
Wa rp A rchitecture and Implementation

Marco Annaratone, .Emmanuel Arnould, Thomas Gross, H. T. Kung, Moniea S. I.am,
Onat Menzilcioglu, Ken Sarocky, and ion A. Webb

Department of Computer Science
Carnegie Mellon University

Pittsburgl~ Pennsylvania 13213

Abstract

A high-performance systolic array computer called Warp has
been designed and constructed. The machine has a systolic array
of 10 or more linearly connected cells, each of which is a
programmable processor capable of performing 10 million
floating-point operations per second (10 MFLOPS). A 10-cell
machine therefore has a peak performance of 100 MFLOPS.
Warp is integrated into a UNIX host system. Program develop-
ment is supported by a compiler.

The first 10-cell machine became operational in 1986. Low-level
vision processing for robot vehicles is one of the first applications
of the machine.

This paper describes the architecture and implementation of the
Warp machine, and justifies and evaluates some of the architec-
tural features with system, software and application considera-
tions

1. Introduction
Warp is a high-performance systolic array computer designed to
provide computation power for signal, image and low-level vision
procw~sing: the machine's first applications are vision-based con-
trol algorithms for robot vehicles, and image analysis for large
image databases [3].

A full-scale Warp machine consists of a linear systolic array of 10
or more identical cells, each of which is a 10 MFLOPS
programmable processor. The processor array is integrated in a
powerful host system, which provides an adequate data
bandwidth to sustain the array at full speed in the targeted
applications, and a general purpose computing environment,
specifically UNIX, for application programs.

The research was s~ippor~ed in part bY Defon~ Advanced Research
Projects Agency 0:)OD). monitore~ by the Air Force Avionics Laboratory
under Contract F33615-81-K-1539, and Naval Flectronic Systen~ Com-
rnand under Contract I~00039-85-C-01M. and in part by the Office oi"
Naval R~earch under Contracts N00014,80-C,0236, N'R 048-659, and
N00014-85-K-0152, NR SDRJ-007. T. Gross is al~ shpported by'an IBM
Faculty Development Awm'd, H. T. Kung by a Shell Distinguished Chair
in Computer Science.

As an example of performance, a 10-ceil Warp can process
]024-point complex fast Fourier transforms at a rate of one FFT
every 600 microseconds. This programmable machine can also
perform many other primitive computations, such as two-
dimensional convolution, and real or complex matrix multiplica-
tion, at a peak rate of 100 MFLOPS. Warp can be described as an
array of conventionM array processors; the machine can ef-
ficiently implement not only systolic algorithms where com-
munication between adjacent cells is intensive, but also non.
systolic algorithms where each cell operates on its own data
independently.

While achieving a high computation throughput usually expected
only from a special-purpose sys'tolic array, Warp has a high
degree of programmability. Each processor is a horizontal
microengine; the user h~s complete control over the various
functional units. To overcome the complexity in managing this
fine-grain parallelism, we are developing an optimizing compiler
to support a high-level programming language [2]. To the
prouanuner, Warp is an array ofsimple sequenti~ processors,
communicating asynehronously. Initial results indicate that
reasonable performance can be achieved with the compiler.

Carnegie Mellon designed, assembled and tested a 2-c¢J1
prototype machine (in use since Fall of 1985). Production of the
full-scale machine is contracted to two industrial partners,
General Electric and Honeywell. The first 10-cell machine was
delivered by General Electric in early 1986. It is used'in vision
research: for example, it performs the low-level vision processing
for a robot vehicle built by Carnegie Mellon [8]. At least eight
additional 10-cell Warp machines will be built in 1986 and 1987
for applications in areas such as robot vehicles and image analysis.

This paper describes the Warp architecture and implementation,
justifies and evaluates the.major architectural'fcatures with syP
tern, soRware and application considerations. W~ first~lesent an
overview of the architecture of the rr~chine. We next discuss the
architecture of the Warp processor array in more detail: the linear
configuration of the array, our programming model of the array
and its implications, and the architecture of the individual cells in
the array. A description of the hardware mapiementation then
follows. We then present the hardware and sol,rare architecture
of the host system that controls.the Warp machine. The last

0884-7495/86/0000/0346501.00 © 1986 | EEE 346

section includes some general discussions of the machine and
concluding remarks.

2. W a r p m a c h i n e o v e r v i e w
The Warp machine has three components--the Warp processor
array (Warp army), the interface unit (IU), and the host, as
depicted in Figure 2-1. The Warp array performs the

computation-intensive routines, for example, low-level vision

routines. The IU handles the input/output between the array and

the host, and generates addresses and control signals for the Warp

array. The host executes the parts of the application programs

that are not mapped onto the Warp array and supplies the data to

and receives the results from the army.

J HOST , I

Adr • '

m . . . m =

t x x I
I I
I I
I I
L .WARP PROCESSOR ARRAY j

Figure 2-1: Warp machine overview

The Warp array is a programmable, one-dimensiomd systolic
array with identical cells called Warp cells. Data flow through the
array on two data paths (X and Y), while addresses and systolic

control signals travel on the Adr path (as shown in Figure 2-1).

,Each Warp cell is implemented as a programmable horizontal

microengine, with its own pro-dam memory and microsequencer.

A Warp cell has a 32-bit wide data path, as depicted in Figure 2-2.

