheme working
under the summation model must also work under the differ-
ence model. The reverse of the statement is not true, how-
ever. For example, the clocking scheme illustrated in Fig. 3(a)
for linear arrays may not work under the summation model
since two communicating cells (such as the two middle cells
on the left-hand side of the layout) could be connected by a
path on CLK whose length can be arbitrarily large as the size
of the array grows. In the following we give another clocking
scheme for linear arrays that works even under the sum-
mation model for clock skew; in addition, we show that it is
impossible, under this model, to clock a two-dimensional
array in time independent of its size. In this sense, linear
arrays are especially suitable for clocked implementation.

A. Clocking One-Dimensional Processor Arrays

Given any ideally synchronized one-dimensional array
[Fig. 4(a)], we propose a corresponding clocked array
[Fig. 4(b)] obtained by running a clock wire along the length
of the one-dimensional array. By A10) the maximum clock
skew between any two neighbors is bounded above by a
constant g(s) where s is the center-to-center distance between
neighboring cells. Thus, we have the following result.

Theorem 3: Under the summation model of clock skew,
any ideally synchronized one-dimensional processor array
with computation and communication delay & bounded by a
constant can be simulated by a corresponding clocked sys-
tem, as illustrated in Fig. 4, operating at a clock period inde-
pendent of the size of the array.

Skew between the host and the ends of the array can be
handled similarly by folding the array in the middle (Fig. 5),
and the array can be laid out with any desired aspect ratio by
using a comb-shaped layout (Fig. 6).

With the clocking schemes illustrated, we see that the
clock period for any one-dimensional processor array can be
made independent of the size of the array. As a result, the
clocked array may be extended to contain any number of cells
using the same clocked cell design. These clocked schemes
are probably the most suitable for synchronizing one-
dimensional arrays due to their simplicity, modularity, and
expandability. Note that one-dimensional arrays are espe-

737

clock
“wo I HHHHHEF
data

Fig. 4.

(a) Ideally synchronized one-dimensional array. (b) Corresponding
clocked array.

H R R/

host | l
Fig. 5. Array folded to bound skew with host.
host

Fig. 6. Comb layout of a one-dimensional array.

cially important in practice because of their wide applica-
bilities and their bounded I/O requirements [4].

B. A Lower Bound Result on Clock Skew

We show here that the result of Theorem 3 for the one-
dimensional array cannot be extended to two-dimensional
structures. Consider any layout of ann X n array clocked by
a global clock tree CLK; the nodes of CLK include all cells
of the array. Let o be the maximum clock skew between two
communicating cells of the array. We want to prove that o
cannot be bounded above by any constant independent of n.
We use the following well-known result [6].

Lemma 4: To bisect an n X n mesh-connected graph at.
least ¢ + n edges have to be removed, where ¢ > 0 is a
constant independent of n.

Bisecting a graph means partitioning the graph into two
subgraphs, each containing about half of the nodes of the
original graph. Here, for the n X n mesh-connected graph
we assume that none of the subgraphs contain more than
(23/30) - n? nodes. We also use the following simple lemma
without giving a proof.

Lemma 5: For any subset M of at least two nodes of a
binary tree, there exists an edge of the tree such that its

738

’ I @

(a) (b)

(a) Original partition of the communication graph. (b) New partition
of the communication graph.

Fig. 7.

removal from the tree will result in two disjoint subtrees,
each having no more than two-thirds of the nodes in M.

The n? cells of the n X n array form a subset of nodes of
CLK. By Lemma 5 we know that by removing a single edge,
CLK can be partitioned into two disjoint subtrees such that
each subtree has no more than (2/3) - n? cells. Denote by A
and B the sets of cells in the two subtrees. Let « be the root
of the subtree that contains cells in A. Consider the circle
centered at ¥ and with radius of o-/B where B is defined in
All) [Fig. 7(a)]. If there are =(1/10) - n* cells inside the
circle, then by A2)

m(a/B)* = n*/10,

and thus o cannot be bounded above by any constant inde-
pendent of n. Suppose now that there are fewer than
"(1/10) + n® cells inside the circle. Note that any of those cells
in A which are outside the circle cannot reach any cell in B
by a path on CLK with (physical) length < o/B. Thus, these
cells cannot have any communicating cells in B (with respect
to the n X n array) since by All) the clock skew between
these cells and any cell in B would be greater than
B - o/B = o, and the clock skew between any two neigh-
boring cells is assumed to be no more than o. Now let A be
the union of A and the set of cells in the circle, and B be B
minus the set of cells in the circle, as in Fig. 7(b). Then A and
B form a partition of the n X n array, and each of them has
no more than (1/10) - n2 + (2/3) - n? = (23/30) * n?cells.
From Fig. 7(b), we see that any edge in the n X n array
connecting acellinA and a cell in B must cross the boundary
of the circle. Since the length of the boundary is 2770 /8, by
A3)A and B are connected by no more than 27o/8 edges.
By Lemma 4 we have 2wg /8 = ¢ * n, or

o= Q).

