
IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987 1523

The Warp Computer: Architecture,
Implementation, and Performance

MARCO ANNARATONE, EMMANUEL ARNOULD, THOMAS GROSS, MEMBER, IEEE, H. T. KUNG, MONICA LAM,
ONAT MENZILCIOGLU, AND JON A. WEBB

Abstract-The Warp machine is a systolic array computer of accessed by a procedure call on the host, or through an
linearly connected cells, each of which is a programmable interactive, programmable command interpreter called the
processor capable of performing 10 million floating-point opera- Warp shell [8]. A high-level language called W2 is used to
tions per second (10 MFLOPS). A typical Warp array includes
ten cells, thus having a peak computation rate of 100 MFLOPS. program Warp; the language is supported by an optimizing
The Warp array can be extended to include more cells to compiler [121, [23]
accommodate applications capable of using the increased compu- The Warp project started in 1984. A two-cell system was
tational bandwidth. Warp is integrated as an attached processor completed in June 1985 at Carnegie Mellon. Construction of
into a Unix host system. Programs for Warp are written in a two identical ten-cell prototype machines was contracted to
high-level language supported by an optimizing compiler.
The first ten-cell prototype was completed in February 1986 two industrial partners, GE and Honeywell. These prototypes

delivery of production machines started in April 1987. Extensive were built from off-the-shelf parts on wire-wrapped boards.
experimentation with both the prototype and production ma- The first prototype machine was delivered by GE in February
chines has demonstrated that the Warp architecture is effective in 1986, and the Honeywell machine arrived at Carnegie Mellon
the application domain of robot navigation as well as in other in June 1986. For a period of about a year starting from early
fields such as signal processing, scientific computation, and
computer vision research. For these applications, Warp is 1986, these two prototype machines were used on a daily basis
typically several hundred times faster than a VAX 11/780 class at Carnegie Mellon.
computer. We have implemented application programs in many areas,

This paper describes the architecture, implementation, and including low-level vision for robot vehicle navigation, image
performance of the Warp machine. Each major architectural and signal processing scientific computing magnetic reso-
decision is discussed and evaluated with system, software, and nand simgn processing,snin agn rso-ar
application considerations. The programming model and tools nance imagery (MRI), image processIng, radar and sonar
developed for the machine are also described. The paper simulation, andgraphalgorithms [3], [4]. Inaddition, wehave
concludes with performance data for a large number of applica- developed an image processing library of over 100 routines
tions. [17]. Our experience has shown that Warp is effective in these

Index Terms-Computer system implementation, computer applications; Warp is typically several hundred times faster

vision, image processing, optimizing compiler, parallel proces- than a VAX 11/780 class computer.
sors, performance evaluation, pipelined processor, scientific Encouraged by the performance of the prototype machines,
computing, signal processing, systolic array, vision research. we have revised the Warp architecture for reimplementation

on printed circuit (PC) boards to allow faster and more
I. INTRODUCTION efficient production. The revision also incorporated several

T HE Warp machine is a high-performance systolic array architectural improvements. The production Warp machine is
computer designed for computation-intensive referred to as the PC Warp in this paper. The PC Warp is

applications. In a typical configuration, Warp consists of a manufactured by GE, and is available at about $350 000 per
linear systolic array of ten identical cells, each of which is a 10 machine. The first PC Warp machine was delivered by GE in
MFLOPS programmable processor. Thus, a system in this April 1987 to Carnegie Mellon.
configuration has a peak performance of 100 MFLOPS. This paper describes the architecture of the Warp machine,
The Warp machine is an attached processor to a general the rationale of the design and the implementation, and

purpose host running the Unix operating system. Warp can be performance measurements for a variety of applications. The
organization of the paper is as follows. We first present an

Manuscript received February 2, 1987; revised June 15, 1987 and July 27, overview of the system. We then describe how the overall
1987. This work was supported in part by the Defense Advanced Research organization of the array allows us to use the cells efficiently.
Projects Agency (DOD) monitored by the Space and Naval Warfare Systems Next we focus on the cell architecture: we discuss each feature
Command under Contract N00039-85-C-0134, and in part by the Office of .e
Naval Research under Contracts N00014-87-K-0385 and N00014-87-K-0533. in detail, explaining the design and the evolution of the
Warp is a service mark of Carnegie Mellon. UNIX is a trademark of AT&T feature. We conclude this section on the cell with a discussion
Bell Laboratories. Sun-3 is a trademark of Sun Microsystems. of hardware implementation issues and metrics. We then
M. Annaratone was with the Department of Computer Science, Carnegie

Mellon University, Pittsburgh, PA 15213. He is now with the Institute for describe the architecture of the host system. To give the reader
Integrated Systems, ETH Zentrum, 8092 Zurich, Switzerland. some idea of how the machine can be programmed, we

E. Arnould, T. Gross, H. T. Kung, M. Lam, 0. Menzilcioglu, and J. A. describe the W2 programming language, and some general
Webb are with the Department of Computer Science, Carnegie Mellon mehd of pattinn a rga noapoesraryta
University, Pittsburgh, PA 15213.mehdofprtonnaprgmotoarcsorrayht
IEEE Log Number 8717037. has worked well for Warp. To evaluate the Warp machine

0018-9340/87/1200-1523$01.00 C) 1987 IEEE

1524 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

|HOST 51 x 32

Adr -51 x32|

WARP PROCESSOR ARRAY <Literal>

Fig. I. Warp system overview. B Mem

architeture, we present performance data for a variety of Ag
applications on Warp, and a comparison of the architecture of AdrQ Bar >

Warp to other parallel machines.

II. WARP SYSTEM OVERVIEW Fig. 2. Warp cell data path.

There are three major components in the system-the Warp towards scientific computing and signal processing. In both
processor array (Warp array), the interface unit (IU), and the cases, wide instruction words are used for a direct encoding of
host, as depicted in Fig. 1. The Warp array performs the the hardware resources, and software is used to manage the
computation-intensive routines such as low-level vision rou- parallelism (that is, to detect parallelism in the application
tines or matrix operations. The IU handles the input/output code, to use the multiple functional units, and to pipeline
between the array and the host, and can generate addresses instructions). The Warp cell differs from these earlier proces-
(Adr) and control signals for the Warp array. The host sors in two key aspects: the full crossbar of the Warp cell
supplies data to and receives results from the array. In provides a higher intracell bandwidth, and the X and Y
addition, it executes those parts of the application programs channels with their associated queues provide a high intercell
which are not mapped onto the Warp array. For example, the bandwidth, which is unique to the Warp array architecture.
host may perform decision-making processes in robot naviga- The host consists of a Sun-3 workstation that serves as the
tion or evaluate convergence criteria in iterative methods for master controller of the Warp machine, and a VME-based
solving systems of linear equations. multiprocessor external host, so named because it is external
The Warp array is a linear systolic array with identical cells, to the workstation. The workstation provides a Unix environ-

called Warp cells, as shown in Fig. 1. Data flow through the ment for running application programs. The external host
array on two communication channels (X and Y). Those controls the peripherals and contains a large amount of
addresses for cells' local memories and control signals that are memory for storing data to be processed by the Warp array. It
generated by the IU propagate down the Adr channel. The also transfers data to and from the Warp array and performs
direction of the Y channel is statically configurable. This operations on the data when necessary, with low operating
feature is used, for example, in algorithms that require system overhead.
accumulated results in the last cell to be sent back to the other Both the Warp cell and LU use off-the-shelf, TTL-compati-
cells (e.g., in back-solvers), or require local exchange of data ble parts, and are each implemented on a 15 x 17 in2 board.
between adjacent cells (e.g., in some implementations of The entire Warp machine, with the exception of the Sun-3, is
numerical relaxation methods). housed in a single 19 in rack, which also contains power
Each Warp cell is implemented as a programmable horizon- supplies and cooling fans. The machine typically consumes

tal microengine, with its own microsequencer and program about 1800 W.
memory for 8K instructions. The Warp cell data path, as

depicted in Fig. 2, consists of a 32-bit floating-point multiplier III. WARP ARRAY ARCHITECTURE
(Mpy), a 32-bit floating-point adder (Add), two local memory In the Warp machine, parallelism exists at both the array
banks for resident and temporary data (Mem), a queue for and cell levels. This section discusses how the Warp architec-
each intercell communication channel (XQ, YQ, and AdrQ), ture is designed to allow efficient use of the array level
and a register file to buffer data for each floating-point unit parallelism. Architectural features to support the cell level
(AReg and MReg). All these components are connected parallelism are described in the next section.
through a crossbar. Addresses for memory access can be The key features in the architecture that support the array
computed locally by the address generation unit (AGU), or level parallelism are simple topology of a linear array,
taken from the address queue (AdrQ). powerful cells with local program control, large data memory
The Warp cell data path is similar to the data path of the for each cell, and high intercell communication bandwidth.

Floating Point Systems AP-120B/FPS-164 line of processors These features support several program partitioning methods
[9], which are also used as attached processors. Both the Warp important to many applications [21], [221. More details on the
cell and any of these FPS processors contain two floating-point partitioning methods are given in Section VII-B, and a sample
units, memory and an address generator, and are oriented of applications using these methods is listed in Section VIII.

