
iWarp: An Integrated Solution to High-Speed Parallel Computing

Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason Thomas Gross,
H. T. Ktmg, Monica Lam, Brian Moore, Craig Peterson, John Pieper,
I&la Rankin, P. S. Tseng, Jim Sutton, John Urbanski, and Jon Webb

Department of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

iWarp is a system architecture for high speed signal, image
and scientific computing. The heart of an iWarp system is the
iWarp component: a single chip processor that requires only
the addition of memory chips to form a complete system
building block, called the iWarp cell. Each iWarp component
contains both a powerful computation engine (20 MFLOPS)
and a high throughput (320 MByte&c), low latency
(100-150 ns) communication engine for interfacing with other
iWsrp cells. Because of its strong computation and com-
munication capabilities, the iWarp component is a versatile
building block for various high performance parallel systems.
These systems range from special purpose systolic arrays to
general purpose distributed memory wmputers. They sre
able to support both fine-grain parallel and coarse-grain dis-
tributed computation models simultaneously in the same sys-
tem. An iWarp system can include a large number of cells;
the initial iWarp demonstration system wnsists of an 8x8
torus of iWarp cells, delivering mom than 1.2 GFLOPS. It
can be expanded to include up to 1.024 cells. This paper
describes the iWarp architecture and how it supports various
communication models and system wnfigurations.

1. Introduction
iWarp is a product of a joint effort between Carnegie Mel-

lon University and Intel Corporation. The goal of the effort is
to develop a powerful building block for various distributed
memory parallel computing systems and to demonstrate its
effectiveness by building actual systems. The building block
is a custom VLSI single chip processor, called iWarp, which
consists of approximately 600.000 transistors.

The iWarp component contains both a powerful computa-
tion processor (20 MFL.UPS) and a high throughput (320
MBytes/set), low latency (100-150 ns) communication en-
gine. Using nonpipclined floating-point units, the computa-
tion processor will sustain high computation speed for veo-
torizable as well as non-vectorizable codes.

The research was suppone-d in part by Defense Advanced Research
Projects Agency (DOD) monitored by the Space and Naval Warfare
Systems Command under Contract NOOO39-87-C-0251.

Authors’ affiliations: S. Boricar, G. Cox. S. Gleason, B. Moore,
C. Peterson, L. Rankin. J. Sutton, J. Urbanski: Intel Corporation;
R. Cohn, T. Gross, H. T. Kung, M. Lam. J. Pieper, P. S. Tseng,
J. Webb Carnegie Mellon University

CH2617-9/88/0000/0330$01.00 0 1988 IEEE
330

Intel Corporation, JFl-60
5200 N.E. Elam Young Pkwy
Hillsboro, Oregon 97124

An iWarp component connected to a local memory forms
an iWarp cell; up to 64 MBytes of memory are directly
addressable. A large array of iWarp cells will deliver an
enormous computing bandwidth never before realized in dis-
tributed memory parallel systems. Because of the strong
computation snd wmmunication capabilities and because of
its wmmercial availability, iWarp is expected to be an impor-
tant building block for a diverse set of high performance
parallel systems.

The iWarp architecture evolved from the Warp
machine [l]. a programmable systolic array developed at Car-
negie Mellon and produced by General Electric. All applica-
tions of Warp, including low-level vision, signal processing,
and neural network simulation 12,181, can run efficiently on
iWarp. But systems made of the iWarp building block can
achieve at least one order of magnitude improvement over
Warp in cost, reliability, power wnsumption, and physical
size. Much larger srrays can be easily built. The clock speed
of iWarp is twice as high ss Warp; the increase in wmputa-
tion throughput is matched by a similar increase in I/O
bandwidth. Therefore we expect iWarp to achieve the same
high efficiency as Warp For example, the NETtalk neural
network benchmark [20] runs at 16.5 million connections per
second and 70 MFL.GPS on a 10 cell Warp array; the same
benchmark runs at 36 million wnnections per second and 153
MFLOPS on an iWarp array of the same number of cells.

Although the design of the iWarp architecture profited
greatly from programming and applications experiences
gained from many Warp machines in the field, iWarp is not
just a straightfonvard VLSI implementation of Warp. iWarp
is intended to have a much more expanded domain of applica-
tions than Warp. The following summsrizes the goals of
iWarp as a system building block

l iWarp is useful for the implementation of both special
purpose arrays, which require high computation and I/O
bandwidth, and general purpose arrays where program-
mability and programming support are essential.

l iWarp is useful for both high performance processors
attached to general purpose hosts and autonomous
processor arrays capable of performing all the wmputa-
tion snd I/G by themselves. That is, iWarp can be used
for both “host centric” and “array centric” processing.

l iWarp supports both tightly and loosely coupled paral-
lel processing, and both systolic [I 21 and message pass-
ing models of wmmunication.

l iWarp can implement a variety of processor intercon-
nection topologies including I -dimensional (1D) arrays,
rings, 2dimensional(2D) arrays, and tori.

l iWarp is intended for systems of various sizes ranging
from several processors to thousands of processors.

This paper will explain how the iWarp architecture addresses
these objectives.

Besides conventional high level languages such as C and
FORTRAN, the progr amming of iWarp arrays will be sup-
ported by programming tools such as parallel program
generators. Previous experience and current research on
Warp indicates that parallel program generators are one of the
most promising approaches to programming distributed
memory parallel computers. In this approach a specialized,
machine independent language is created, which embodies a
particular parallel computation model (for example, input par-
titioning, domain partitioning, or task-queuing [13]). The
compiler for that language then maps the program onto a
target parallel architecture. This approach can allow effkient
parallel programs to be generated automatically for large
processor arrays.