Therefore, as n increases, o grows at least at the rate of n; we
see that it is impossible to run a global clock for the n X n
array such that the maximum clock skew o between commu-
nicating cells will be bounded above by a constant, indepen-
dent of n.

The above proof for two-dimensional mesh graphs can be

or o = Q(n),

generalized to deal with other classes of graphs. For the

generalization, we need to define the minimum bisection
width of a graph [11], which is the number of edge cuts
needed to bisect the graph. For example, by Lemma 4 the
minimum bisection width of ann X n mesh-connected graph

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 8, AUGUST 1985

is w(n). We have the following general result.
Theorem 6: Suppose that the minimum bisection width of
an N-node graph is Q(W(N)) and W(N) = 0(\/1—_’). Then

o = QUWQN)).

Since under the summation model of clock skew, two-
dimensional n X n processor arrays cannot be efficiently
implemented by clocked controls, their implementation
should be assisted by some self-timed scheme, as discussed
in the next section.

VI. HYBRID SYNCHRONIZATION

In the absence of the invariance condition A8), in which
case pipelined clocking fails, or for communication graphs
with asymptotically growing clock skews under the sum-
mation model, global clocking is unable to provide constant
clock rates as a system grows. In this case, a scheme similar
to one described by Seitz [10], where local clocks are
controlled by a self-timed handshaking synchronization
network, can be used.

In this approach, we break up the layout into bounded-size
segments called elements and provide each element with a
local clock distribution node. The clock distribution nodes
employ a handshaking protocol to synchronize among them-
selves and then distribute clock signals to the cells in their
elements. Given assumptions about the maximum delay of a
computation node and its communication wires, we can clock
the cells in each element in constant time. This structure is
illustrated in Fig. 8, in which the heavy lines and black boxes
represent the self-timed synchronization network and the
narrow lines represent local clock distribution to the cells in
each element. Note that the subordination of the local clocks
to the self-timed network avoids the possibility of syn-
chronization failure due to a flip-flop entering a metastable
state since an element stops its clock synchronously and has
its clock started asynchronously.

This provides the asymptotic performance of a self-timed
system by making all synchronization paths local while iso-
lating the self-timed logic to a small subsystem and allowing
the cells to be designed as if the entire system were globally
clocked. The hybrid approach has the additional advantage
that a single synchronization design can be used for many
different structures. This simplification of the usual fully
self-timed scheme is made possible by the fact that we are
willing to assume a maximum delay for the cells; this is the
same assumption made in ordinary clocked schemes. Note
that we are willing to let the entire array operate at worst case
cell speed since even a fully self-timed array would usually
wind up operating at that speed regardless.

VII. PRACTICAL IMPLICATIONS

This section addresses some practical aspects of the ma-
terial of this paper. Perhaps the most important practical
issue raised in this study is the question of the use of pipe-
lined clocking on chips; this section discusses some of the
potential limits to this technique and presents some simple

FISHER AND KUNG: SYNCHRONIZING LARGE VLSI PROCESSOR ARRAYS

R
oo ol
oEioe o2

Cf5E ol

Fig. 8. Hybrid synchronization scheme.

experimental evidence suggesting its practicability. It also
discusses the practical relevance of the difference and sum-
mation models of clock skew.

The practicality of pipelined clocking hinges on two is-
sues: the limitations of the uniformity assumption A7), and
the delay associated with distributing clocks in a con-
ventional fashion. Pipelined clocking only makes sense if
clock event transmission is uniform enough to gain an advan-
tage over equipotential clocking.

This relationship, in turn, depends on the relative speeds of
logic and interconnect. Pipelined clock trees, with short in-
terconnection paths, will run at logic switching speeds (to the
extent that uniformity obtains). The speed at which equi-
potential clock trees can run is determined by the impedance
of the interconnect and by its physical dimensions. We would
thus expect pipelined clocking to be most applicable where
switching speeds are high and interconnect is long and has
high impedance; for example, wafer-scale gallium arsenide
may be a likely candidate.