The data path consists of two 32-bit floating-point processing

elements: one multiplier and one ALU, a 4K-word memory for

resident and temporary data, a 128-word queue for each corn o

munication channel, and a 32-word register file to buffer data for

each floating-point unit. All these components are intercon-

nected through a crowbar switch as shown in Figure 2-2.

To reduce the inherent risk in prototyping a new architecture, the

current implementation of the Warp machine uses conservative

design principles and no custom-made parts. TrL-compatible

parts are used throughout ,Each Warp cell is implemented on a

large board (dimensions 15" X 17"), and so is the IU, Figure 2-3

shows a photograph of a Warp cell.

The host consists of a VME-based workstation (currently a Sun

2/160), that serves as the master controller of the Warp machine,

and an "external host", so named because it is external to the
workstation. The workstation provide.s a U~X environment for
running application programs and the external host provides a
high data transfer rate for communicating with the Warp array.

XCurr
YCurr

Figure 2.2:

Curr

Functional Block
~ S w t t c h

Warp ¢cll dam path

Figure 2.3: Warp cell layout

Figure 3-I is a picture of the Warp machine. A single 19" rack

hosts the IU, a Warp array of 10 cells, the external host, as well as

associated power supplies and fans. The workstation is not visible

in this picture.

The first 10-cell machine uses wire-wrap technology. Future

Warp machines will be implemented with PC boards; the 19"

rack will be able to host the IU and up to 24 Warp cells. For the

PC board version, each cell will have increased local memory (at

least 32K or 64K words) and enlarged queues.

3. Linear array of powerful cells
The Warp array is a linear array of identical cells with only
neighboring cells communicating directly. The linear configura-
tion was chosen for several reasons. First. it is easy to implement.
Second, it is easy to extend the number of cells in the array.
Third, a linear array has modest I/O requirements since only the
two end-cells communicate with the outside world.

347

The advantages of the linear interconneetion are outweighed,
however, if the constraints of interconnection render the machine
too difficult to use for programmers. The concern is whether or
not we can e~eiently map applications on the linear array of
cells. V,~ile many algorithms have been designed specifically for
linear arrays, computations designed for other interconnection
topologies can often be efficiently simulated on the linear array
mainly because the Warp cell, the building-block of the array, is
itself a powerful engine. In particular, a single Warp cell can be
time multiplexed to perform the function of a column of cells,
and therefore the linear array can, for example, implement a
two-dimensional systolic array effectively.

Figure 3-1: TheWarp machine, serial number 1

A feature that distinguishes the Warp cell from other processors
of similar computation power is its high I/O bandwidth. Each
Warp cell can transfer up to 20 million words (80 Mbytes) to and
from its neighboring cells per second. (In addition, 10 million
16-bit addresses can flow from one cell to the next cell every
second.) We have been able to implement this high bandwidth
communication link with only modest engineering efforts because
ofthe simpliciW of the linear interconncction structure. This high

inter-cell communication bandwidth makes it possible to transfer
large volumes of intermediate data between neighboring cells and
thus supports fine-grain problem decomposition.

For communicating with the outside world, the Warp array can
sustain a 80 Mbytes/sec peak transfer rate. In the current setup,
the IU can communicate with the Warp array at a rate of 40
Mbytes/sec. This assumes that the Warp array inputs and out-
puts a 32-bit word every (200 ns) instruction cycle. However the
current host can only support up to 10 Mbytes/sec transfer rates.
The smaller transfer rate supported by the host is not expected to
affect the effective use of the Warp array for our applications for
the following reasons: Firs% the Warp array typically performs
one input and one output every two or more cycles. Second. for
most signal and image processing applications, the host deals with
8-bit integers rather than 32-bit floating-point numbers, and
therefore the I /O hand~idth for the host needs only be a quarter
of that for the Warp array. This implies that 10 Mbytes/sec
transfer rate for the host is sufficient. This I /O issue and the use
of the IU for integer/float-point conversions will be discussed
later in the paper.

Each cell has a large local data memory; this feature is seldom
found in special-purpose, ~stolic array designs, and is another
reason why Warp is powerful and flexible. It can be shown that
by increasing the data memory size, higher computation
bandwidth can be sustained without imposing increased demand
on the I/O bandwidth [4], The large memory size, together with
the high I/O bandwidth, makes Warp capable of performing
global operations in which each output depends on any or a large
portion of the input [6]. Examples of global operations are FFT,
component labeling, Hough transform, image warping, and
matrix computations such as matrix multiplication. Systolic ar-
rays are known to be effective for local operations such as a 3 X 3
convolution. The additional ability to perform global operations
significantly broadens the applicability of the machine.

In summary, the simple linear processor array used in Warp is a
powerful and flexible structure largely because the array is made
of powerful, programmable processors with high I/O capabilities
and large local memories.

4. Warp architecture
The domains of signal processing, image processing, and scientific
computing share the characteristic that the computation is often
regular and repetitive. That is, the control flow through a
computation is independent from the input data; similar opera-
tions must be performed for all input sets. Eor these applications.
a one-dimensional processor array can be used in two major
modes:

• Pipeline mode: each processor constitutes a stage of the
pipeline, and data are processed as they flow through the
array; repetitive computation can often be decomposed into
a number of identical pipeline stages,

• Parallel mode: the data are partitioned among the proces-

348

sors, and each processor performs the same function on data
resident in its local memory.