Automatic parallel program generators have been
developed for iWarp in two applications areas: scientific com-
puting and image processing. The scientific computing lan-
guage, called AL (Array Language) [21]. incorporates the
domain partitioning model and allows programmers to trans-
fer data between a common space and a partitioned space,
perform computation in parallel in the partitioned space, and
then transfer data back. For scientific routines such as those
found in LINPACK [5], the AL compiler generates efficient
code for iWarp and Warp, as well as for uniprocessors. The
image processing language, called Apply [9]. incorporates the
input partitioning model: the input images are partitioned
among the processors, each of which generates part of the
corresponding output image. Apply compilers exist for
iWarp, Warp, uniprocessors. and the Meiko Computing Sur-
face, as well as several other computer architectures.
Benchmark comparisons on Apply programs have validated
the above claims 1221.

As of July 1988. the architecture and logic designs for
iWarp have been completed, In the software area, an optimiz-
ing compiler developed for Warp [8,16] has been retargeted
to generate. code for iWarp. Using this compiler, the iWarp
performance on real programs, including those generated by
the parallel program generators mentioned above, have been
evaluated on an iWarp architecture simulator. A prototype
iWarp system is expected to bc operational by the end of
1989. Three demonstration systems, each consisting of an
8x8 torus of iWarp cells. are scheduled to be operational in
the middle of 1990.

The organization of this paper is as follows. In the next
section, we give an overview of iWarp and how iWarp sys-
tems can be constructed from them. Some sample iWarp
usages and system configurations are described in Section 3.
Sections 4 and 5 deal with one of the most innovative features
of the iWarp architecture-the iWarp intercell communica-
tion models and mechanism. The computation part of the
iWarp component is discussed in Section 6, which also in-
cludes some preliminary iWarp performance figures on the
Livermore Loops benchmark. Finally, a summary of the
paper and some concluding remarks are given.

2. iWarp overview
An iWarp system is composed of a wllection of iWarp

cells, each of which consists of an iWarp component and its
local memory. This section first gives an overview of the
iWarp wmponent and then summarizes how an iWarp cell
physically interfaces with the external world so that various
iWarp systems can be constructed.

2.1. iWarp component
The iWarp component has a communication agent and a

computation age&, as depicted in Figure 1. The computation
MManory

t t@JhiB~k

I iWmpCkapnmt

Figure 1. iWarp component overview

agent can carry out computations independently from the
operations being performed at the wmmunication agent.
Therefore a cell may perform its computation while wm-
munication through the cell from and to other cells is taking
place, and the cell program does not need to be involved with
the communication. While separating the control of the two
agents makes programming easy, having the two agents on
the same chip allows them to cooperate in a tightly coupled
manner. The tight coupling allows several wmxnunication
models to be implemented efficiently, as to be discussed in
Section 4. The major blocks in iWarp are shown in Figure 2.

Pahwsy utit

Figure 2. Major functional units in iWarp

In the following we summarize the major features in the
two agents and their interface. The performance numbers are
based on the expected clock speed of 20 MHz, i.e., a clock is
50 11s. Further discussions on iWarp wmmunication and
computation features are provided in Sections 5 and 6, respec-
tively.

331

Communication agent

Four input and four output ports
l 40 MRytes/sec data bandwidth per port
l Word by word, hardware flow control at each port
l An oulput port can be connected to an input part of

another iWarp cell via a point-to-point physicd bus.

Multiple logical burses mdtipltxed on each physicd bus.
l Maintaining up to 20 incoming pathways simultaneously

in an iWarp component
l Idle logical busses do not consume any bandwidth of the

physical bus.
Pathway unit

l Routing for 1D and 2D configurations
l Capable of implementing wormhole and streetsign routing

schemes
Both messuge passing and systolic commimication are sup-
ported for coarse-grain and fine-grain parallel computation.

Computation agent

compluational units
l Floating-point adder

l 10 and 5 MFLDPS for 32- and 64-bit additions (IEEE
754 standard), respectively

l Nonpipelined
l Floating-point multiplier

l 10 and 5 MFLOPS for 32- and 64-bit multiplications
(.lEEE 754 standard), respectively

l Nonpipehned
l Full divide, remainder, and square root support

0 Integer/logical unit
l 20 MIPS peak performance on 8/16/32-bit

integer/ordinal data
. Arithmetic, logical, and bit operations

AN the above three writs may be scheduled to operate in
parallel in one ktruction. generating a peak computing rate
of 20 MFWPS plus 20 MIPS.
Internal data storage and interconnect

l A shared, multiported, 128 word register file
l Special register file locations for local memory and com-

munication agent access

Memory units
l Off-chip local memory for data and instructions

l Separate address and data busses (24bit word address
bus. 64-bit data bus)

l 20 million memory accesseskc peak performance
l 160 MByte&c peak memory bandwidth
l Read, write, and read/modify/v&e support

. on-chip program store
0256 word cache RAM
l 2K word ROM (built-in functions)
l 32- and 96-bit instructions

Communkatlon and computation interface

Communication agent notijies computation agent on message
arrival.

Dynamic flow control: Computation agent spins when read-
ing from an empty queue or writing to a fdI queue in com-
munication agent.

Hardware spools dala between queues and locd memory.

2.2. Forming IWarp systems
Various iWarp systems can be constructed with the iWarp

cell. We describe how copies of the iWarp cell csn be
connected together, and how an iWarp cell can connect to
peripherals to form these systems.