ANNARATONE et al.: WARP COMPUTER 1525

A linear array is easier for a programmer to use than higher significantly revised when we reimplemented Warp on PC
dimensional arrays. Many algorithms in scientific computing boards. For the wire-wrapped prototype, we omitted some

and signal processing have been developed for linear arrays architectural features that are difficult to implement and are
[18]. Our experience of using Warp for low-level vision has not necessary for a substantial fraction of application programs
also shown that a linear organization is suitable in the vision [1]. This simplification in the design permitted us to gain
domain as well. A linear array is easy to implement in useful experience in a relatively short time. With the experi-
hardware, and demands a low external I/O bandwidth since ence of constructing and using the prototype, we were able to
only the two end cells communicate with the outside world. improve the architecture and expand the application domain of
Moreover, a linear array consisting of powerful, programma- the production machine.
ble processors with large local memories can efficiently
simulate other interconnection topologies. For example, a A. Intercell Communication
single Warp cell can be time multiplexed to perform the Each cell communicates with its left and right neighbors
function of a column of cells, so that the linear Warp array can through point-to-point links, two for data and one for
implement a two-dimensional systolic array. addresses. A queue with a depth of 512 words is associated
The Warp array can be used for both fine-grain and large- with each link (XQ, YQ and AdrQ in Fig. 2) and is placed in

grain parallelism. It is efficient for fine-grain parallelism the data path of the input cell. The size of the queue is just
needed for systolic processing, because of its high intercell large enough to buffer one or two scan-lines of an image,
bandwidth. The I/O bandwidth of each cell is higher than that which is typically of size 512 x 512 or 256 x 256. The
of other processors with similar computational power. Each ability to buffer a complete scan line is important for the
cell can transfer 20 million 32-bit words (80 Mbytes) per efficient implementation of some algorithms such as two-
second to and from its neighboring cells, in addition to 20 dimensional convolutions [19]. Words in the queues are 34
million 16-bit addresses. This high intercell communication bits wide; along with each 32-bit data word, the sender
bandwidth permits efficient transfers of large volumes of transmits a 2-bit control signal that can be tested by the
intermediate data between neighboring cells. receiver.
The Warp array is efficient for large-gain parallelism Flow control for the communication channels is imple-

because it is composed of powerful cells. Each cell is capable mented in hardware. When a cell tries to read from an empty
of operating independently; it has its own program sequencer queue, it is blocked until a data item arrives. Similarly, when a
and program memory of 8K instructions. Moreover, each cell cell tries to write to a full queue of a neighboring cell, the
has 32K words of local data memory, which is large for writing cell is blocked until some data are removed from the
systolic array designs. For a given I/O bandwidth, a larger full queue. The blocking of a cell is transparent to the
data memory can sustain a higher computation bandwidth for program; the state of all the computational units on the data
some algorithms [20]. path freezes for the duration the cell is blocked. Only the cell

Systolic arrays are known to be effective for local opera- that tries to read from an empty queue or to deposit a data item
tions, in which each output depends only on a small into a full queue is blocked. All other cells in the array
corresponding area of the input. The Warp array's large continue to operate normally.' The data queues of a blocked
memory size and its high intercell I/O bandwidth enable it to cell are still able to accept input; otherwise, a cell blocked on
perform global operations in which each output depends on an empty queue will never become unblocked.
any or a large portion of the input [21]. The ability of The implementation of run-time flow control by hardware
performing global operations as well significantly broadens has two implications. First, we need two clock generators-
the applicability of the machine. Examples of global opera- one for the computational units whose states freeze whenever a
tions are fast Fourier transform (FFT), image component cell is blocked, and one for the queues. Second, since a cell
labeling, Hough transform, image warping, and matrix com- can receive data from either of its two neighbors, it can block
putations such as LU decomposition or singular value decom- as a result of the status of the queues in either neighbor, as well
position (SVD). as its own. This dependence on other cells adds serious timing

Because each Warp cell has its own sequencer and program constraints to the design since clock control signals have to
memory, the cells in the array can execute different programs cross board boundaries. This complexity will be further
at the same time. We call computation where all cells execute discussed in Section V.
the same program homogeneous, and heterogeneous other- The intercell communication mechanism is the most revised
wise. Heterogeneous computing is useful for some applica- feature on the cell; it has evolved from primitive programma-
tions. For example, the end cells may operate differently from ble delay elements to queues without any flow control
other cells to deal with boundary conditions. Or, in a hardware, and finally to the run-time flow-controlled queues.
multifunction pipeline [13], different sections of the array In the following, we step through the different design changes.
perform different functions, with the output of one section 1) Programmable Delay: In an early design, the input
feeding into the next as input, buffer on each communication channel of a cell was a

programmable delay element. In a programmable delay
IV. WARP CELL ARCHITECTURE element, data are latched in every cycle and they emerge at the

This section describes the design and the evolution of the output port a constant number of cycles later. This structure i',
architectural features of the cell. Some of these features were found in many systolic algorithm designs to synchronize or

1526 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

delay one data stream with respect to another. However, First cell Second cell
programmable high-performance processors like the Warp dequeue(X); nop
cells require a more flexible buffering mechanism. Warp output(X) nop
programs do not usually produce one data item every cycle; a dequeue (X); nop
clocking discipline that reads and writes one item per cycle compute dequeue(X);clocking ~~~~~~~~~~~~~~~compute output (X)
would be too restrictive. Furthermore, a constant delay output (X) dequeue (X);
through the buffer means that the timing of data generation computecomrpute
must match exactly that of data consumption. Therefore, the output (X)
programmable delays were replaced by queues to remove the Fig. 3. Compile-time flow control.
tight coupling between the communicating cells.

2) Flow Control: Queues allow the receiver and sender to
run at their own speeds provided that the receiver does not grams executableoothemachine. Meove manyepro-grams for the prototype machines can be made more efficient
read past the end of the queue and the sender does not and easier to write by replacing the FOR loops with WHILE
overflow the queues. There are two different flow control loops. For example, instead of executing a fixed number of
disciplines, run-time and compile-time flow-control. As dis- iterations to guarantee convergence, the iteration can be
cussed above, hardware support for run-time flow control can s a s . T
be difficult to design, implement, and debug. Alternatively, compiler can produce more efficient code since compile-time
for a substantial set of problems in our application domain, cmiecaprdemoefiint cod sic compile-time..formapsubstntiaflowsntoprolnblem inmourapplication dmatin, flow control relies on delaying the receiving cell sufficiently to
compile-time fo contrce implementedby enertin guarantee correct behavior, but this delay is not necessarily the
code that requires no run-time support. Therefore, we elected miiu dea.edd u-iefo oto ildnm
not to support run-time flow control in the prototype. This cally find the minimum bound.
decision permitted us to accelerate the implementation and 3) input Control Ihunta3) Input Control: In the current design, latching of data
experimentation cycle. Run-time flow control is provided in into a cell's queue is controlled by the sender, rather than by
the production machine, so as to widen the application domain the receiver. As a cell sends data to its neighbor, it also signals
of the machine. the receiving cell's input queue to accept the data.

Compile-time flow control can be provided for all programs In our first two-cell prototype machine, input data were
where data only flow in one direction through the array and l u t m
where the control flow of the programs is not data dependent. cel Tsmedtha intrc tion reqrece
Data dependent control flow and two-way data flow can also ceraTio betweenthe snder andct iver;ite se

be allowed for programs satisfying some restrictions [6]. cpereteit dataeon the communicationechannel,;andeinethe
Compile-time flow control is implemented by skewing the se clc cycle the civerilatinthelinput isde
computation of the cells so that no receiving cell reads from a was obviously not adequate if flow control was supported at
queue before the corresponding sending cell writes to it. For tie inufactwdere i t wasno pdeuteen

example suppos two ajacent ells eah execte the oll'o* run time; in fact, we discovered that it was not adequate even
example suppose two adjacent cells each execute the follow- if flow control was provided at compile time. The tight

coupling between the sender and the receiver greatly increased
dequeue (X); the code size of the programs. The problem was corrected in
output (X); subsequent implementations by adopting the design we cur-

dequeue (X); rently have, that is, the sender provides the signal to the
compute receiver's queue to latch in the input data.
compute In the above discussion of the example of Fig. 3, it was

output (X) ; assumed that the control for the second cell to latch in input
was sent with the output data by the first cell. If the second cell

In this program, the first cell removes a data item from the were to provide the input control signals, we would need to
X queue (dequeue (X)) and sends it to the second cell on X add an input operation in its microprogram for every output
(output (X)). The first cell then removes a second item, and operation of the first cell, at exactly the cycle the operation
forwards the result to the second cell after two cycles of takes place. Doing so, we obtain the following program for the
computation. For this program, the second cell needs to be second cell:
delayed by three cycles to ensure that the dequeue of the nop
second cell never overtakes the corresponding output of the input (X)
first cell, and the compiler will insert the necessary nops, as
shown in Fig. 3. .. .dqee()

Run-time flow control expands the application domain of oeutput (X),
the machine and often allows the compiler to produce more inu(X,dqeeX)
efficient code; therefore, it iS provided in the production compute ;
machine. Without run-time flow control, WHILE loops and compute ;
FOR loops and computed loop bounds on the cells cannot be otu X
implemented. That is, only loops with compile-time constant otu X
bounds can be supported. This restriction limits the class of Each line in the program is a microinstruction; the first column

ANNARATONE et al.: WARP COMPUTER 1527

0 _0 0 a2 0 a 0 a

n O 2n 1 3L 1 b 1 b

n br 3 b

n-i 3 b [b 0 b

c 0 c 0 c 1 a 1 a

d
1 9

1 d I d 2 b2 a 2 aa
3 b 3 b b

c c

d d

0

i~~~~~~~~~~~~~~~~~~~~~~~

(a) (b) (c)
c Fig. 5. Merging loops with different lengths. (a) Original loops. (b)
d Execution trace. (c) Merged loop.