In both the pipeline and parallel modes of operation, the cells
execute identical programs, ttowever, unlike the SIMD model of
computation, where all the processing elements execute the same
instruction in the same time step, the execution time of the cells
may be skewed. That is, all cells perform the same computation;
however, the computation of a cell is delayed with respect to that
of the preceding cell by a constant amount of time. This delay
gives valid data and results from preceding cells time to travel to
the cell before the computation on the cell begins. We refer to
this model, where all the cells execute the same function, but with
a time delay between neighboring cells, as the skewed model of
computation. Some of the optimizations and design decisions for
Warp were based on our intended application domain and the
model of how the machine would be used.

4.1. Local program control
Although the functions executed by the different cells of the array
are identical, each cell has its own local program memory and
sequencer. First, since the microinstruction words are very wide,
it is not easy to broadcast them to all the cells, or to propagate
them from cell to cell. Second, the skewed model of computation
can easily be supported with local program control. Finally, the
local sequencer supports conditional branching more efficiently.
In machines where all cells execute the same sequence of instruc-
tion words, branching is achieved by masking. Therefore, the
execution time is equivalent to the summation of the execution
time of each branch. With local program control, different cells
may follow different branches of a conditional statement depend-
ing on their individual data; the execution time is the maximum
execution time of the different branches.

4.2. Computing addresses and loop controls in the IU
Since all the cells compute the same function, and the addresses
used in the computation are often data independent, the cells
typically have identical addressing patterns and control flow. For
example, when multiplying two matrices, each cell computes
some columns of the result. All cells access the same local
memory location, which has been loaded with different columns
of one of the argument matrices. This characteristic of the
computation allows us to factor out address generation and loop
termination signals from the individual cells; we migrate these
functional blocks to the IU. Moreover, it is desirable that each
Warp cell can make two memory references per cycle. To sustain
this high local memory bandwidth, the cell demands powerful
address generation capabilities, which were expensive to provide
and therefore became a target for optimization. We can dedicate
much more hardware resources to address generation if it is
implemented only once in the IU, and not replicated on all Warp
cells.

The IU has separate functional units for address generation and
loop control. In each cycle, the IU can compute up to two array
addresses, modify two registers, test for the end of a loop, and

update a loop counter. In addition, to support complex address-

ing schemes for important algorithms such as FFr, the IU con-

rains a table of pre-stored addresses; this table can be initialized

when the microcode is loaded.

Data dependent addresses are sometimes necessary. They can be

computed locally on the Warp cells, but at a significant cost since

the address computation competes with other computations for

use of the floating-point processing dements.

4.3. Compile-time flow control
In our application domains of signal and image processing, data

independent control flow is typical; the same operation is per-
formed on all input data. Hence, a bound on the timing of the
input and output actions of each cell can be obtained at compile-
time. Our decision is to let the compiler synchronize the actions
of the communicating cells; that is, the compiler ensures that no
data is fetched from, or stored into, the queues if they ate empty,
or full, respectively. An alternative design is to provide the flow
control at run-time by suspending a cell whenever it tries to read
from an empty queue, or write to a full queue, until the status of
the queue changes. Providing this capability would make the
machine much more difficult to design, implement and debug.

While compile-time flow control is adequate in most of the cases
in our application domain, run-time flow control is required in
some eccasionsufor example, in three-dimensional graphics dip-
ping algorithms, the number of points to be created or deleted is
determined dynamically. Minimal support is provided to handle
these cases: the status of the communication queues is accessible
to the user. Therefore, the user can loop and continually test the
status before each I/O action until the queue stops being empty
or full. We note that although run-time flow control is possible, it
is expensive since all the pipes in this heavily pipelined machine
need to be emptied before each I/O operation.

4.4. Input control
The latching of data into a cell's queue is controlled by the cell
that sends the data, rather than by the local microinstmction
word. As a cell sends data to its neighbor, it tags the data with a
control signal to instruct the receiving cell's queue to accept the
d a ~

Our original design was that input data is latched under the
microinstruction control of the receiving cell. This implies that
interceil communication requires close cooperation between the
sender and the receiver; the sender presents its data on the
communication channel, and in the same clock cycle the receiver
must latch in the input. This tight-coupling of cells appeared not
to present any additional complexity to the compiler, since the
compiler has full knowledge of the timing of all the l /O actions to
ensure that no queue overflow or underflow recruits. We did not
realize that such a design would cause an intolerable increase in
code size.

To explain the increase in code size if the receiving cell were to
provide the control to latch in the data, we first describe the
compilation process. Consider a simple example where each cell

349

receives a data item from its left neighbor and passes it to its fight.
The scheduling steps of the compiler are as follows:

l. Schedule the computation, disregarding the control to latch
in the data. This sequence of instructions forms the com-
putation process for a given cell. In the simple example, the
computation consists of two steps: remove a data item from
the X queue and output it on the X channel for the next
cell. See Figure 4-]. (a).

2. Extract the output actions and construct the input counter-
part of latching in the data. These input operations are
executed by the next cell. As shown in Figure 4-]. (b), all
output operations are simply turned into input operations.
All the control constructs are retained: all other instructions
are mapped into idle cycles (nops). This is the input process
for the next cell.

3. Determine the minimum skew between neighboring cells
such that no inputs are performed before the corresponding
data are output from the preceding cell. (For simplicity, we
assume that the queue is sufficiently large). Since the input
process must execute in lockstep with the computation of
the preceding cell, the computation process in the cell is
delayed with respect to its own input process.