There are two ways that an iWarp cell, consisting of an
iWarp component and its local memory, physically interfaces
with the external world. Recall that the iWarp component has
four input ports and four output ports. The first interface
method is to use a physical bus to connect an output port of an
iWarp to an input port of another. The former and latter port
can write to and read from the bus, respectively. Thus this is
a unidirectional bus between the two components, as
represented by the arrowed edge in Figure 3 (a). Usually
another unidir~tional bus in opposite direction is also
provided, so that bidirectional data communication between
the two component is possible. This is illustrated in Figure 3
(W.

w

00 n-

I lWrp cdl I I lWrp c4n I
Figure 3. Intercell connection via ports

of iWarp components: (a) unidirectional bus and
(b) two unidire.ctional busses in opposite directions

The second interface method is via the local memory of the
iWarp cell, as depicted by Figure 4. Using this interface the

Figure 4. Connection with peripherals via local memory
of an iWarp cell

iWarp cell can reach peripherals such as standard busses,
disks. graphics &vices and sensors. Therefore the iWarp
cell’s connection with peripherals uses the local memory.
while its intercell connection uses ports of iWarp. Since these
two functions use different physical resources of the iWarp
cell, they can he implemented independently from each other.
This implies, for example, that peripherals can be attached to

332

any set of iWarp cells in an array of iWarp cells, indepen-
dently from the array interconnection topology. With these
two interface methods many system configurations can be
implemented, as will be shown in Section 3.

3. iWarp usages and system configurations
The iWarp cell, consisting of the iWarp component and

local memory, is a building block for a variety of system
configurations. These systems can be used as general and
special-purpose computing engines. This section describes
some of these usages and system configurations.

3.1. General purpose arrays
With its four pairs of input and output ports, the iWarp cell

is a convenient building block for a 2D array or torus. Figure
5 depicts a 3x3 torus. Peripherals can be attached to any of
the iWarp cells via its local memory. The initial demonstra-

Figure 5. 3x3 torus

tion iWarp system in 1990 is an 8x8 torus, with a total of 32
MBytes SRAM. It has a peak performance of 1,280
MFLOPS. The memory of each cell can be expanded up to
1.5 MBytes, and with different memory components, a
memory space of up to 64 MBytes per cell is possible. The
same system design can be extended to a 32x32 tours, giving
an aggregate peak performance of 20.480 MFLOPS .

The iWarp cell is a building block for 1D arrays or rings as
well. Figure 6 depicts a 6-tell ring. A 1D array or ring of a

Figure 6. 6-cell ring

moderate number of iWarp cells, delivering on the order of
hundreds of MFLOPS, can be an effective attached processor
to a workstation. This has been demonstrated by the lo-cell
Warp array. Using the same approach with iWarp, we will
achieve an order of magnitude improvement in cost-
performance over Warp. To meet the requirement of lower
cost (and lower performance) applications, one or a few
iWarp cells can also form a single-board accelerator for low-
end workstations or PCs.

333

3.2. Special-purpose arrays
Many systolic algorithms can make effective use of large

processors arrays for applications such as signal processing
and graphics [lo]. With the iWarp cell, various special-
purpose arrays that execute only a predetermined set of these
algorithms can easily be built. For example, a hexagonal
array (as depicted in Figure 7) with unidirectional physical
busses between cells can be built to execute some classical
systolic algorithms for matrix operations [15]. For such an
array, sensors and array output ports may be connected to the
local memories of a number of cells, so that I/O can be carried
out in parallel. In areas such as high-speed signal processing,
special-purpose arrays can effectively use hundreds or even
thousands of iWarp cells. In some systolic algorithms, cells

Figure 7. Hexagonal array with unidirectional
physical busses between cells

on the array boundary may execute a different function from
cells inside the array [7]. In this case, individual iWarp cells
can be programmed to perform different functions according
to their locations in the array.

In general, the performance of special-purpose arrays made
of iWarp cells will be comparable to that of those arrays made
of custom hardware using similar VLSI technology. Al-
though the iWarp array will probably have a larger physical
size, it can be readily programmed to implement the target
algorithms and will incur a much shorter development time.

4. Communication models
Interprocessor communication is an integral part of parallel

computing on a distributed memory processor array. To
balance the high numerical processing capability on the
processor, iWarp must be equally efficient in communication.
The development of efficient parallel software is simplified if
the communication cost is low and can be estimated reliably.

To motivate the communication agent design on iWarp, in
this section we first describe two important communication
models commonly used on distributed memory processor ar-
rays: message passing and systolic communication. We will
study the requirements to implement these models efficiently,
from the data transport level all the way to the integration of
communication with the data processing. We then describe a
set of unifying progr amming abstractions to support these
models. The next section shows how they are supported by
the iWarp communication facility, while meeting the perfor-
mance requirements of their usages.

4.1. Communication models
We have identified two communication models used for

distributed memory parallel systems: message parsing and
systolic. They differ primarily in the granularity of com-
munication and computation. In message passing mode, as in
computer networks, the unit of processing is a complete mes-
sage. That is, a message is accumulated in the source cell
memory, transmitted (as a unit) to the destination cell, and
only when the full message is available in the local memory
of the destination cell is it ready to be operated upon. Con-
versely, in systolic mode [123, the unit of communication and
processing can be as fine grained as a single word in a
message.

4.1.1. Message passing
Message passing is a commonly used model for coarse-

gram parallel computation. Processes at each cell operate
independently on the cell’s local data and only occasionally
communicate with other cells. The timing, order, and even
the communication partner are often determined at run time.
The dynamic nature makes certain communication overheads
unavoidable, such as routing the message across the array and
asynchronously invoking the answering party. To efficiently
support message passing, we need the capabilities described
below.

Hardware support for ID and 20 confeumtions. ID
arrays and rings are easier to build than 2D arrays and tori.
However, computations on a 2D configuration can be more
efficient than those on a 1D configuration for large systems
with many cells. Suppose that there are II cells in the system.
Using a 2D configuration. not only is the distance between
cells reduced from O(n) to O(6) hops, but also is the effec-
tive bandwidth of the communication network increased since
a transfer takes up fewer hops.