(a) (b) (c)
Fig. 4. Merging equal-length loops with an offset. (a) Original loops. (b) to increase the queue size from 128 to 512 words, with board

Execution trace. (c) Merged loop. space left over for other improvements as well.
5) Queue Size: The size of the queues is an important factor

contains the Input operations to match the Output operations in the efficiency of the array. Queues buffer the input for a cell
of the first cell, and the second column contains the original and relax the coupling of execution in communicating cells.
program. Although the average communication rate between two com-

Since the input sequence follows the control flow of the municating cells must balance, a larger buffer allows the cells
sender, each cell is logically executing two processes: the to receive and send data in bursts at different times.
input process, and the original computation process of its own. The long queues allow the compiler to adopt a simple code
These two processes must be merged into one since there is optimization strategy [23]. The throughput for a unidirectional
only one sequencer on each cell. If the programs on array is maximized by simply optimizing the individual cell
communicating cells are different, the input process and the programs provided that sufficient buffering is available be-
cell's own computation process are different. Even if the cell tween each pair of adjacent cells. In addition, some al-
programs are identical, the cell's computation process may gorithms, such as two-dimensional convolution mentioned
need to be delayed with respect to the input process because of above, require large buffers between cells. If the queues are
compile-time flow control as described above. As a result, we not large enough, a program must explicitly implement buffers
may need to merge control constructs from different parts of in local memory.
the program. Merging two equal-length loops, with an offset
between their initiation times, requires loop unrolling and can B. Control Path
result in a threefold increase in code length. Fig. 4 illustrates Each Warp cell has its own local program memnory and
this increase in code length when merging two identical loops sequencer. This is a good architectural design even if the cells
of n iterations. Numbers represent operations of the input all execute the same program, as in the case of the prototype
process, and letters represent the computation process. If two Warp machine. The reason is that it is difficult to broadcast the
iterative statements of different lengths are overlapped, then microinstruction words to all the cells, or to propagate them
the resulting code size can be of the order of the least common from cell to cell, since the instructions contain a large number
multiple of their lengths. For example, in Fig. 5, a two- of bits. Moreover, even if the cells execute the same program,
instruction loop of 3n iterations is merged with a three- the computations of the cells are often skewed so that each cell
instruction loop of 2n iterations. Since 6 is the minimum is delayed with respect to its neighboring cell. This skewed
number of cycles before the combined sequence of operations computation model is easily implemented with local program
repeats itself, the resulting merged program is a six-instruction control. The local sequencer also supports conditional branch-
loop of n iterations. ing efficiently. In SIMD machines, branching is achieved by

4) Randomly Accessible Queues: The queues in all the masking. The execution time is equivalent to the sum of the
prototype machines are implemented with RAM chips, with execution time of the then-clause and the else-clause of a
hardware queue pointers. Furthermore, there was a feedback branch. With local program control, different cells may follow
path from the data crossbar back to the queues, because we different branches of a conditional statement depending on
intended to use the queues as local storage elements as well their individual data; the execution time is the execution time
[1]. Since the pointers must be changed when the queue is of the clause taken.
accessed randomly, and there is only a single pair of queue The Warp cell is horizontally microcoded. Each component
pointers, it is impossible to multiplex the use ofthe buffer as a in the data path is controlled by a dedicated field; this
communication queue and its use as a local storage element. orthogonal organization of the microinstruction word makes
Therefore, the queues in the production machine are now scheduling easier since there is no interference in the schedule
implemented by a FIFO chip. This implementation allows us of different components.

1528 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

C. Data Path 4) Address Generation: As shown in Fig. 2, each cell

1) Floating-Point Units: Each Warp cell has two floating- contains an integer unit (AGU) that is used predominantly as a

point units, one multiplier and one adder, implemented with local address generation unit. The AGU is a self-contained
commercially available floating-point chips [35]. These float- integer ALU with 64 registers. It can compute up to two

ing-point chips depend on extensive pipelining to achieve high addresses per cycle (one read address and one write address).
performance. Both the adder and multiplier have five-stage The local address generator on the cell is one of the

pipelines. General purpose computation is difficult to imple- enhancements that distinguish the PC Warp machine from the
ment efficiently on deeply pipelined machines because data- prototype. In the prototype, data independent addresses were

dependent branching is common. There is less data depen- generated on the IU and propagated down the cells. Data

dency in numerical or computer vision programs, and we dependent addresses were computed locally on each cell using
developed scheduling techniques that use the pipelining the floating-point units. The IU of the prototype had the

efficiently. Performance results are reported in Section VIII. additional task of generating the loop termination signals for
2) Crossbar: Experience with the Programmable Systolic the cells. These signals were propagated along the Adr channel

Chip showed that the internal data bandwidth is often the to the cells in the Warp array.
bottleneck of a systolic cell [11]. In the Warp cell, the two There was not enough space on the wire-wrapped board to

floating-point units can consume up to four data items and include local address generation capability on each Warp cell.
generate two results per cycle. Several data storage blocks Including an AGU requires board space not only for the AGU
interconnected with a crossbar support this high data process- itself, but also for its environment and the bits in the
ing rate. There are six input and eight output ports connected instruction word for controlling it. An AGU was area

to the crossbar switch; up to six data items can be transferred expensive at the time the prototype was designed, due to the
in a single cycle, and an output port can receive any data item. lack of VLSI parts for the AGU functions. The address
The use of the crossbar also makes compilation easier when generation unit in the prototype IU uses AMD2901 parts

compared to a bus-based system since conflicts on the use of which contain 16 registers. Since this number of registers is

one or more shared buses can complicate scheduling tremen- too small to generate complicated addressing patterns quickly,
dously. the ALU is backed up by a table that holds up to 16K
Custom chip designs that combine the functionality of the precomputed addresses. This table is too large to replicate on

crossbar interconnection and data buffers have been proposed all the cells. The address generation unit on the PC Warp cells

[161, [28]. In the interconnection chip designed for polycyclic is a new VLSI component (IDT-49C402), which combines the

architectures [28], a "queue" is associated with each cross 64-word register file and ALU on a single chip. The large
point of the crossbar. In these storage blocks, data are always number of registers makes the backup table unnecessary for

written at the end of the queue; however, data can be read, or most addressing patterns, so that the AGU is much smaller and
removed, from any location. The queues are compacted can be replicated on each cell of the production machine.
automatically whenever data are removed. The main advan- The prototype was designed for applications where all cells
tage of this design is that an optimal code schedule can be execute the same program with data independent loop bounds.
readily derived for a class of inner loops [27]. In the Warp cell However, not all such programs could be supported due to the
architecture, we chose to use a conventional crossbar with data size of the address queue. In the pipelining mode, where the

buffers only for its outputs (the AReg and MReg register files cells implement different stages of a computation pipeline, a

in Fig. 2), because of the lower hardware cost. Near-optimal cell does not start executing until the preceding cell is finished
schedules can be found cheaply using heuristics [23]. with the first set of input data. The size of the address queue

3) Data Storage Blocks: As depicted by Fig. 2, the local must at least equal the number of addresses and control signals
memory hierarchy includes a local data memory, a register file used in the computation of the data set. Therefore, the size of
for the integer unit (AGU), two register files (one for each the address queues limits the number of addresses buffered,
floating-point unit), and a backup data memory. Addresses for and thus the grain size of parallelism.
both data memories come from the address crossbar. The local For the production machine, each cell contains an AGU and
data memory can store 32K words, and can be both read and can generate addresses and loop control signals efficiently.
written every (200 ns) cycle. The capacity of the register file This improvement allows the compiler to support a much
in the AGU unit is 64 words. The register files for the floating- larger class of application. We have preserved the address

point units each hold 31 usable words of data. (The register generator and address bank on the IU (and the associated Adr
file is written to in every cycle so that one word is used as a channel, as shown in Fig. 1). Therefore, the IU can still
sink for those cycles without useful write operations.) They support those homogeneous computations that demand a small
are five-ported data buffers and each can accept two data items set of complicated addressing patterns that can be conveniently
from the crossbar and deliver two operands to the functional stored in the address bank.
units every cycle. The additional ports are used for connecting V APCL N UIPEETTO
the register files to the backup memory. This backup memory V APCL N UIPEETTO
contains 2K words and is used to hold all scalars, floating- The Warp array architecture operates on 32-bit data. All
point constants, and small arrays. The addition of the backup data channels in the Warp array, including the internal data
memory increases memory bandwidth and improves through- path of the cell, are implemented as 16-bit wide channels
put for those programs operating mainly on local data. operating at 100 ns. There are two reasons for choosing a 16-

ANNARATFONE el al.: WARP COMPUTER 1529

TABLE I TABLE II
IMPLEMENTATION METRICS FOR WARP CELL IMPLEMENTATION METRICS FOR IU

Block in Warp cell Chip count Area contribution (Percent) Block in IU Chip count Area contribution (Percent)

Queues 22 9 Data-converter 44 19
Crossbar 32 11 Address generator 45 19
Processing elements and Clock and host interface 101 31
registers 12 10 Microeng'ine 49 20

Data memory 31 9 Other 25 11I
Local address generator 13 6 Total for IU 264 100
Microengine 90 35__ -__ -
Other 55 20
Total for Warp cell 255 100

UNIX 4.2 Workstation

bit time-multiplexed implemnentation. First, a32-bit wide ~i
hardware path would not allow.implementing one cell per
board. Second, the 200 ns cycle time dictated by the Weitek

SUPPORT
floating-point chips (at the time of design) allows the rest of PROCES$SOR VSB LOCAL BUS

the data path to be time multiplexed. This would not have been
possible if the cycle time of the floating-point chips were underP NNI N 0
160 ns. The microengine operates at 100 ns and supports high VMS
and low cycle operations of the data path separately.