In the example of passing a data item down the array, the
queue cannot be dequeued until the data are output by the
preceding cell. Therefore, the skew between cells in this
case is].. The result of merging the input and the delayed
computation is shown in Figure 4-1 (0.

(a) (b) (e)

dequeue(X), nop. nop.
out.put(X), i npu t (X) , dequeue(X), tnput,(X).

ou tpu t (X) .

Figure 4-1: Scheduling a cell program that passes data
from cell to cell: (a) computation process,
(b) input process, and (c) merged process

The problem of codesize increase shows up in the last step where
the computation and the input processes are merged. The code
length of the program that combines both the computation and
input activities can be significantly greater than either of the

original processes if they contain iterative statements. Merging
two identical loops, with an offset between their initiation times,

requires loop unrolling and can result in a three-fold increase in
code length. Figure 4-2 illustrates this increase in code length
when merging two identical loops of n iterations. Furthermore, if
the offset is so large that two iterative statements of different
lengths are overlapped, then the resulting code size can be of the
order of the least common multiple of their lengths.

Having the sender control the latching of input data not only
reduces the complexity of the compiler and avoids increasing the
code size, but also allows us to handle conditional statements
better. For example, if a data item is output to the next cell in
~ch of the two branches of a conditional statement, the compiler

needs only to ensure that the input action of the receiving cell is
performed after the output actions of both branches. The data
from each branch of the condition need not be sent out in the
very same clock cycle.

4.5. Control path

The microcode for the Warp cell and the IU is completely
horizontal. The user has full control over every component, and
thus can tailor the schedule of the micro-operations according to
the needs of specific applications. Each component is controlled
by a dedicated field; this orthogonal organization of the
microinstruction word makes scheduling easier since there is no
interference in the schedule of different components caused by
conflicts in the micro-instruction field assignment.

(.) O) (c)

nE n[m
a

b
C

d
8

b
C

d

n-1

a

b

0 c
t d

Z a
3 b

0 c
t d
2

3

L
Figure 4-2: Merging two iterative processes (a) original programs

(b) execution trace, and (c) merged programs

4 . 6 . D a t a p a t h

The data path of the Warp cell, shown in Figure 2-2. is carefully
designed to ensure that the arithmetic units can be fully utilized.
We now discuss each of the components in detail.

4 . 6 . 1 . A r i t h m e t i c un i ts

Each Warp cell has two floating-point processors, one multiplier
and one ALU [9]. Floating-point capabilities are necessary for
signal processing and scientific computation, and we believe that
they will be important in vision as well. Until now most vision
computation is done using fixed-point arithmetic, and this has
meant careful analysis of algorithms to find upper bounds for the
magnitude of intermediate results. If the intermediate results
exceed the boundaries imposed by the word size available, the
data must be scaled, or the algorithm must be modified. Using
floating-point arithmetic, none of this analysis is necessary, so that
the vision researcher can concentrate on the algorithmic aspects
of the computation.

350

The convenience of using floating-point arithmetic does not im-
ply a high cost in hardware implementation because high-
performance floating-point arithmetic chips are commercially
available. However at the time of design for the Warp machine,
these floating-point chips depended on extensive pipelining to
achieve high performance. Specifically, both of the ALU and the
multiplier have 5-stage pipelines [9]. Deep pipolining has a
devastating effect on the performance of general-purpese com-
putation, where data-dependent branching is common. For-
~unately, our applications inclu(te few conditional branches and
consist primarily of tight data-independent loops. Previous
results have shown that pipelining is an effective optimization for
systolic array algorithms [5]: while pipelining reduces the cycle
time of a machine, the throughput rate of results per cycle can
often be maintained.

4.6.2. Internal data bandwidth
Experience with the programmable systolic chip [1] showed that
the internal data bandwidth is often the bottleneck of a systolic
cell. In the Warp cell, the two functional units can consume up to
four data items and generate two results per cycle. Several data
storage blocks interconnected with a crossbar support this high
data processing rate, There are six input and eight output pens
connected to the crossbar switch; six data items can be transferred
in a single cycle, and an output port can receive any data item.
The use of the crossbar also makes compilation easier when
compared to a bus-based ~stem: conflicts on the use of one or
more shared busses can complicate scheduling tremendously.

4.6.3. Data storage
The local memory hierarchy includes a local data memory and
two register files, one for each functional unit The local data
memory can store 4K words of input data or intermediate results,
and can be both read and written every (200 ns) cycle. The
register files are 4-ported data buffers capable of accepting two
data items and delivering two operaods to the functional units
every cycle.

4.6.4. Queues
Delay elements are often used in systolic algorithm designs to
synchronize or delay a data stream with respect to another. In the
original design of Warp, the queues were intended to serve simply
as programmable delays; data were latched in every cycle and
they emerged at the output port of the queue a constant number
of cycles later. During the compiler development, the inadequacy
of programmable delays was discovered. The Warp cell is a
programmable processor with a relatively large local data storage;
it is much more flexible than the typical inner.product nodes that
appear in many systolic algorithms. O/ten, Warp programs do
not produce one data item every cycle; a clocking discipline that
reads/writes one item per cycle restricts the use of the machine.
Furthermore, a constant delay through the queues means that the
liming of the production of results must match exactly the timing

of the consumption of data. Therefore, the architecture was
modified to allow the user to conditionally enqueue or dequeue
the data as they are produced or consumed.