Spooling. Suppose a process wants to send a message to a
destination cell. Since the communication network is shared,
a process does not have guaranteed instantaneous access.
Ideally, the sender process can simply specify the destination
and message location, and continue with its processing
regardless of the availability of the network, and a separate
thread of control spools the data out of the memory.
Similarly, another spooling process can take the data from the
network and store it into the receiver’s memory, with minimal
interference with the computational process in progress.

Separate communicatkm support hardware. In an iWarp
array, a message may be routed through intermediate cells
before reaching the final destination. The routing of data
through a cell is Iogically unrelated to the process local to the
cell. It can be supported in dedicated hardware to handle the
high bandwidth of the array.

Word-level synchronization. Although the granularity of
communication is a message, this does not mean that the
intermediate hops should forward the data at the same gram
size. In wormhole routing [3]. the routing information in the
header of the message can be used to set up the next leg of the
communication path even before the rest of the data arrives.
The contents of the message can be forwarded word by word,
without having to be buffered in entirety on intermediate
cells. Wormhole routing reduces the latency of communica-
tion and does not take up any of the memory bandwidth of the
intermediate cells. Since the communication path is built link
by link a word-by-word handshake is necessary to throttle the
data flow in case the next link is temporarily unavailable.

Mukiplexing messages on a physical bus. Since wonuhole
routing may use up multiple links at the same time, preven-
tion of deadlock is necessary in ring or torus architectures.
One scheme to prevent deadlock is the virtual channel
method, which uses another set of links when routing beyond
a certain cell [4.19]. If in each direction only one physical
bus is available between two connecting cells, this deadlock
prevention scheme requires that multiple communication
paths be multiplexed on a physical bus. Multiplexing can also
be used to keep a long message from monopolizing the physi-
cal bandwidth for an indefinitely long time.

Door-to-door message passing. When a message arrives at
the destination cell, it is generally first buffered in a system
memory space and then copied into the user’s memory space.
This extra copy can be eliminated if the data is stored directly
into the desired memory location. Using the data throttling
mechanism above, the receiving process can fmt examine the
message header to determine the memory address for the
message. We call this scheme of shipping data directly from
a sender’s data structures to a receiver’s data structures, with-
out any system memory buffering, door-to-door message
passing.

4.12. Systolic communication
Systolic communication supports efficient, fine-grain paral-

lelism. In this model, the source cell program sends data
items to the destination cell as it generates them, and the
destination cell program can start processing the data as soon
as the first word of input has arrived. For example, the
outputs of an ad&r in one cell can be used as operands to the
adder of another, without going through the memories of
either cells, in a matter of several clocks. This mode provides
tight coupling and synchronixation between cooperating
processes.

Systolic algorithms rely on the ability to transfer long
streams of intermediate data between processes at high
throughput and with low latency. More importantly, the com-
munication cost must be consistently small, because cost
variations can greatly increase delays in the overall computa-
tion. This implies that dedicated communication paths are
desirable, which may be neighboring or non-neighboring
paths depending on communication topologies of the algo-
rithm.

Raw data words are sent along a communication path. iden-
tified only by their ordering in the data stream. The sender
appends data to the end of the data stream and the receiver
must access the words in the order they arrive. Our ex-
perhce with the Warp systolic array [l] shows that FIFO
queuing along a communication path is useful in relaxing the
coupling between the sender and the receiver. A sender does
not need to wait for the receiver unless the queue is full,
similarly, the receiver can process the queued data until they
run out. Word-level synchronixation is provided by stalling a
process that tries to read from an empty queue or write to a
full queue.

A special-purpose systolic array can be tailored to a specific
algorithm by implementing the dedicated communication
paths directly in hardware and providing long enough queues
to ensure a steady flow of data. As a programmable array.
iWarp processors should implement the common systolic al-
gorithms well, but can also degrade gracefully to cover other
algorithms. We have identified the following requirements
for efficient support of systolic communication.

334

Hardware support for ID and 20 con@uralions. Many
systolic algorithms in signal and image processing and in
scientific computing use 1D and 2D processor arrays [lo].
iWarp can directly support such configurations in hardware.

Multipkxing communication paths on a physical bus.
iWarp can slso support other configurations, with degraded
performance, if necessary. A systolic algorithm may call for
more communication paths between a pair of amu&i.ng cells
than those provided directly by hardware. It may require
extra communication paths for configurations such as a
hexagonal array, or to implement deadlock avoidance
schemes [141. Divide-and-conquer algorithms may require
communication between powers of two distances away at
different times of the algorithm. All these considerations
motivate the need to multiplex multiple communication paths
on a physical bus.

Coupling of computation and communication. The com-
putation part of a cell needs to access the communicatioll part
directly without going through the cell’s local memory. This
extra source of data is a key to systolic algorithm’s efftciency.
For example, fine-grained systolic algorithms for important
mati operations can consume and produce up to four data
words per clock. Memory bandwidth cannot match this high
communication bandwidth.

Spooling. Regardless of the size of the hardware queue
available on each cell, there is always some systolic algorithm
that requires deeper queues. For example, a systolic algo-
rithm for convolving a kernel with a 2D image requires some
cells to store the entire row of the image [111. Therefor% it is
desirable to provide an automatic facility to overblow the data
to the cell’s local memory if necessary.

4.13. Reserving a communication subnetwork
In both message passing and systolic communication

models, there is a need to multiplex multiple communication
paths onto a physical bus. Efficient support of communica-
tion paths requires dedicated hardware resources, thus only a
small number of paths can be provided. This resource limita-
tion raises the issue of resource management.