All cells in the array are driven from a global 20 MHz clockF
generated by the IU. To allow each cell to block individually, P N N N S N N N p

signals. Each cell monitors two concurrent processes: the iCLUSTERcel msthaeBonrolovrBheusLoUthSgoblRlok2
input data flow (I process) and the output data flow (0
process). If the input data queue is empty, the I process flow ITRAEUNIT P rcso
must be suspended befor-e the next read from the queue. :sic

I: graphics input
Symmetrically, the 0 process is stopped before the next write WARP' PROCESSOR ARA 0:. graphics output
whenever the input queue of the neighboring cell is full.Fi.6HotfthWapmcneStopping the I or 0 process pauses all computation and outputFi.6HotfthWapmcne
activity, but the cell continues to accept input. There is only a
small amount of time available between detection of the queue slower than the transfers between LU and the array. Data
full/empty status and blocking the read/write operation. Since transfers between the host and IU can be controlled by
the cycle time is only 100 ns, this tight timing led to race interrupts; in this case, the LU behaves like a slave devi'ce. The
conditions in an early design. This problem has been solved by LU can also convert packed 8-bit integers transferred from the
duplicating on each cell the status of the I/O processes of the host into 32-bit floating-point numbers for the Warp array, and
neighboring cells. In this way, a cell can anticipate a queue vice versa.

full/empty condition and react within a clock cycle. The LU is controlled by a 96-bit wide programmable
A large portion of the internal cell hardware can be microengine, whiclh is similar to the Warp cell controller in

monitored and tested using built-in serial diagnostic chains programmabil'ity. The LU has several control registers that are
under control of the LU. The serial chains are also used to mapped int'o the host address space; the host can control the IU
download the Warp cell programs. Identical programs can be and hence the Warp array by setting these registers. The LU
downloaded to all cells at a rate of 1.00 Its per instruction from has a power consumption of 82 W (typical) and 123 W
the workstation and about 67 jis per instruction from the (maximum). Table II presents implementation metrics for the
external host. Starting up a program takes about 5 ins. LU.

The Warp cell consists of six main blocks: input queues,
crossbar, processing elements, data memory, address genera-VIHOTSTE
tor, and microengine. Table I presents the contribution of The Warp host controls the Warp array and other periph-
these blocks to the implementation of the Warp cell. The erals, supports fast data transfer rates to and from the Warp

1530 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

Control of the external host is strictly centralized: the interfaces to other computers. Moreover, standard boards
workstation, the master processor, issues commands to the provide a growth path for future system improvements with a
cluster and support processors through message buffers local minimal investment of time and resources. During the
to each of these processors. The two clusters work in parallel, transition from prototype to production machine, faster
each handling a unidirectional flow of data to or from the processor boards (from 12 to 16 MHz) and larger memories
Warp processor through the IU. The two clusters can have been introduced, and they have been incorporated into
exchange their roles in sending or receiving data for different the host with little effort.
phases of a computation, in a ping-pong fashion. An arbitra-
tion mechanism transparent to the user has been implemented A. Host I/O Bandwidth
to prohibit simultaneous writing or reading to the Warp array
when the clusters switch roles. The support processor controls The Warp array can input a 32-bit word and output a 32-bit
peripheral I/O devices and handles floating-point exceptions word every 200 ns. Correspondingly, to sustain this peak rate,
and other interrupt signals from the Warp array. These each cluster must be able to read or write a 32-bit data item
interrupts are serviced by the support processor, rather than by every 200 ns. This peak I/O bandwidth requirement can be
the master processor, to minimize interrupt response time. satisfied if the input and output data are 8-bit or 16-bit integers
Afte servicing the interrupt, the support processor notifies the that can be accessed sequentially.
master processor. In signal, image, and low-level vision processing, the input
The external host is built around a VME bus. The two and output data are usually 16- or 8-bit integers. The data can

clusters and the support processor each consist of a standalone be packed into 32-bit words before being transferred to theIU,
MC68020 microprocessor (P) and a dual-ported memory which unpacks the data into two or four 32-bit floating-point
(M), which can be accessed either via a local bus or via the numbers before sending them to the Warp array. The reverse
global VME bus. The local bus is a VSB bus in the production operation takes place with the floating-point outputs of the
machine and a VMX32 SB bforthe prototype; the major Warp array. With this packing and unpacking, the data
improvements of VSB over VMX32 are better support for bandwidth requirement between the host and IU is reduced by
arbitration and the addition of DMA-type accesses. Each a factor of two or four. Image data can be packed on the
cluster has a switch board (S) for sending and receiving data digitizer boards, without incurring overhead on the host.
to and from the Warp array, through the IU. The switch also The I/O bandwidth of the PC Warp external host is greatly
has a VME interface, used by the master processor to start, improved over that of the prototype machine [5]. The PC

- ~~~~~~~~Warpsupports DMA and uses faster processor and memorystop, and control the Warp array. The VME bus of the master Warp supports DMA c and memor
processor inside the workstation is connected to the VME bus ardsvIf the data transfer is sequential DMA can be used to
of the external host via a bus-coupler (bus repeater). While the ach the transfer time os per rd. th
prootpeWap se a omeria bs-ouper te C ar block transfer mode, this transfer time is further reduced toprototype Warp used a commercial bus-coupler, the P-C Warp abu 5 s h pe o nneunildt rnfr

employs a custom-designed device. The difference between
thetwois tat the ustom-deignedbsrepeatrdecoulesthe depends on the complexity of the address computation. Forthe two iS that the custom-designed bus repeater decouples the

sml drs atrs n 2btwr staserdi
external host VME bus from the Sun-3 VME bus: intrabus sml a ss
transfers cani occur concurrently on both buses. about 900 ns.thansfere car thurememonurryank insd eh cluster processor There are two classes of applications: those whose input!There are three memory banks inside each cluster processor
to support concurrent memory accesses. For example, the first output data are pixel values (e.g., vision), and those whose

memory bank may be receiving a new set of data from an' /0 input/output data are floating-point quantities (e.g., scientific

device, while data in the second bank are transferred to the computing). In vision applications, data are often transferred
* ~~~~~~~~~inraster order. By packing/unpacking the pixels and usingWarp array, and the third contains the cluster program code.

Presently, the memory of the external host is built out of I DMA, the host I/O bandwidth can sustain the maximum

Mbyte memory boards; including the 3 Mbytes of memory on bandwidth of all such programs. Many of the applications that

the processor boards, the total memory capacity of the external need floating-point input and output data have nonsequential
host is 11I Mybtes. An expansion of up to 59 Mbytes is possible data access patterns. The host becomes a bottleneck if the rate

by populating all the 14 available slots of the VME card cage of data transfer (and address generation if DMA cannot be

with 4 Mbyte memory boards. Large data structures can be used) is lower than the rate the data are processed on the array.
stored in these memories where they will not be swapped out Fortunately, for many scientific applications, the computation

... .. . ~~~per data item is typically 'quite large and the host I/Oby the operating system. This is important for consistent
bandwidth is seldom the limiting factor in the performance ofp)erformance in real-time armlications. The external host can

also support special devices such as frame buffers and high- the array.
speed disks. This allows the programmer to transfer data B otSfwr
directly between Warp and other devices.

Except for the switch, all boards in the external host are off- The Warp host has a run-time software library that allows
the-shelf components. The industry standard boards allow us the programmer to synchronize the support processor and two
to take advantage of commercial processors, I/O boards, clusters and to allocate memory in the external host. The run-
memory, and software. They also make the host an open time software also handles the communication and interrupts
system to which it is relatively easy to add new devices and between the master and the processors in the external host.