The size of a queue is 128 words. This size was determined by the
available RAM chips with sufficient speed to implement the
queues. The queues are not large enough for vision algorithms
that require buffeting entire rows of images, which are at least 2.56
elements wide. The overflow data have to be stored in the local
memory of a Warp cell in the current implementation.

The overflow problem for the address queue is much more severe
than that for the data queue. First, while it is possible to use the
memory as an extended storage for overflow data, this technique
does not apply to addresses, as addresses are needed to access the
memory. Second, the size of the address queue severely limits the
grain size of parallelism in programs executable on Warp. In the
pipeline mode of operation, a cell does not start executing until
the preceding cell is finished with the first set of input datL The
size of the data queue needs to be at least equal to that of the data
set; the size of the address queue, however, needs to be at least
equal to the number of addresses and control signals used in the
computation of the data set. This problem would not exist if the
Warp cells had the capability to generate addresses effectively.

Architectural revisions to deal with the above problems will be
included in the PC board implementation of the Warp cell,

4.7. Compilation
While the parallelism potentially available in this machine is
tremendous, the complexity of using it effectively is correspond-
ingly overwhelming. To make the machine truly progranunable,
an optimizing compiler is developed [2]. The programmer simply
thinks of the machine as a uni-directional array of sequential
processors, communicating asynchronousiy. A sample program
that implements the evaluation of a polynomial on an array often
cells is included in the appendix. Since all cells perform the same
function in our programming model, the user simply supplies the
program for one cell. The programming language is Algol-like,
with additional receive and send statements as communication
primitives. The semantics of the communication protocol is that a
cell is blocked when it tries to read from an empty queue or write
to a full queue.

The compiler divides the operations in the cell program into three
pans, one for each of the different components of the system: the
host, the IU and the Warp cells. The input and output actions
with the external environment are performed on the host and the
IU. The data independent addresses and loop control are com-
puted by the IU and are sent to the Warp cells via the address
path. The rest of the operations are performed on the Warp cells.

The compiler currently accepts only programs where data flow
uni-directionally through the array; flow control between cells is
achieved by skewing the execution of the cells by the necessary
amount to ensure that the input data is in the queue before R is
used. Overflow of the queue is detected and reported, but not
currently bandied. The high degree of pipelining in the rune-

351

tionai units of the Warp cell is another cause of concern for the
compiler. Scheduling techniques based on software pipelining
techniques are used [7]. The utilization obtained is reasonable; as
an example, full utilization of the functional units is achieved for
the sample program of polynomial evaluation in the appendix.

5. I m p l e m e n t a t i o n

5.1. Implementation of the Warp cell
The Warp architecture calls operates on 32-bit data. In the
implementation, all data channels in the Warp array, including
the internal data path of the cell (except for the floating-point
processors), are implemented as 16-bit wide channels operating at
100 ns. There are two reasons for choosing a 16-bit time-
multiplexed implementation. First, a 32-bit wide hardware path
would not allow implementing one cell per 15" X 17" board.
Second, the 200 ns cycle time dictated by the Weitek floating-
point processors (at the time of design) allows the rest of the data
path to be time multiplexed. This would not have been possible
if the cycle time were under 160 ns,

High speed and parallel cell operations coupled with the tight
synchronization of the Warp array presented a challenge to logic
design. In particular, the design is required to address sensitive
timing issues. Most of them were dealt with by adding pipeline
stages to critical paths. Given that the floating-point units impose
a multi-stage pipeline, the addition of yet another stage seems to
he a good tradeoff when compared to added design complexity,
increased chip count, and timing problems. To achieve high
programmability without degrading performance, the timing of
the control path must be balanced to the timing of the data path.
Therefore, the microengine also operates at 100 ns and rapports
high and low cycle operations of the data path separately.

The cell is controlled by a pipelined mierocngine with a 112-bit
wide microinstruedon. Logically related micro-operations are
typically grouped into the same microinstruction, although some
dam. path elements require that control signals are presented at
later Cycles.. For example, to initiate a multiplication, the
mfcroinstruetion specifies the opcode and two source registers.
First, the operands are retrieved from the register file; then, a
cycle later, the opcode is fed to the multiplier unit. These delay
adjustments are made in hardware using pipeline delays rather
than in software to make code generation easier. However, the
programmability of the microcngine suffered from the limitations
of the available mierosequencer (Am2910A), especially in im-
plementing nested loops.

A major portion of the internal cell hardware can be monitored
and tested using built-in serial diagnostic chains. The serial
chains access 36 registers of the Warp cell, covering almost all the
registers outside the register files. This feature, along with the
fully static operation of the cell, made testing easier and led to a
fast debug time. In the best case, a wire-wrapped board was
populated, debugged, and checked out in five days. "Ihe serial
chains are also used to download the 'Warp cell programs. In-

itializing the Warp array with the same program for all the cells
takes no more than 100 ms.

The Warp cell consists of five main blocks: input queues,
crossbar, processing elements, data memory and mieroengine.
Table 1 presents the contribution of these blocks to the im-
plementation of the prototype with 4K-word data memory. The
Warp cell contains 5422 pins in 6525 nets, and it consumes 94W
(typ.) and 136W (max.).