The need for managing the communication resource is more
pronounced in the systolic communication model. This is
because the production and consumption rates of a data
stream are tied directly to the computation rates of the cells.
As the computation on a cell can stall and even deadlock
while waiting for dats, the lifetime of a communication path
can be arbitrarily long. Although an idle communication path
does not consume any communicatiou bandwidth, if all the
multiplexed paths on a physical bus are occupied, no other
traffic can get through.

h message passing, au entire message is first prepared and
buffered in the sender cell’s local memory, and the message is
stored into the destination cell’s local memory directly. Once
a communication path becomes available, the data can be
spooled iu and out of the memories. With a proper routing
scheme to avoid deadlocks a message can always get through,
although it may have to wait for a while if the network is
backed up with long messages.

Both models can benefit from a mechanism to reserve a set
of communication paths for a class of messages. For instance,
we can reserve a set of communication paths for system
messages for purposes such as syuchronization. program
debugging and code downloading. First of all, this guarantees

that the system can reach all the cells even if the user uses up
all other paths. Moreover, since the system has full control
over all messages on the reserved network, the behavior of the
network is more predictable, and attributes such as a
guaranteed response time are possible.

4.2. Messages and pathways
Message passing and systolic communication are two very

kinds of communication. The former supports coarse-grain
parallelism where processes at different cells behave indepen-
dently, and the latter supports fine-grain parallelism where
processes at different cells cooperate synchronously.
However, on examining the requirements to make message
passing eJicient and systolic communication general, they are
not that dissimilar. For example, wotmhole routing uses up
multiple hardware links simultaneously, much like a com-
munication path in systolic communication that connects two
non-neighboring processes. On iWarp, both communication
models can be unified and supported efficiently by the same
programming abstractions of a pathway and a message,
defined below.

A pathway is a direct connection from a cell (called the
source cell) to another cell (called the destination cell). Each
segment of the pathway that connects the communication
agent of a cell to the computation agent of the same cell or to
the communication agent of another cell is called a pathway
segmeti. (See Figure 9 for examples of pathways.)

A message consists of a header, a sequence of data words,
and a marker denoting the end of the message. Messages can
be sent from the source cell to the destination cell over a
pathway. The pathway is initiated and terminated by the
source cell. It assembles a header containing a destination
address and additional routing iuformation and hands it to the
communication agent The source cell closes the pathway by
sending a special marker to signal the end.

Normally, one pathway is set up for each individual mes-
sage. The source cell opens a pathway to the destination cell,
sends its message, and then closes the pathway. In the mes-
sage passing model, the sending process dynamically creates
a new pathway and message for each data transfer. Not all
intermediate links of a pathway need to exist at the same time.
In wormhole routing, the marker denoting the end of the
pathway may have reached an intermediate cell even before
the header and data reach the destination. In the systolic
communication model, the cells typically set up required
pathways for a longer duration. The sending program trsns-
mits individual data words along a pathway as they are
generated without sending any additional headers or markers.
On termination, the cell programs close the message and the
pathway.

However, it is possible that a pathway is set up for multiple
messages. That is. the sender cell does not take down the
pathway immediately after the fist message has passed
through, so the sender can send further messages over the
same pathway. The sender cell has reserved the pathway for
its future use.

Reservation of multiple pathways is also possible on iWarp.
Two pathways are said to be connected if the destination cell
of one is the source of the other. The sender of the fust
pathway can send messages to the destination of the second
using both pathways. In this way, a cell can send messages to
multiple destinations through a set of reserved pathways.

335

5. iWarp communication
This section describes how the communication agent on

iWarp implements the above pmgramming abstractions and
satisfies the performance requirements of both the message
passing and systolic communication models. We break down
the functionality of the communication agent into four
categories. The categories and the quirements they fulfill
are summarized as follows:

distributed among the four neighbors and the computation
agent, BS shown in Figure 8(b). In this case, the heart of the
communication agent is a 20x20 crossbar that links incoming
logical busses to outgoing logical busses. Logical busses are
managed by the source, i.e., the sending cell. The sender can
initiate communication using any of its pre-allocated frse
logical busses without consulting the receiver. This design
minimizes the time needed to set up a pathway between cells.

1. Physical communication network Hardware
support for 1D and 2D configurations.

2. Logical communicalbn network: A
mechanism to multiplex multiple pathway seg-
ments on a physical bus on a word level basis.

3. Pathway unit A mechanism to establish path-
ways.

4. Streaming and spooling unit: Direct access of
communication agent from the computation
agent, and a spooling mechanism to transfer
data from and to local memory.

5.1, Physical communication network
The communication network of iWarp is based on a set of

high bandwidth point-to-point physical busses. linking the
input and output ports of a pair of cells. Each cell has four
input and four output ports, allowing cells to be connected in
various topologies. Figure 8(a) illustrates the 2D array con-
figuration where each cell is connected bidirectionally to four
cells.

Each physical bus can transmit one 32-bit word data every
100 11s. The VLSI, custom chip implementation ma& it
possible to have fine-grain, word level handshaking without
any synchronization delay. Thus, each physical bus has a data
bandwidth of 40 MBytes/set, giving an aggregate data tram-
fer rate of 320 MByte&c.

5.2. Logical communication network
Besides the four input and four output external busses

described above for connecting to other cells, a communica-
tion agent is also connected to the computation agent in its
cell through two input and two output internal busses. Each
of these busses can be multiplexed on a word level basis to
support a number of logical busses in the same direction,
whereas each logical bus can implement one pathway seg-
ment of a pathway at a time.