ANNARATONE et al.: WARP COMPUTER 1531

The library of run-time routines includes utilities such as module MatrixMultiply (A in, B in, C out)
copying and moving data within the host system, subwindow float A[10,10], B[10,10], C[10,10];
selection of images, and peripheral device drivers. The cellprogram (cid: 0: 9)
compiler generates program-specific input and output routines beginfunction nun
for the clusters so that a user need not be concerned with begin
programming at this level; these routines are linked at load float rol[10]; /* stcrculates the result of a row */
time to the two cluster processor libraries. float element;

float temip;The application program usually runs on the Warp array int i,j;
under control of the master; however, it is possible to assign /* first load a column of B in each cell
subtasks to any of the processors in the external host. This for i := 0 to 9 do begin
decreases the execution time for two reasons: there is more receive (L, X, col[i], B(i,0]);

for j := 1 to 9 do beginparallelism in the computation, and data transfers between the receive (L, X, temp, B[i,j]);
cluster and the array using the VSB bus are twice as fast as send (R, X, temp);

end;
transfers between the master processor and the array through send (R, X, 0.0);
the VME bus repeater. The processors in the external host end;
have been extensively used in various applications, for /* calculate a row of C in each iteration */
example, obstacle avoidance for a robot vehicle and singular for i := 0 to 9 do begin/* each cell computes the dot product
value decomposition. between its column and the same row of A */
Memory allocation and processor synchronization inside the row := 0.0;

for j := 0 to 9 do begin
external host are handled by the application program through receive (L, X, element, AEi, j]);
subroutine calls to the run-time software. Memory is allocated send (R, X, element);row := row + element * col[j];
through the equivalent of a Unix malloc() system call, the end;
only difference being that the memory bank has to be explicitly /* send out the result of each row of C */
specified. This explicit control allows the user to fully exploit receive (L, Y, temp, 0.0);
the parallelism of the system; for example, different proces- receive (L, Y, temp, 0.0);
sors can be programmed to access different memory banks send (R, Y, temp, C[i,j]);
through different busses concurrently. send (R, Y, row, C;i,9]);

Tasks are scheduled by the master processor. The applica- end;

tion code can schedule a task to be run on the completion of a call mm;
different task. Once the master processor determines that one end
task has completed, it schedules another task requested by the Fig. 7. Example W2 program.
application code. Overhead for this run-time scheduling of
tasks is minimal. computation partitioning and algorithm design. The language

for describing the cell code is Algol-like, with iterative and
conditional statements. In addition, the language provides

As mentioned in the Introduction, Warp is programmed in a receive and send primitives for specifying intercell communi-
language called W2. Programs written in W2 are translated by cation. The compiler handles the parallelism both at the system
an optimizing compiler into object code for the Warp machine. and cell levels. At the system level, the external host and the
W2 hides the low-level details of the machine and allows the IU are hidden from the user. The compiler generates code for
user to concentrate on the problem of mapping an application the host and the IU to transfer data between the host and the
onto a processor array. In this section, we first describe the array. Moreover, for the prototype Warp, addresses and loop
language and then some common computation partitioning control signals are automatically extracted from the cell
techniques. programs; they are generated on the IU and passed down the

address queue. At the cell level, the pipelining and parallelism
A. The W2 Language in the data path of the cells are hidden from the user. The

The W2 language provides an abstract programming model compiler uses global data flow analysis and horizontal
of the machine that allows the user to focus on parallelism at microcode scheduling techniques, software pipelining and
the array level. The user views the Warp system as a linear hierarchical reduction to generate efficient microcode directly
array of identical, conventional processors that can communi- from high-level language constructs [12], [23].
cate asynchronously with their left and right neighbors. The Fig. 7 is an example of a 10 x 10 matrix multiplication
semantics of the communication primitives is that a cell will program. Each cell computes one column of the result. We
block if it tries to receive from any empty queue or send to a first load each cell with a column of the second matrix
full one. This semantics is enforced at compile time in the operand, then we stream the first matrix in row by row. As
prototype and at run time in the PC Warp, as explained in each row passes through the array, we accumulate the result
Section IV-A-2. for a column in each cell, and send the entire row of results to
The user supplies the code to be executed on each cell, and the host. The loading and unloading of data are slightly

the compiler handles the details of code generation and complicated because all cells execute the same program. Send
scheduling. This arrangement gives the user full control over and receive transfer data between adjacent cells; the first

1532 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

parameter determines the direction, and the second parameter The system is solved by repeatedly combining the current
selects the hardware channel to be used. The third parameter values of u on a two-dimensional grid using the following
specifies the source (send) or the sink (receive). The fourth recurrence.
parameter, only applicable to those channels communicating ij + + + ui+ ,j +
with the host, binds the array input and output to the formal u. (1-)u + ii
parameters of the cell programs. This information is used by 4)
the compiler to generate code for the host. where co is a constant parameter.

B. Program Partitioning In the Warp implementation, each cell is responsible for one
As discussed in Section III, the architecture of the Warp relaxation, as expressed by the above equation. In raster order,

array can support various kinds of algorithms: fine-grain or each cell receives inputs from the preceding cell, performs its
large-grain parallelism, local or global operations, homogene- relaxation step, and outputs the results to the next cell. While a
ous or heterogeneous. There are three general program cell is performing the kth relaxation step on row i, the
partitioning methods [4], [22]: input partitioning, output preceding and next cells perform the k - 1st and k + 1st
partitioning, and pipelining. relaxation steps on rows i + 2 and i - 2, respectively. Thus,

1) Input Partitioning: In this model, the input data are in one pass of the u values through the ten-cell Warp array, the
partitioned among the Warp cells. Each cell computes on its above recurrence is applied ten times. This process is
portion of the input data to produce a corresponding portion of repeated, under control of the external host, until convergence
the output data. This model is useful in image processing is achieved.
where the result at each point of the output image depends only
on a small neighborhood of the corresponding point of the VIII. EVALUATION
input image. Since the two copies of the wire-wrapped prototype Warp

Input partitioning is a simple and powerful method for machine became operational at Carnegie Mellon in 1986, we
exploiting parallelism-most parallel machines support it in have used the machines substantially in various applications
one form or another. Many of the algorithms on Warp make [2]-[4], [10], [13], [22]. The application effort has been
use of it, including most of the low-level vision programs, the increased since April 1987 when the first PC Warp machine
discrete cosine transform (DCT), singular value decomposi- was delivered to Carnegie Mellon.
tion [2], connected component labeling [22], border follow- The applications area that guided the development of Warp
ing, and the convex hull. The last three algorithms mentioned most strongly was computer vision, particularly as applied to
also transmit information in other ways; for example, con- robot navigation. We studied a standard library of image
nected components labeling first partitions the image by rows processing algorithms [30] and concluded that the great
among the cells, labels each cell's portion separately, and then majority of algorithms could efficiently use the Warp ma-
combines the labels from different portions to create a global chine. Moreover, robot navigation is an area of active research
labeling. at Carnegie Mellon and has real-time requirements where

2) Output Partitioning: In this model, each Warp cell Warp can make a significant difference in overall performance
processes the entire input data set or a large part of it, but [32], [33]. Since the requirements of computer vision had a
produces only part of the output. This model is used when the significant influence on all aspects of the design of Warp, we
input to output mapping is not regular, or when any input can contrast the Warp machine with other architectures directed
influence any output. Histogram and image warping are towards computer vision in Section VIII-B.
examples of such computations. This model usually requires a Our first effort was to develop applications that used Warp
lot of memory because either the required input data set must for robot navigation. Presently mounted inside of a robot
be stored and then processed later, or the output must be stored vehicle, Warp has been used to perform road following and
in memory while the input is processed, and then output later. obstacle avoidance. We have implemented road following
Each Warp cell has 32K words of local memory to support using color classification, obstacle avoidance using stereo
efficient use of this model. vision, obstacle avoidance using a laser range-finder, and path

3) Pipelining: In this model, typical of systolic computa- planning using dynamic programming. We have also imple-
tion, the algorithm is partitioned among the cells in the array, mented a significant image processing library (over 100
and each cell performs one stage of the processing. The Warp programs) on Warp [30], to support robot navigation and
array's high intercell communication bandwidth and effective- vision research in general. Some of the library routines are
ness in handling fine-grain parallelism make it possible to use listed in Table IV.
this model. For some algorithms, this is the only method of A second interest was in using Warp in signal processing
achieving parallelism, and scientific computing. Warp's high floating-point computa-
A simple example of the use of pipelining is the solution of tion rate and systolic structure make it especially attractive for

elliptic partial differential equations using successive overre- these applications. We have implemented singular value
laxation [36]. Consider the following equation: decomposition (SVD) for adaptive beam forming, fast two-

dimensional image correlation using FFT, successive overre-
a 2u +8 a2u x,y laxation (SOR) for the solution of elliptic partial differential

+x =f(, A equations (PDE), as well as computational geometry al-

ANNARATONE et al.: WARP COMPUTER 1533

TABLE III
MEASURED SPEEDUPS ON THE WIRE-WRAPPED PROTOTYPE WARP

MACHINE

Task Time (ms) Speedup over Vax 11/780
(All images are 512x512. All code compiler generated.) with floating-point accelerator

Quadratic image warping 400 100
Warp array generates addresses using quadratic fonn in 240 ms.
Host computes output image using addresses generated by Warp.