The uniformity of transmission of clock events is subject
to a number of factors. One obvious limitation is the uni-
formity of a buffer in passing rising and falling edges. For an
nMOS superbuffer, for example, making transit times for
rising and falling edges the same requires careful circuit
tuning, and the resulting circuit will be very sensitive to
manufacturing process parameters. One solution to this prob-
lem is to make each buffer respond only to rising edges on its
input and to generate its own falling edges with a one-shot
pulse generator. This solution has the disadvantage that the
pulse width must be either wired into the circuit or pro-
grammable by some means. This may actually be convenient
in some cases, if the pulse generating circuitry can be de-
signed to model the delay of the logic circuitry. Beyond static
considerations, however, the transmission of clock events
can also be affected by noise, for example, internet capaci-
tive coupling in MOS circuits. This problem can only be
avoided by careful design, and further research is needed in
estimating its magnitude.

Another, simpler approach to the rising/falling edge prob-
lem is to build a distribution line as a string of inverters. If the
impedance of the outputs of the odd inverters is the same as
that of the even inverters, rising and falling edges should

“traverse the string at essentially the same speed. Although
this approach eliminates any inherent bias in favor of one
type of edge, it does not result in speed independent of the
length of the inverter string. Assume that the discrepancy
between rising and falling transit times for a pair of inverters
is normally distributed with a mean of zero and variance V.

739

The sum of the discrepancies of n inverter pairs will be
similarly distributed, with variance nV. If a fixed yield, inde-
pendent of n, is desired, chips with a discrepancy sum pro-
portional to the standard deviation, hence proportional to
\/ﬁ, must be accepted. Since a minimum condition for a
given chip to run with cycle time 7 is that the sum of discrep-
ancies be no greater than 7', some chips will run with cycle
times at least proportional to V7. The constant factors in-
volved may still be small enough, however, to make this
scheme feasible in practice.

As a simple trial of practical issues, an nMOS chip con-
sisting of a string of 2048 minimum inverters was designed,
without any special attention paid to making interconnect
impedance uniform. An equipotential single phase clock sig-
nal could be run through the entire string with a cycle time of
approximately 34 us; even with the disadvantage of a slight
bias in the circuit design toward falling edges, a pipelined
clock could be run with a cycle time of 500 ns, 68 times
faster. The same speedup was observed on five separate
chips, indicating that the effect of the bias in the circuit
design dominated the type of probabilistic effects described
above. Assuming that transit times and any discrepancy be-
tween rising and falling edges scale linearly, a similar in-
verter string of any length could be clocked 68 times faster in
pipeline mode than in equipotential mode. This figure does
not indicate that pipelined clocking is actually applicable in
this case; a chip of this size in this technology could easily be
clocked with a 50 ns cycle time with a well-designed low-
resistance equipotential clock. However, it does suggest that
pipelined clocking may well be feasible where switches are
fast and wires are slow.

The second practical issue related to this work is the ques-
tion of the applicability of the difference and summation
models of clock skew. First, both models apply only where
pipelined clock distribution is possible; otherwise, clock pe-
riod inevitably grows with the system, and the only means of
improving performance are technology improvement, clever
design, and self-timing. For the difference model to apply
and for H-tree or other equidistant clocking schemes to be
useful, it must be possible to closely control the “length”
(that is, the delay characteristics) of the clock tree. This is
possible in systems where wires are discrete entities that can
be tuned, and indeed this is common practice in such sys-
tems. Whether this is true for integrated circuits is another
question, hinging on the variability of the fabrication process
and on noise characteristics.

The summation model is much more robust. Given the
possibility of pipelined clocking, almost any imaginable
means of transmitting clock events will have the property that
cells close together on the clock tree will have bounded skew
between them. We can thus be confident that linear arrays and
similar structures will work as well as pipelined clocking can
work.

VIII. CONCLUDING REMARKS

In this paper, we have analyzed the effect of clocked syn-
chronization on the performance of large processor arrays.
We have identified the key issues on which this depends

740

(clock delay and clock skew) and have proposed means of
implementing pipelined clocking for integrated circuits. We
have considered two models of the dependence of clock skew
on layout properties and have derived upper and lower
bounds for the performance of processor arrays of varying
topologies. The key results here are that one-dimensional
arrays can be clocked at a rate independent of their size under
fairly robust assumptions, while two-dimensional arrays and
other graphs with similar properties cannot. We have also
discussed some of the practical implications of these theo-
retical results.