To the communication agent on a cell, there are four kinds
of logical busses:

1. incoming busses from communication agent of a
neighboring cell,

2. incoming busses from computation agent of the
same cell,

3. outgoing busses to communication agent of a
neighboring cell, and

4. outgoing busses to computation agent of the
same cell

The mapping of the logical busses to physical busses is
performed statically, under software control. The hardware
allows the total number of incoming logical busses in the
communication agent of each cell to be as large as 20. For
example. in a 2D array, the logical busses can be evenly

(a)

Figure 8. (a) Physical communication network
f.b) logical busses of a cell

5.3. The pathway unit
A pathway is formed by connecting a sequence of pathway

segments together. Figure 9 contains an example of three
pathways through some cells in a 2D array. Pathway 1
connects the computation agent of B to that of A through a
pathway segment between the communication agents of the
two cells. Pathway 2 passes through cell A, turns a comer at
cell C and finally reaches the destination D. Lastly. Path-
way 3 passes through both cells C and D. Two pathway
segments are multiplexed on the physical bus from cell C to
cell D.

A new pathway is established by the use of a special open
pathway marker. As the communication agents pass the open
pathway marker along from cell to cell, they allocate
resources to form the pathway.

Gpen pathway markers carry addresses to tell how to route
them from their sowe to their destination, using streetsign
routing (e.g., “go to Jones and stop”). There are two com-
ponents of such a streetsign: the streefnume (e.g., Jones) and
the associated action (e.g., stop). The controller provides
special hardware support for address recognition with a mul-
tiple entry Address Match CAM. For example. a pathway
route might consist of “go to Jones, turn right, go to Smith,
turn left, go to Johnson, and stop”. Each pathway unit is
responsible for recognizing addresses of open pathway
markers requiring service or attention at that cell. Given the

336

sequential nature of streetsign routing interpmtation, a given
communication agent needs to deal with only the “next”
streetname on passing open pathway markers.

Upon the srrival of an open pathway marker, the pathway
unit interprets the address to see if it is addressed to this cell,
and, if so, posts an event to the computation agent to invoke
the appropriate routine. Otherwise, it finds a free outgoing
1ogicaI bus along the route given by the header and connects it
to the incoming logical bus. The pathway is dismantled, one
link at a time, by the flow of a close pathway marker along
the pathway, cell to cell, from the source to the destination.

The latency of communication through a cell is 100 ns
normally, and 150 11s in the case of comer turning. The
interpretation of addresses and the establishment of pathways
are completely performed by hardware. Creating a new path-
way segment does not incur any additional time delay.

A B

Figure 9. Pathways in a 2D array

5.4. The streaming and spooling unit
The computation agent can get access to the communication

data by (1) directly accessing the communication agent a
word at a time, or (2) spooling the data in and out of local
memory using special hardware support.

Programs can read data from a message or write data to a
message via the side effects of special register references.
These special registers are called streaming gates, because
they provide a “gating” or ‘windowing” function allowing a
stream of data to pass, word by word, between the com-
munication agent and the computation agent. There are two
input gates and two output gates. These gates can be bound to
different logical busses dynamically. A read from the gate
will consume the next word of the associated input message;
correspondingly, a write to an output gate will generate the
next word of the associated output message. Data word-at-a-
time synchronization is expressed in algorithms by the side
effects of gate register references (e.g., a read of an input gate
at which no data is available causes the instruction to spin
until the data arrives).

iWarp also provides a transpsrent, low overhead
mechanism for transferring data between the pathway unit and
the local memory via spooling gates. Spooling has low over-
head to avoid significant reduction of the efficiency of any
ongoing or parallel computation. Spooling is transparent ex-
cept for delays incutred due to either cycle stealing (i.e., for
address computation) or local memory access interference
from other memory references (i.e.. due to concurrent cache
or instruction activities).

6. iWarp computation
The iWarp processor is designed to execute numerical com-

putations with a high sustained floating-point arithmetic rate
The iWarp cell has a high peak computation rate of 20
MFLLIPS for single precision and 10 MFLOPS for double
precision. More importantly, iWarp can attain a high com-
putation rate consistently. This is because the multiple func-
tional units in the computation agent are directly accessible
through a long instruction word (LJW) instruction. By tram-
lating user’s code directly into these long instructions using
an optimizing compiler 1161. a high computation rate can be
achieved for all programs, vectorizable or not.

6.1. The computation agent
The computation agent has been optimized for LJW con-

trolled parallel operation of multiple functional units. Chief
among these optimizations are:

l nonpipelined floating-point arithmetic units,
hinter-unit and intra-unit, output to input, operand

bypassing,
l parallel. hardware supported, zero-overhead looping,
l large. shared. multi-ported register file.
l a high bandwidth, low latency (no striding penalty)

memory,
l high bandwidth, low latency interface with the com-

munication agent.

The LIW workhorse instruction of iWarp is called the
CampuleAndAccess (C&A) instruction. As an example of the
parallelism available, a loop with code

FOB i := 0 TO n-l DO BEGIN
f :=(A[i]*B[3*l])+f;

END;

is compiled into a loop that initiates one iteration every cycle
surrounded by a loop prologue and epilogue to get the itera-
tions started. Similarly, a loop body that reads a value VI.
from one message, V2 from another message, computes Vl
* V2 + C[i] andsendstheresultaswellasV2ontothe
next processor is also translated into a single C&A instruction
in the loop body. The single precision C&A instruction
executes in two clocks, and the double precision C&A in-
struction executes in four clocks, so both loops execute at the
peak computation rate of the processor.