Part Chio count Coqtribution (~)
Queues 63 25.1
Q'ossbar 32 12.7
Processing elements 8 3.1
Data memory (4K words) 30 11.9
Micro-engine 79 31.4
Other 40]-~,8
Total for the Warp cell 252 100.0

Table 5-1: Metrics for Warp cell

5.2. Implementation of the IU
The lU handles data input/output between the host and the
Warp array. The host-IU interface is streamlined by implement-
ing a 32-bit wide interface, even though the Warp array has only
16-bit wide internal data paths. This arrangement reduces the
number of transfem Data transfer to and from the IU may be
controlled by interrupts: in this case, the IU always behaves like a
slave device. During data transfers, the IU can convert 8-bit or
16-hit integers from the host into 32-bit floating-point oumbers
for the Warp array, and vice versa.

The IU generates addresses and control signals for the Warp
array. It supplies all the necessary signals to drive the cells of the
Warp array, requiring little control and data bandwidth on the
host side. For the address generation, the IU has an integer ALU
capable of generating two addresses every 200 ns, All these
operations are controlled by a 96-bit wide programmable
micreengine, which is similar to the Warp cell controller in
programmability. The IU has several control registers that are
mapped into the host memory space; the host can control the IU
and hence the Warp array by setting these registers.

As each Warp cell, the IU is implemented on a single 15"X17"
board. There are 5692 pins and 6170 nets on the board. The IU
has a power consumption of 82W (typ.) and 123W (max.). Table
5-2 presents implementation metrics for the IU.

part Chip count Contribution {~,)
Data-convener 52 18.9
Address generation 64 23.2
Clock and host interface 74 26.9
Micro-engine 44 16.1

O ~ e ~ i i i 41 14.9
Total for the IU 275 100.0

Table 5-2: Metrics for the ILl

352

The IU generates the 20 MHz clock and plays a special role in
system diagnostics: it generates the diagnostic signals for the
Warp array. The host has total control of the clock generator and
can run the Warp array in step mode. After each step, most ofthe
internal state of the array can be monitored using the built-in
serial diagnostic chains. The IU can reach the serial chains of
each Warp cell separately. This allows the debugging of each
Warp cell in the array independently from any other ceil.

6 . H o s t s y s t e m
Input and output are critical issues for any high-performance
architecture. At its peak I/O rate, the Warp array can communi-
cate with the outside world at the rate of 40 Mbytes/sec through
the IU. This is a stringent requirement for a typical off-the-shelf,
microcomputer-based system.

The system must also be able to execute those pars of an
application that do not map well onto the Warp array, and to
coordinate all the peripherals, which include the Warp array,
digitizers, graphics displays, and similar devices. Moreover, for
vision applications, the system must have a large memory to store
images. These images are fed through the Warp array, and results
must be stored in memory until, used again. In addition, for
vision research at Carnegie Mellon, it is crucial that the Warp
machine exists within a UNIX environment.

These goals are achieved by integrating the Warp array with a
host. This distinguishes Warp from other high-performance
machines that define the interface close to the special-purpose
hardware and leave the problem of system integration to the user.

6.1. Host architecture
Integrating Warp into a UNIX environment is accomplished by
partitioning the host into a standard workstation supporting UNIX
and an "external host." The workstation is also master and
controls the external host. Figure 6-1 presents an overview of the
Warp host.

The external host consists of two cluster processors, a sub-system
called support processor and graphics devices. The external host is
built around a VME bus. The two cluster processors and the
support processor (all Motorola 68020 microprocessors) have
dual-ported memories, with a private access on a local VMX3~
bus and a shared access on the global VME bus. These three
processors run stand-alone. Two switch boards allow the clusters
to send and receive data to and from the Warp array, through the
IU. Each switch has also a VME interface, used for debugging
purposes and to start/stop/control the Warp array. The master
(the workstation processor) is connected to.the external host via a
VME bus-coupler. All the boards with the exception of the
switch are off- the-shelf components.

Application programs execute on the workstation and invoke
functions for execution on the Warp array. The external host acts
as intermediary in the interaction between workstation program
and Warp array. Control of the external host is strictly central-

ized: the master issues commands to all external processors
through message queues that are local to each external processor.

The support processor controls peripheral I/O devices and
handles floating-point exception and other interrupt signals from
the Warp array. "lT~ese interrupts are serviced by the support
processor, rather than by the master processor, to minimize
interrupt response time. After servicing the interrupt, the support
processor notifies the master processor. This organization does
not conflict with the fundamental paradigm of centralized control
inside the host.

Master Processor
Workstation

UNIX 4.2

I : graphics tnput
O: graphtcs output

Figure 6-1: Host of the Warp machine

During computation, two dusters work in parallel, each handling

a uni-direcrional flow of data to or from the Warp processor,

through the IU. The two clusters can exchange their roles in

sending or receiving data for different phases of a computation, in

a ping-pong fashion. When the two clusters exchange their rules,

there could be a danger that both clusters write to, or read from,

the Warp array at the same time. To prevent this from happen-

ing, an arbitration mechanism transparent to the user has been
implemented.

There are three memory banks inside each cluster processor to
provide storage as well as efficiency. For example, the first
memory bank may be receiving a new set of data from an I/O
device, while the second contains previous data to be transferred
to the Warp array, and the third has the cluster program code.
This arrangement allows overlapping the transfer of an image to

353

the Warp array with the acquisition of the next image. Presently,
the total memory in the external host is 8 Mbytes, and it can be
upgraded to 16 Mbytes. In the current configuration, physical
constraints limit the total storage to 36 Mbytes.