Road-following 6000 200
Obstacle avoidance using ERIM, a laser range-finder 350 60

Time does not include 500 ms for scanner I/O.
Minimum-cost path, 512x512 image, one pass 500 60

Host provides feedback.
Detecting lines by Hough Transform 2000 387

Host merges results.
Minimum-cost path, 350-node graph 16000 98
Convex hull, 1,000 random nodes 18 74
Solving elliptic PDE by SOR, 50,625 unknowns (10 iterations) 180 440
Singular value decomposition of 1OOxlOO matrix 1500 100
FFr on 2D image 2500 300

Warp array takes 600 ms. Remaining time is for data shuffling by host.
Image correlation using FFT 7000 300

Data shuffling in host.
Image compression with 8x8 discrete cosine transforms 110 500
Mandelbrot image, 256 iterations 6960 100

TABLE IV
PERFORMANCE OF SPECIFIC ALGORITHMS ON THE WIRE-WRAPPED

PROTOTYPE WARP MACHINE

Task Time (ms) MFLOPS NIFLOPS
All images are 512x512. All code compiler generated. (Upper bound) (Achieved)

lOOxlOO matrix multiplication. 25 100 79

3x3 convolution. 70 94 66

1 lxl 1 symmetric convolution. 367 90 59

Calculate transformaLi n table for non-linear warping. 248 80 57

Generate matrices for plane fit 174 62 49
for obstacle avoidance using ERIM scanner.

Generate mapping table for affine image warping. 225 67 43

Moravec's interest operator. 82 60 36

3x3 maximum filtering. 280 67 30

Sobel edge detection. 206 77 30

Label color image using quadratic form for road following. 308 87 27

Image magnification using cubic spline interpolation. 8438 66 25

7x7 average gray values in square neighborhood. 1090 51 24

SxS convolution. 284 52 23

Calculate quadratic form from labelled color image. 134 58 22

Compute gradient using 9x9 Canny operator. 473 92 21

Discrete cosine transform on 8x8 windows. 175 94 21

3x3 Laplacian edge detection. 228 94 20

lSxlS Harwood-style symmetric edge preserving smoothing. 32000 50 16

Find zero-crossings. 179 78 16

Calculate (x,y,z) coordinates from ERIM laser range scanner data. 24 75 13

Histogram. 67 50 12

Coarse-to-fine correlation for stereo vision. 12 77 11

3x3 median filter. 448 50 7

Levialdi's binary shrink operation. 180 71 7

31x31 average gray values in square neighborhood. 444 61 5

Convert real image to integer using max, min linear scaling. 249 66 4

Average 512x512 image to produce 256x256. 15(1 58 3

gorithms such as convex hull and algorithms for finding the performance in several systems for robot navigation, signal
shortest paths in a graph. processing, scientific computation, and geometric algorithms,

while Table IV presents Warp's performance on a large
A. Performance Data number of specific algorithms. Both tables report the perform-
Two figures of merit are used to evaluate the performance ance for the wire-wrapped Warp prototype with a Sun-31160

of Warp. One is overall system performance, and the other is as the master processor. The PC Warp will in general exceed
performance on specific algorithms. Table III presents Warp's the reported performance, because of its improved architec-

1534 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

25

20

15

Programs

10

5

0
0 10 20 30 40 50 60 70 80 90

MFLOPS

Fig. 8.

ture and increased host I/O speed as described earlier. Table is a bottleneck, and it is possible to speed up this portion of the
III includes all system overheads except for initial program Warp machine by recoding the I/O transfer programs gener-
memory loading. We compare the performance of Warp to a ated by the W2 compiler in MC68020 Assembly language.
VAX 11/780 with floating-point accelerator because this Moreover, the external host for the PC Warp is faster and
computer is widely used and, therefore, familiar to most supports DMA, so that even with the compiler generated code
people. it will no longer be the bottleneck. Third, since restrictions on

Statistics have been gathered for a collection of 72 W2 using the Warp cells in a pipeline are removed in PC Warp as
programs in the application areas of vision, signal processing, explained in Section IV-B-4, it will be possible to implement
and scientific computing [23]. Table IV presents the utilization many of the vision algorithms in a pipelining fashion. This can
of the Warp array for a sample of these programs. System lead to a threefold speedup, since input, computation, and
overheads such as microcode loading and program initializa- output will be done at the same time. Fourth, in a few cases we
tion are not counted. We assume that the host I/O can keep up have discovered a better algorithm for the Warp implementa-
with the Warp array; this assumption is realistic for most tion than what was originally programmed.
applications with the host of the production Warp machine. In Table III, the speedup ranges from 60 to 500. With the
Fig. 8 shows the performance distribution of the 72 programs. optimizations we discuss above, all systems listed should show
The arithmetic mean is 28 MFLOPS, and the standard at least a speedup of about 100 over the VAX 11/780 with a
deviation is 18 MFLOPS. floating-point accelerator.
The Warp cell has several independent functional units,

including separate floating-point units for addition and multi- B. Architectural Alternatives
plication. The achievable performance of a program is limited
by the most used resource. For example, in a computation that We discuss the architectural decisions made in Warp by
contains only additions and no multiplications, the maximum contrasting them with the decisions made in bit-serial proces-
achievable performance is only 50 MFLOPS. Table IV gives sor arrays, such as the Connection Machine [34] and MPP [7].
an upper bound on the achievable performance and the We chose these architectures because they have also been used
achieved performance. The upper bound is obtained by extensively for computer vision and image processing, and
assuming that the floating-point unit that is used more often in because the design choices in these architectures were made
the program is the most used resource, and that it can be kept significantly differently than in Warp. These differences help
busy all the time. That is, this upper bound cannot be met even exhibit and clarify the design space for the Warp architecture.
with a perfect compiler if the most used resource is some other We attempt to make our comparison quantitative by using
functional unit, such as the memory, or if data dependencies in benchmark data from a DARPA Image Understanding
the computation prevent the most used resource from being ("DARPA IU") workshop held in November 1986 to com-

used all the time. pare various computers for vision [29]. In this workshop,
Many of the programs in Tables III and IV are coded benchmarks for low and midlevel computer vision were

without fine tuning the W2 code. Optimizations can often defined and programmed by researchers on a wide variety of
provide a significant speedup over the times given. First, the computers, including Warp and the Connection Machine [25].
W2 code can be optimized, using conventional programming We briefly review salient features of the Connection
techniques such as unrolling loops with few iterations, Machine, called CM-i, used in these benchmarks. It is a
replacing array references by scalars, and so on. Second, in SIMD machine, consisting of an array of 64K bit-serial
some cases in Table III the external host in the prototype Warp processing elements, each with 4K bits of memory. The

ANNARATONE et al.: WARP COMPUTER 1535

processors are connected by two networks: one connects each fact, because of the linear topology, there is no time advantage
processor to four adjacent processors, and the other is a 12- to limit the passage of an image through less than all
dimensional hypercube, connecting groups of 16 processors. processors.) This is important in global image computations
The array is controlled by a host, which is a Symbolics 3640 such as Hough transform, where any input can influence any
Lisp machine. CM-1 is programmed in an extension to output. For example, the transform of a 512 x 512 image into
Common Lisp called *Lisp [24], in which references to data a 180 x 512 Hough space takes 1.7 s on Warp, only 2.5 times
objects stored in the CM-I array and objects on the host can be as long as on CM-1. The ratio here is far less than for a simple
intermixed. local computation on a large image, such as Laplacian and

Although our intention is to illustrate architectural decisions zero crossing.
made in Warp, not to compare it to the Connection Machine, In some global operations, processing is done separately on
we should not cite benchmark performance figures on two different cells, then combined in a series of pairwise merge
different computers without mentioning two critical factors, operations using a "divide and conquer" approach. This type
namely cost and size. CM-1 is approximately one order of of computation can be difficult to implement using limited
magnitude more expensive and larger than Warp. topology communications as in Warp. For example, in the

1) Programming Model: Bit-serial processor arrays imple- Warp border following algorithm for a 512 x 512 image,
ment a data parallel programming model, in which different individual cells trace the borders of different portions of the
processors process different elements of the data set. In the image, then those borders are combined in a series of merge
Connection Machine, the programmer manipulates data ob- operations in the Warp array. The time for border following
jects stored in the Connection Machine array by the use of on Warp is 1100 ms, significantly more than the 100 ms the
primitives in which the effect of a Lisp operator is distributed algorithm takes on CM-1.
over a data object. 3) Processor Number and Power: Warp has only ten

In systolic arrays, the processors individually manipulate parallel processing elements in its array, each of which is a
words of data. In Warp, we have implemented data parallel powerful 10 MFLOPS processor. CM-1, on the other hand,
programming models through the use of input and output has 64K processing elements, each of which is a simple bit-
partitioning. We have encapsulated input partitioning over serial processor. Thus, the two machines stand at opposite
images in a specialized language called Apply [14]. In addition ends of the spectrum of processor number and power.
to these models, the high interprocessor bandwidth of the We find that the small number of processing elements in
systolic array allows efficient implementation of pipelining, in Warp makes it easier to get good use of the Warp array in
which not the data, but the algorithm is partitioned. problems where a complex global computation is performed