A C&A instruction requires up to 8 operands and produces
up to 4 results. Memory accesses may produce or consume
up to two of those operands: either a read and a write or two
reads. Each memory reference includes an address computa-
tion (e.g., an indexing operation with a non-unit stride). The
C&A instruction employs a read-ahead/write-behind pipeline
that makes memory read operands from one instruction avail-
able for use in the next. Conversely, computational results of
one instruction are written to memory during the next.

337

Those operand references that are not satisfied by the
memory read operation or read from a gate (see Section 5.4)
must be to the register file. These operands may themselves
be the results of previous operations (e.g., intermediate results
held in the register fide). To avoid any interinstruction
latencies. the results of the integer unit or a floating-point unit
may be “bypassed” directly back to that unit as an input
operand, without waiting for the destination register fde loca-
tion to be updated. Also, the results of either floating-point
unit may be “bypassed” directly to the other floating-point
unit (e.g., to support multiply-accumulate sequences).

Thus, the execution of a single C&A instruction can include
up to one floating-point multiplication, one floating-point ad-
dition. two memory accesses (including two integer opera-
tions for addressing), four gate accesses, several more register
accesses (enough to provide the rest of the required operands),
and branching back to the beginning of the loop.

Incremental to the single “long” C&A instruction, the
iWarp computation agent provides a full complement of
“short” instructions. They can be thought of as 2 and 3
address RISC-like instructions. These “short” instructions
are provided to make iWarp a generally programmable
processor. They usually control only a single functional unit.

6.2. Livermore Loops performance
The Livermore Loops [6], a set of computational kernels

typically found in scientific computing, have been used since
the 1960’s as a benchmark for computer systems. The loops
range from having no data dependence between iterations
(easily vectorizable) to having only a single recurrence
(strictly sequential). This combination of vector and scalar
code provides a good measure on the performance of a
machine across a spectrum of scientific computing require-
ments.

The Livermore loops were manually translated from
FORTRAN to W2. (WZ is a Pascal-like language developed
for the Warp machine. The retargeted W2
compiler [8,16,17] has been used as a tool in developing and
evaluating the iWarp architecture.) The translation into W2
was straightforward, preserving loop structures and changing
only syntax, except for kernels 15 and 16, which were trans-
lated from Fee’s restructured loops [6].

The performance of Livermore Loops (double precision) on
a single iWarp processor is presented in Table 6-1. The
tmweighted mean is 4.2 MPLOPS. the standard deviation is
2.6 MFLOPS and the harmonic mean is 2.7 MFLUPS. Since
the machine’s peak double-precision performance is 10
MPLOPS. these numbers demonstrate a highly effective use
of the raw computation power of iWarp.

The iWarp cell is a scalar processor, and does not require
that loops be vectorizable for full utilization of its floating-
point units. This is why it does not exhibit the same tremen-
dous disparity in MFLOPS rates for the different loops as do
vector machines. Nonetheless, the variation between the
MFLOPS rates obtained is still significant. Near peak perfor-
mance can be achieved (using a high-level language and an
optimizing compiler), as demonstrated by kernels 3 and 7. On
the other hand, performance of near 1 MFLOPS is also ob-
served. The factors that limit iWarp performance are data
dependency and the critical resource bottleneck.

Kernel tiFLOPS Cemel

8.2 13
3.3 14
9.8 15
3.2 16
3.3 17
5.0 18
9.9 19
7.4 20
6.7 21
2.0 22
2.0 23
2.5 24

Table 6-1: Double precision performance of
Liver-more Loops on a single iWarp cell

1
2
3
4
5
6
7
8
9
10
11
12

Data dependency. Consider kernel 5:

FOR i := 0 To n-l DO BEGIN
XCil := Z[i] * (Y[i] - X[i-11);

END;

The multiplications and additions are serialized because of the
data dependencies. Just by this consideration alone, iWarp is
limited to a peak performance of 5 MFLOPS on this loop.
However, iWarp still executes data dependent code better
than vector machines. The floating-point units are not
pipelined, and there is no penalty on non-unit stride memory
accesses. More importantly, not all data dependencies force
the code to be serialized. As long as the loop contains other
independent floating-point operations, the floating-point units
can still be utilized. This is a unique advantage an LJW
architecture has over vector machines.

Critical resource bottleneck. The execution speed of a
program is limited by the most heavily used resource. Unless
both the floating-point multiplier and adder are the most criti-
cal resources, the peak MPLOPS rate cannot be achieved.
Programs containing no multiplications cannot run faster than
5 MFLOPS since the multiplier is idle all the time. For
example, for kernel 13 since the integer unit is the most
heavily used resource, the MFLOPS measure is naturally low.

7. Summary and conclusions
iWarp is the first of a new class of parallel computer ar-

chitectures. iWarp integrates both the computation and com-
munication functionalities into a single VLSI component,
The communication models supported range from large-gram
message passing to fine-grain systolic communication.

The computation agent of an iWarp component contains
floating-point units with a peak performance of 20 and 10
MFLOPS for single and double precision operations, respec-
tively, as well as an integer unit that performs 20 million
integer or logical operations per second. The communication
agent operates independently of the computation agent; since
both are implemented on a single chip, tight coupling between
communication and computation is possible. This permits
efficient systolic communication, as well as low-overhead
message passing.

iWarp is designed to be a building block for high perfor-
mance par&e1 systems. Not only does iWarp have impres-

338

sive computational capabilities, it also has exceptional com-
munication capabilities. making iWarp suitable for both scien-
tific computing and high speed signal Processing. The Brst
iWarp based systems will be 1D arrays, rings, 2D arrays or
tori, but the iWarp component is flexible enough to be used in
numerous other organizations.