6 .2 . Host I / 0 bandwidth
To meet the stringent I/O bandwidth required by the Warp array,
the host design exploits the fact that input/output data for signal,
image and low-level vision processing are usually 8-bit or 16-bit
integers. Because the data items in the host are either 8- or 16-bit
integers, they can be packed into 32-bit words before being
transferred to the IU. These 32-bit words are unpacked and
expanded by the IU into four or two 32-bit floating-point num-
bers, before being shipped to the Warp array. The opposite
process takes place with the floating-point outputs of the Warp
array. Therefore, the data bandwidth requirement between the
host and IU is reduced by a factor of 4 or 2, respectively. This
I/O bandwidth reduction allows the Warp processor array to be
fully utilized under the present microcomputer-based system,
without having to rely on other custom-made hosts with higher
I/O bandwidth capabilities. For example, if the input/output
data are 8-bit pixels, then to support the peak Warp I/O
bandwidth via the IU (40 Mbytes/sec) the host needs only to
transfer 10 Mbytes/sec to and from Warp. This transfer rate can
be sustained with two clusters each capable of handling a 5
Mbytes/sec transfer rate, which is within their current
capabilities.

6 .3 . Host sof tware
The Warp host features a run-time software library that allows the
programmer to synchronize the support processor and two
clusters and to perform the allocation of the memories in the
external host. The run-time software handles also communication
and interrupts between the master and the processors in the
external host. The library of run-time routines includes utilities
such as "copy", "move", windowing, and peripheral device
drivers. The compiler generates program-specific input and out-
put routines for the dusters so that a user needs not be concerned
with programming at this level; these routines ate linked at
compile time to the two duster processor libraries.

The application program usually runs on the master; however, it
is possible to assign certain sub-tasks (e.g., finding the maximum
in an output vector from the Warp array) to any of the external
processors. This increases parallelism and boosts performance,
since processing can now take place locally without transferring
data from the external host to the master. Each transfer from the
Warp army to the master processor memory passes through the
VME bus repeater, which roughly doubles the transfer time
(compared to direct VME access).

Memory allocation and processor synchronization inside the ex-
ternal host are handled by the application program through
subroutine calls to the run-time ~ftware. Memory is allocated
through the equivalent of a UNIX mallocO system call, the only
difference being that the memory bank has to be explicitly

indicated. "Ibis is necessary for reasons of efficiency. In fact, the
programmer must be aware of the different memory banks, that
can at any time be accessed simultaneously by different proces-
sors through different buses, thus achieving full parallelism.

Conditional execution of tasks inside each stand-alone processor
is provided by conditional requests issued by the master processor.
In other words, any task queued into the queue of each processor
is always unconditionally executed; it is the issuing of the spedfie
command that must satisfy a certain condition. A typical example
is the execution of a certain task conditioned by the completion of
a different task in a different processor: one call in the application
code to the run-time software achieves this purpose.

7. . Concluding remarks
Some of the Warp design decisions are influenced by the tech-
nology we use to implement the machine. These design choices
must be re-evaluated if a different technology is used. For
example, in the Warp architecture, the cells mostly rely on the IU
to generate the addresses and loop controls. If the Warp cells are
implemented in custom VLSI, however, the external data path for
passing addresses through the cells is far more expensive than an
on-chip address generation unit.

Direct hardware support for flow control should be considered.
Currently, this functionality is provided in software; the compiler
prevents a cell from reading from an empty queue, or writing into
a full queue. Compile-time synchronization makes the hardware
design easier; however, it complicates the compiler and limits the
applicability of the machinel

The Warp project is not complete at this time, but our ex-
periences so far support four conclusions. First, an early iden-
tification of the application area is important for experimental
special-purpose machines with radically different architectures.
Including the application users in the early phase of the
project--the vision research group at Carnegie Mellon in our
case--helped us focus on the architectural requirements and
provided early feedback.

Second, software support tools are crucial for a programmable
systolic machine. A compiler development effort contributes in
two ways: it makes user programming easier and provides
feedback on the architecture. To write efficient code for such a
machine by hand is time-consuming, error-prone and requires a
detailed understanding of the implementation. Only a compiler
can free the user from the managemcnt of low-level details.
Developing a compiler also benefits the architecture. Designing
and implementing a compiler requires a thorough study of the
functionality of the machine; this analysis uncovers the sources of
real problems. Furthermore, a compiler enables the designer to
get a larger set of test programs to validate architecture and
implementation decisions. It is our conclusion that the compiler
component is essential for architecture development.

Our third conclusion is that the integration of a special-purpose
machine in an open and general purpose host environment is

354

essential. The Warp host provides flexible I/O facilities as well as
the UNIX programming environment, which are crucial to the
usability of the machine. Moreover, early recognition of the
importance of system integration allowed us to balance the I/O
bandwidth of the host with the computation power of the Warp
array.

Lastly, we conclude that the linear array configuration is suitable
for most applications in signal processing, low-level vision, and
scientific computation. A linear array with large local memory
and powerful cells is efficient for global operations as well as for
local operations. The Warp cell entails a high degree of pipelin-
ing and parallelism which needs to be managed explicitly. Our
experience demonstrates that our compiler can produce effective
code for the programs in our application domain.

Warp is a powerful and usable machine. Even with a conser-
vative implementation, the current machine delivers a peak per-
formanee of 100 MFLOPS. The host system makes the Warp
array accessible to users; it provides an environment for applica-
tion development, and sustains the Warp cells with an adequate
data rate. Program development for Warp is easy since the Warp
compiler produces efficient code.