2) Processor I/O Bandwidth and Topology: Systolic on a moderate-sized data set. In these problems, not much data
arrays have high bandwidth between processors, which are parallelism is "available." For example, the DARPA IU
organized in a simple topology. In the case of the Warp array, benchmarks included the computation of the two-dimensional
this is the simplest possible topology, namely a linear array. convex hull [26] of a set of 1000 points. The CM-1 algorithm
The interconnection networks in the Connection Machine used a brush-fire expansion algorithm, which led to an
allow flexible topology, but low bandwidth between communi- execution time of 200 ms for the complete computation. The
cating processors. same algorithm was implemented on Warp, and gave the 18

Bit-serial processor arrays may suffer from a serious ms figure reported in Table III. Similar ratios are found in the
bottleneck in I/O with the external world because of the times for the minimal spanning tree of 1000 points (160 ms on
difficulty of feeding a large amount of data through a single Warp versus 2.2 s on CM-1) and a triangle visibility problem
simple processor. This bottleneck has been addressed in for 1000 three-dimensional triangles (400 ms on Warp versus
various ways. MPP uses a "staging memory" in which image 1 s on CM-1).
data can be placed and distributed to the array along one Simple algorithms at the lowest level of vision, such as edge
dimension. The I/O bottleneck has been addressed by a new detection computations, run much faster on large arrays of
version of the Connection Machine, called CM-2 [31]. In this processors such as the Connection Machine than Warp. This is
computer, a number of disk drives can feed data into various because no communication is required between distant ele-
points in the array simultaneously. The CM-1 benchmark ments of the array, and the large array of processors can be
figures do not include image I/O: the processing is done on an readily mapped onto the large image array. For example, the
image which has already been loaded into the array, and computation of an II x 11 Laplacian [15] on a 512 x 512
processing is completed with the image still in the array. image, followed by the detection of zero crossings, takes only
Otherwise, image I/O would completely dominate processing 3 ms on CM-1, as opposed to 400 ms on Warp.
time. In many cases it is necessary to process an image which The floating-point processors in Warp aid the programmer
is stored in a frame buffer or host memory, which is easier in in eliminating the need for low-level algorithmic analysis. For
Warp because of the high bandwidth between the Warp array example, the Connection Machine used discrete fixed-point
and the Warp host. All the Warp benchmarks in this section approximation to several algorithms, including Voronoi dia-
include I/O time from the host. gram and convex hull. The use of floating-point made it
The high bandwidth connection between processors in the unnecessary for the Warp programmer to make assumptions

Warp array makes it possible for all processors to see all data about the data range and distribution.
in an image, while achieving usefDul image processing time. (In In conclusion, we see that bit-serial processor arrays excel

1536 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-36, NO. 12, DECEMBER 1987

in the lowest level of vision, such as edge detection. The CM- The Warp machine has demonstrated the feasibility of
l's performance at this level exceeded Warp's by two orders programmable, high-performance systolic array computers.
of magnitude. However, specialized hardware must be used to The programmability of Warp has substantially extended the
eliminate a severe I/O bottleneck to actually observe this machine's application domain. The cost of programmability is
performance. The use of the router in the Connection Machine limited to an increase in the physical size of the machine; it
allows it to do well also at higher levels of vision, such as does not incur a loss in performance, given appropriate
border following. We also see that the more general class of architectural support. This is shown by Warp, as it can be
programming models and use of floating-point hardware in programmed to execute many well-known systolic algorithms
Warp give it good actual performance in a wide range of as fast as special-purpose arrays built using similar technol-
algorithms, especially including com-plex global computations ogy.
on moderately sized data sets.

ACKNOWLEDGMENT
IX. CONCLUSIONS We appreciate the contributions to the Warp project by our

The Warp computer has achieved high performance in a colleagues and visitors at Carnegie Mellon: D. Adams, F.
variety of application areas, including low-level vision, signal Bitz, C. Bono, M. Browne, B. Bruegge, C. H. Chang, E.
processing, and scientific computation. Currently produced by Clune, R. Cohn, R. Conde, J. Deutch, P. Dew, B. Enderton,
our industrial partner (GE), Warp is much more powerful and L. Hamey, P. K. Hsiung, K. Hughes, T. Kanade, G. Klinker,
programmable than many other machines of comparable cost. P. Lieu, P. Maulik, D. Morris, A. Noaman, T. M. Parng, H.
The effectivenesg of the Warp computer results from a Printz, J. Race, M. Ravishankar, J. Rendas, H. Ribas, C.

balanced effort in architecture, software, and applications. Sarocky, K. Sarocky, J. Senko, Y. Shintani, B. Siegell, H.
The simple, linear topology of the Warp array naturally Sohn, P. Steenkiste, Y. B. Tsai, P. S. Tseng, R. Wallace, J.
supports several useful program partitioning models; the Warp K. Wang, I. C. Wu, D. Yam, and A. Zobel. We thank our
cells' high degree of programmability and large local memory industrial partners GE and Honeywell for their contribution
make up for the lack of higher dimensional connectivity. The towards the construction of the wire-wrapped prototypes. We
high-computation rate on each cell is matched by an equally appreciate the continued collaboration with GE for the
high inter- and intracell bandwidth. The host system provides development of the production Warp machine. In particular,
the Warp array with high I/O bandwidth. The optimizing W2 we thank R. Barned, S. Carmel, J. Cokus, J. Condon, D.
compiler maps programs from a high-level language to Crump, R. A. Field, R. Gaus, N. Gearhart, J. lannuzzi, A.
efficient microcode for the Warp array. Integration of the Lock, C. Pickering, A. Pfueller, M. Sarig, S. Sillich, T.
Warp array into Unix as an attached processor makes the Stark, W. Tates, A. Toll, C. Walrath, and J. Weimar of GE in
Warp machine easily accessible to users. A sizable application Syracuse for their efforts.
library has been implemented to support development of
research systems in vision. REFERENCES
The development of a compiler is essential in designing the

[1 M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. S. Lam, 0.
architecture of a machine. Designing and implementing a Menzilcioglu, K. Sarocky, and J. A. Webb, "Warp architecture and
compiler require a thorough study of the functionality of the implementation," in Proc. 13th Annu. Int. Symp. Comput. Archi-
machine; the systematic analysis of the machine allows us to tecture, IEEE/ACM, June, 1986, pp. 346-356.machine;the systematic analysis of the machine allows is to

[2] M. Annaratone, E. Arnould, H. T. Kung, and 0. Menzilcioglu,
uncover problems that may otherwise be undetected by writing "Using Warp as a supercomputer in signal processing," in Proc.
sample programs. The compiler is also an excellent tool for ICASSP 86, Apr. 1986, pp. 2895-2898.
evaluating different architectural alternatives. The develop- [3] M. Annaratone, F. Bitz, E. Clune, H. T. Kung, P. Maulik, H. Ribas,

P. Tseng, and J. Webb, "Applications and algorithm partitioning on
ment of the W2 compiler has significantly influenced the Warp," in Proc. Compcon Spring 87, San Francisco, CA, Feb.,
evolution of the architecture of Warp. 1987, pp. 272-275.
An early identification of an application area is essential for [4] M. Annaratone, F. Bitz, J. Deutch, L. Hamey, H. T. Kung, P. C.

Maulik, P. Tseng, and J. A. Webb, "Applications experience on
the development of an experimental machine such as Warp Warp," in Proc. 1987 Nat. Comput. Conf., AFIPS, Chicago, IL,
whose architecture is radically different from conventional June 1987, pp. 149-158.
ones. Including the application users in the early phase of the [5] M. Annaratone, E. Arnould, R. Cohn, T. Gross, H. T. Kung, M. Lam,

0. Menzilcioglu, K. Sarocky, J. Senko, and J. Webb, "Architecture of
project-the vision research group at Carnegie Mellon in our Warp," in Proc. Compcon Spring 87, San Francisco, CA, Feb. 1987,
case-helped us focus on the architectural requirements and pp. 274-267.
provided early feedback. [6] , "Warp architecture: From prototype to production," in Proc.

1987Nat. Comput. Conf., AFIPS, Chicago, IL, Jutie, 1987, pp. 133-
Prototyping is important for architecture development. An 140.

early prototype system gives the designers realistic feedback [71 K. E. Batcher, "Design of a massively parallel processor," IEEE
about the constraints of the hardware implementation and Trans. Comput., vol. C-29, pp. 836-840, 1980.[8] B. Bruegge, C. Chang, R. Cohn, T. Gross, M. Lam, P. Lieu, A.
provides a base for the software and application developers to Noaman, and D. Yam, "The Warp programming environment," in
test out their ideas. To speed up implementation of the Proc. 1987 Nat. Comput. Conf., AFIPS, Chicago, IL, June 1987,
prototype, we used off-the-shelf parts. To concentrate our pp. 141-148.
efot nteacietr fteWr ra,w eeoe h [9] A. E. Charlesworth, "An approach to scientific array processing: Theeffors on hearhitecure o theWarp rray,we deelope the architectural design of the AP-120B/FPS-164 family," Computer, vol.

host from industry standard boards. 14, pp. 18-27, Sept. 1981.