This study has concentrated on the interaction of clock
skew models with the communication structure of arrays with
bounded communication delay; future work should also ex-
amine cases where asymptotically growing delays occur. One
interesting such case is that where the communication graph
COMM, neglecting edge directions, is a binary tree. It has
been shown that a planar layout of a tree with N nodes of unit
area must have an edge of length Q(\/IT/ /log N) [9]. Under
the summation model of Section V then, if we make the
additional assumption that communication delays grow with
path length in the same way as clocking delays, a tree may
be clocked at no loss in asymptotic performance simply by
distributing clock events along the data paths.

Furthermore, if COMM is acyclic, as in the tree machine
algorithms described in a paper by Bentley and Kung [2], and
the ratio between lengths (in the layout) of any two edges at
the same level in the graph is bounded, pipeline registers can
be added on the long edges, with the same number of registers
on all of the edges in a given level. This makes all wires have
bounded length, thus causing the time needed for a cell to
operate and pass on its results to be independent of the size
of the tree. Adding the registers increases the layout area by
at most a constant factor since they, in effect, just make wires
thicker. For example, an H-tree layout has this property and
allows a tree machine of N nodes to be laid out in area O(N)
with delay through the tree of O (VN) and constant pipeline
interval.

REFERENCES

[1] R. Aleliunas and A. L. Rosenberg, “On embedding rectangular grids in
square grids,” IEEE Trans. Comput., vol. C-31, pp. 907-913, Sept.
1982.

[2] J.L. Bentley and H. T. Kung, “A tree machine for searching problems,”
in Proc. 1979 IEEE Int. Conf. Parallel Processing, Aug. 1979,
pp. 257-266.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 8, AUGUST 1985

[3] M. A. Franklin and D.F. Wann, “Asynchronous and clocked control
structures for VLSI based interconnection networks,” in Proc. Ninth
Annu. Symp. Comput. Architecture, Apr. 1982, pp. 50-59.

H. T. Kung, “Why systolic architectures?”’ IEEE Comput. Mag., vol. 15,

pp. 37-46, Jan. 1982.

S.Y. Kung and R.J. Gal-Ezer, “Synchronous vs. asynchronous com-

putation in VLSI array processors,” in Proc. SPIE Symp., Vol. 341,

Real-Time Signal Processing V, Soc. Photo-Opt. Instrument. Eng.,

May 1982.

[6] R.J. Lipton, S.C. Eisenstat, and R. A. DeMillo, “Space and time
hierarchies for classes of control structures and data structures,” J. ACM,
vol. 23, no. 4, pp. 720-732, Oct. 1976.

[7] C.A. Mead and L. A. Conway, Introduction to VLSI Systems.
Reading, MA: Addison-Wesley, 1980.

[8] C.A. Mead and M. Rem, “Cost and performance of VLSI comput-
ing structures,” IEEE J. Solid-State Circuits, vol. SC-14, pp. 455-462,
Apr. 1979.

[9] M.S. Paterson, W. L. Ruzzo, and L. Snyder, “Bounds on minimax edge
length for complete binary trees,” in Proc. Thirteenth Annu. ACM Symp.
Theory Comput., May 1981, ACM SIGACT, pp. 293-299.

[10] C.L. Seitz, “System timing,” in Introduction to VLSI Systems,
C.A. Mead and L. A. Conway. Reading, MA: Addison Wesley, 1980,
ey

[11] C.D. Thompson, “A complexity theory for VLSI,” Ph.D. dissertation,
Dep. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Aug. 1980.

(4

et

[5

[t}

Allan L. Fisher (S’82-M’83) received the A.B.
degree in chemistry from Princeton University,
Princeton, NJ, and the Ph.D. degree in computer
science from Carnegie-Mellon University (CMU),
Pittsburgh, PA.

Since the fall of 1984 he has been an Assistant
Professor of Computer Science at CMU. His re-
search interests are in computer architecture and
VLSI systems.

H.T. Kung received the Ph.D. degree from
Carnegie-Mellon University (CMU), Pittsburgh,
PA, in 1974.

He joined the faculty of CMU in 1974 and is now
a Professor of Computer Science. He leads a re-
search team at CMU in the design and imple-
mentation of high-performance computer systems.
In 1981 he was a full-time architecture consultant to
ESL, Inc., a subsidiary of TRW. His current re-
search interests are in systolic array architectures and
their applications.

Dr. Kung is a Guggenheim Fellow (1983-1984) and has served on editorial
boards of several journals and program committees of numerous conferences
in VLSI and computer science.