A c k n o w l e d g m e n t s

We appreciate the contributions to the Warp project by our
colleagues at Carnegie Mellon: D. Adams, C. Bono, C Chang,
E. Clune, R. Cohn, P. Dew, J. Deutch, B. Enderton, P.K. Hsiung,
K. Hughes, T. Kanade, O. Klinker, P. Lieu, R. Mosur, H. Ribas,
J. Senko, Y. Shintani, B. Siegell, P. Steenkiste, Y-B Tsai,
R. Wallace, and J-K Wang. We appreciate technical assistance
and corporate support from General Electric and Honeywell, our
industrial partners for the project. In particular, we thank
A. Lock and C. Walrath of General Electric and L. Johnson and
D. Kaylor of Honeywell, who spent four months at Carnegie
Mellon working with us during the first half of 1985.

I. S a m p l e p r o g r a m
In the sample program below, most statements have their obvious
meaning. Send and r e c e l v e transfer data between adjacent
cells. The first parameter determines the direction of the transfer,
and the second parameter selects the hardware channel to be
used. The remaining two parameters bind the source (for send)
or result (for receive) to local variables and formal parameters.

*

I * Polynomlal eva lua t l on * I
/ * A polynomial w l t h 10 c o e f f l c l e n t s Is * /
/ *eva lua ted f o r 100 data po in ts on 10 c e l l s * /
*

module polynomial (data tn . coef fs tn ,
r e s u l t s out)

f l o a t da ta [lO0] , c o e f f s [l O] ;
f l o a t r e s u l t s [l O 0] ;

ce l lp rogram (c td : 0 : g)
begin

f u n c t i o n poly
begtn

f l o a t coe f f ,
i n t t ;

xln, yln, ans;

/ *Every c e l l saves the f t r s t c o e f f i c i e n t t ha t
reaches t t . consumes the data and passes the
remaining c o e f f i c i e n t s . Every c e l l generates
an a d d i t i o n a l 1tam at the end to conserve the
number of recelves and sends. * /

rece ive (L. X, coe f f , c o e f f s [O]) ;
f o r t := I to 9 do begtn

recetve (L, X, temp, c o e f f s [t]) ;
send (R, X, tamp);

end;
send (R, X, 0 .0) ;

/* Implementing Homer 's r u l e , each c e l l
m u l t i p l i e s the accumulated r e s u l t y tn w i th
tncomtng data x tn and add the next
c o e f f i c i e n t * /

end

end

call

fo r t : - 0 to g9 do begin
rece ive (L, X, x tn , d a t a [t]) ;
recetve (L, Y, y t n , 0 .0) ;
send (R, X, xtn);
ans : - coef f + y t n * x t n ;
send (R, Y, ans, r e s u l t s [t]) ;

end;

po ly ;

R e f e r e n c e s

1. Fisher, A.L., Kung, H.T., Monier, L.M. and Dohi. Y. "The
Architecture of a Programmable Systolic Chip". Journal of VLSl
and Computer Systems 1, 2 (1984), 153-169. An earlier version
appears in Conference Proceedings of the lOth Annual Symposium
on Computer Architecture, Stockholm, Sweden, June 1983, pp.
48-53.

2. Gross, T. and l~tm, M. Compilation fora High-performance
Systolic Array. Proceedings of the SIGPLAN 86 Symposium on
Compiler Construction, ACM SigPlan, June, 1986.

3. Gross, T., Kung, H.T., Lain, M. and Webb, J. Warp as a
Machine for Low-level Vision. Proceedings of 1985 IEEE Inter-
national Conference on Robotics and Automation, March, 1985,
pp. 790-800.

355

4. Kung. H.T. "Memory Requirements for Balanced Computer
Architectures". Journal nfComplexity 1, 1 (1985), 147-157. (A
revised version also appears in Conference Proceedings of the
13th Annual International Symposium on Computer Architec-
ture, June 1986).

5. Kung, H.T. and Lain, M. "Wafer-Scale Integration and Two-
Level Pipelined Implementations of Systolic Arrays ". Journal of
Paralleland Distributed Computing 1, l (1984), 32-63. A prelimi-
nary version appeared in Proceedings of the Conference on Ad-
mnced Research in VLSI, MIT, January 1984.

6. Kung, H.T. and Webb, J.A. Global Operations on the CMU
Warp Machine. Proceedings of 1985 AIAA Computers in
Aerospace V Conference, American Institute of Aeronautics and
Astronautics. October, 1985, pp. 209-218.

7. Rau, 13. R. and Glaeser, C. D. Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High Per-
formance Scientific Computing. Proc. 14th Annual Workshop on
Mieroprogramming, Oct., 1981, pp. 183-198.

8. Wallace, R., Matsuzaki, K., Goto, Y., Crisman, J., Webb,
J. and Kanade, T. Progress in Robot Read-Following. Proceed-
ings of 1986 IEEE International Conference on Robotics and
Automation, April, 1986.

9. Woo, B.,]An, L. and Ware, F. A High-Speed 32 Bit IEEE
Floating-Point Chip Set for Digital Signal Processing. Proceed-
ings of 1984 IEEE International Conference on Acoustics, Speech
and Signal processing, 1984, pp. 16.6.1-16.6.4.

356