ANNARATONE et at.: WARP COMPUTER 1537

1101 E. Clune, J. D. Crisman, G. J. Klinker, and J. A. Webb, "Implementa- Marco Annaratone received the Doting. degree
tion and performance of a complex vision system on a systolic array in computer science and electrical engineering from
machine," in Proc. Conf. Frontiers Comput., Amsterdam, Dec. Politecnico di Milano, Milan, Italy, in 1980.
1987. From 1982 to 1984 he was Visiting Scientist in

1111 A. L. Fisher, H. T. Kung, and K. Sarocky, "Experience with the CMU the Department of Computer Science at Carnegie
programmable systolic chip," Microarchitecture VLSI Comput., pp. Mellon University, Pittsburgh, PA. From 1984 to
209-222, 1985. 1987 he was a faculty member in the same depart-

[12] T. Gross and M. Lam, "Compilation for a high-performance systolic ment, first as a Research Associate and then as a
array," in Proc. SIGPLAN86Symp. Compiler Construction, ACM Research Computer Scientist. He is the author of
SIGPLAN, June, 1986, pp. 27-38. Digital CMOS Circuit Design (Hingham, MA:

[13] T. Gross, H. T. Kung, M. Lam, and J. Webb, "Warp as a machine for Kluwer Academic), a book on VLSI design meth-
low-level vision," in Proc. 1985 IEEE Int. Conf. Robot. Automat., odologies. His current research interests include computer architecture,
Mar. 1985, pp. 790-800. parallel computer architecture, and parallel implementation of algorithms in

[141 L. G. C. Hamey, J. A. Webb, and 1. C. Wu, "Low-level vision on the field of scientific computation. He is now an Assistant Professor of
warp and the apply programming model," in Parallel Computation Computer Science at the Swiss Federal Institute of Technology (ETH), Zurich
and Computers for Artificial Intelligence, J. Kowalik, Ed. and can be reached at the Institute for Integrated Systems, ETH Zentrum,
Hingham, MA: Kluwer Academic, 1987. 8092 Zurich, Switzerland.

[15] R. M. Haralick, "Digital step edges from zero crossings of second
directional derivatives," IEEE Trans. Pattern Anal. Machine Intell.,
vol. PAMI-6, pp. 58-68, 1984.

116] F. H. Hsu, H. T. Kung, T. Nishizawa, and A. Sussman, "Architecture
of the link and interconnection chip," in Proc. 1985 Chapel Hill
Conf., VLSI, Comput. Sci., Dep., Univ. North Carolina, May, 1985,
pp. 186-195.

[17] T. Kanade and J. A. Webb, "End of year report for parallel vision Emmanuel Arnould was born in Paris, France. He
algorithm design and implementation," Tech. Rep. CMU-RI TR-87- received the M.S. degree in electrical engineering
15 Robot. Instit., Carnegie Mellon Univ., 1987. from the Universite des Sciences, Paris, France, in

118] H. T. Kung, "Why systolic architectures?," Computer, vol. 15, pp. 1981, and the M.S. degree in computer science
37-46, Jan. 1982. from the Ecole Nationale Superieure des Telecom-

119] -- , "Systolic algorithms for the CMU Warp processor," in Proc. munications, Paris, France, in 1983.
Seventh Int. Conf. Pattern Recognition, Int. Ass. Pattern Recogni- Since February 1984, he has been a Research
tion, 1984, pp. 570-577. Engineer in the Department of Computer Science,

120] -. "Memory requirements for balanced computer architectures," Carnegie Mellon University, Pittsburgh, PA, where
J. Complexity, vol. 1, pp. 147-157, 1985. he actively participated in the design of the Warp

1211 H. T. Kung and J. A. Webb, "Global operations on the CMU warp computer. His research interests include computer
machine," in Proc. 1985 AIAA Comput. Aerosp. V Conf., Amer. system architecture, supercomputing, and supercomputer networks.
Instit. Aeronaut. Astronaut., Oct., 1985, pp. 209-218.

[22] - , "Mapping image processing operations onto a linear systolic
machine," Distributed Comput., vol. 1, pp. 246-257, 1986.

[23] M. S. Lam, "A systolic array optimizing compiler," Ph.D. disserta-
tion, Carnegie Mellon Univ., May 1987.

124] C. Lasser, The Complete *Lisp Manual, Thinking Machines Corp.,
Cambridge, MA, 1986.

125] J. J. Little, G. Gelloch, and T. Cass, "Parallel algorithms for computer Th oma sG ross(S'79-M'83) receivedtheM.S.
vision on the connection machine," in Proc. Image Understanding degree in computer science from Stanford Univer-
Workshop, DARPA, Feb., 1987, pp. 628-638. sity, Stanford, CA, the Diplom-Informatiker de-

[26] F. P. Preparata and M. 1. Shamos, Computational Geometry-An gree from the Technical University, Munich, Ger-
Introduction. New York: Springer-Verlag, 1985. many, and the Ph.D. degree in electrical

127] B. R. Rau and C. D. Glaeser, "Some scheduling techniques and an engineering from Stanford University, Stanford,
easily schedulable horizontal architecture for high performance scien- CA, in 1983, where he participated in the MIPS
tific computing," in Proc. 14th Annu. Workshop Microprogram- project.
ming, Oct., 1981, pp. 183-198. He joined the faculty of the Department of

[28] B. R. Rau, P. J. Kuekes, and C. D. Glaeser, "A statistically scheduled Computer Science, Carnegie Mellon University, in
VLSI interconnect for parallel processors," VLSI Syst. Comput., 1984. His current research interests include the
Oct. 1981, pp. 389-395.f practical aspects of high-performance computer systems: computer architec-

[29] A. Rosenfeld, "A report on the DARPA image understanding ture, processor design, optimizing compilers, and the software systems that
architectures workshop," in Proc. Image Understanding Workshop, are needed to make high-performance computers usable.
DARPA, Los Angeles, CA, Feb., 1987, pp. 298-301. Dr. Gross received an IBM Faculty Development Award in 1985.

[30] H. Tamura, S. Sakane, F. Tomita, N. Yokoya, K. Sakaue, and N.
Kaneko, SPIDER Users' Manual, Joint System Development Corp.,
Tokyo, Japan, 1983.

[31] Thinking Machines Corp., Connection Machine Model CM-2 Tech-
nical Summary HA 87-4, Thinking Machines Corp., Apr. 1897.

132] R. Wallace, A. Stentz, C. Thorpe, W. Whittaker, and T. Kanade,
"First results in robot road-following," in Proc. IJCAI, 1985, pp. H. T. Kung received the Ph.D. degree from
1089-1093. Carnegie Mellon University, Pittsburgh, PA, in

[33] R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T. 1974.
Kanade, "Progress in robot road-following," in Proc. 1986 IEEE Int. He joined the faculty of Carnegie Mellon Univer-
Conf. Robot. Automat., Apr., 1986, pp. 1615-1621. sity in 1974 and was appointed to Professor in 1982.

[34] D. L. Waltz, "Applications of the connection machine," Computer, He is currently holding the Shell Distinguished
vol. 20, pp. 85-97, Jan. 1987. Chair in Computer Science at Carnegie Mellon. He

[35] B. Woo, L. Lin, and F. Ware, "A high-speed 32 bit IEEE floating- was Guggenheim Fellow in 1983-1984, and a full
point chip set for digital signal processing," in Proc. ICASSP 84, time Architecture Consultant to ESL, Inc., a subsid-
IEEE, 1984, pp. 16.6.1-16.6.4. iary ofTRW, in 1981. His current research interests

[36] D. Young, Iterative Solution ofLarge Linear Systems. New York: are in high-performance computer architectures and
Academic, 1971. their applications.

1538 IEEE TRANSACTIONS ON COMPUTERS. VOL. C-36, NO. 12, DECEMBER 1987

Dr. Kung has served on editorial boards of several journals and program Onat Menzilcioglu received the B.S. degree in
committees of numerous conferences in VLSI and computer science. electrical engineering from Middle East Technical

University, Ankara, Turkey, in 1980, and the M.S.
degree in computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 1982.
He is a Ph.D. degree candidate in the Department

of Electrical and Computer Engineering, Carnegie
Mellon University. He has been working on pro-
grammable systolic array architectures since 1983.
His research interests include computer architecture
and design, and fault tolerance.

Jon A. Webb received the B.A. degree in mathe-
matics from The University of South Florida,
Tampa, in 1975, the M.S. degree in computer
science from The Ohio State University, Columbus,
in 1976, and the Ph.D. degree in computer science

Monica Lam received the Ph.D. degree in com- from The Universty Of Trked onthe faculty of the
putr siece romCanege Mlln Uivesiy, Department of Computer Science at Carnegie

Pittsburgh, PA, in 1987, and the B.S. degree in Mellon University, where he is currently a Research
computer science from the University of British Computer Scientist. His research interests include
Columbia, Vancouver, B.C.in 1980.ththoyoviinadprleacietusfr

She is currently a Research Associate in the vision. He has published papers on the recovery of structure from motion
r

theDepartment of Computer Science at Carnegie Mel-
on University. Her research interests include paral- shape of subjective contours, the design and use of a parallel architecture for_ _ let Uersarchitecnuresand optimterestscompiler. low-level vision, and experiments in the visual control of a robot vehicle.

_ _ lel architectures and optimizing compilers. Dr. Webb is a member of the IEEE Computer Society and the Association
for Computing Machinery.