We anticipate iWarp to have a significant impact on the
practice of parallel computing. Arrays of thousands of cells
are feasible, programmable, and much cheaper than many
other supercomputers of comparable power. iWarp systems
can have a variety of goals: they can be special or general
purpose, and experimental or commercial. The support of
well accepted languages for the cell like FORTRAN and C.
together with parallel Program generators to simplify the pro-
gmnming of the array, make it Possible to program the
diverse parallel machines that can be realized with iWatp
components.

The iWarp component has to meet the diverse requirements
of fme-grain and coarse-grain communication for variotts ap-
plications including scientific computing and signal process-
ing. The design of the iWarp component has convinced us
that these requirements are not incompatible and, in fact, do
reinforce each other. The high bandwidth/low latency com-
munication mechanism in iWarp implements both message
passing and systolic communication efficiently. This synergy
makes iWarp a suitable building block for the affordable
supercomputing systems of the future.

References

1. Auuaratoue. M.. Amould, E.. Gross. T., Ktmg. H. T., Lam, M.,
Meuzilcioglu, 0. and Webb, I. A. “The Warp Computer: Archiic-
ture, bnplemeutatiou aud Performauee”. ZEEE Transact&s on Corn-
puters C-36,12 (December 1987). 15231538.

2. Annaratone, M., Bitz., F.. Dextch, J.. Hatney, L., Ktmg. H. T..
Maulik. P., Ribas. H., Tseug.P. and Webb, J. Applications Ex-
perience on Warp. proceedings of the 1987 National Compute-r
Conference, AF’IPS, 1987. pp. 149-158.

3. Dally, William J.. A VLSI Architecture for Concurrent Data
Structrvcs. Kluwcr Academic Publishers, 1987.

4. Dally, W.J., Seitz. CL. “Deadlock-Free Message Routing in
Multiprocessor Intetcouueetiou Networks”. fEEE Tmnsuctiom 011
Computers C-36.5 (May 1987), 547-553.

5. Dougawa, J.J.. Bunch, J.R., Moler, C.B. and Stewart, G.W..
UNPACK Users’ Guide. Society for Industrial and Applied Math-
ematics, Philadelphia, 1979.

6. Fee, I. T. “An Analysis of the Computational and Parallel
Complexity of the Livemore Loops”. Parallel Computing 7,2 (June
1988). 163-186.

7. Gentleman. W.M. and Kuug. H.T. Matrix Triaugulariratiou by
Systolic Arrays. Proceedings of SPIE Symposium, Vol. 298. Real-
Time Signal Processing IV, Society of Photo-Optical Instrumentation
EtlgitleerS. August, 1981, pp. 19-26.

8. Gross, T. and Lam, M. Compilation for a High-perfotmauce
Systolic Array. Proceedings of the SIGPLAN 86 Symposium ou
Compiler Construction, ACM SIGPLAN, June, 1986. pp. 27-38.

9. Hamey, L G. C., Webb, J. A., and Wu, I. C. Low-level Vision on
Warp and the Apply Programming Model. In Parallel Computation
and Computers for Artificial Intelligence, Khawer Academic
Publishers, 1987, pp. 185-199. Edited by J. Kowalii.

10. Kung, H.T. Why Systolic Architectutes?“. Comer Magazine
15,l (Jan. 1982). 37-46.

11. Kuug, H.T., Ruaue, L.M., and Yen, D.W.L. “Two-Level
Pipelined Systolic Army for Multidimettsicmal Gmvolutian”. Image
and Vision Computing I, 1 (February 1983). 30-36. An improved
version appears as a CMU Canputer Scieuce Department technical
report, November 1982.

12. Kuug, H. T. Systolic Commuuicatiou. Proceedings of the
International Cmfemnce on Systolic Arrays, May, 1988. pp. 695-703.

l3. Kung. H. T. “Computatioual Models for Parallel Computers”.
Philosophical Transactions of the Royal Society (1988).

14. Kung, H. T. Dead&k Avoidauee for Systolic Commuuieatiou.
Cmtfeieuee Proeeediiugs of the 15th Atmual International Symposium
OXI compuler Architecture. June. 1988. pp. 252-260.

15. Kuug, H.T. and Leisersat. C.E. Systolic Arrays (for VLSI).
Sparse Matrix proceedings 1978. Society for Industrial and Applied
Mathematics, 1979, pp. 256-282.

16. Lam, M. S. A Systolic Array Optimizing Compiler. Ph.D. Th.,
Carnegie Mellon Uuiversity. May 1987.

17. Lam, M. Software Pipelining: An Effective Scheduling Teeh-
uique for VLlW Machines. ACM Sigplau ‘88 conference on Pro-
gramming Language Design and Implemematian.. June. 1988.

18. Pomerleau, D. A., Gusciora, G. L. Touretzky. D. S. and Kung.
H. T. Neural Network Siulatiat at Warp Speed: How We Got 17
Million Connections Per Second. Proceedings of 1988 IEEE Iuter-
national conference ou Neural Networks. July, 1988, pp. 143-150.

19. Raubold, E. and Haeule. J. A Method of Deadlock-Free
Resource Alloeatiou and Plow Coutml in Packet Networks. Proeeed-
ings of the Third International Coufereuee at Computer Commuttiea-
tiou, International Council for Computer Ccarunuuicatiou, August,
1976.

20. Sejnowskii T. J., and Rosenberg, C. R. “ParallelNetworks that
Learn to prOnouncc English Text”. Complex System 1, 1 (1987).
145-168.

21. Tseug, P. S.. Lam, M. and Kuug. H. T. The Domain Parallel
Computation Model ou Warp. Proceedings of SPIE Symposium, Vol.
977. Real-Time Signal Processing XI. Society of Photo-optical Tn-
stmtneutatiou Engineers, August, 1988.

22. Wallace, R. S.. Webb, I. A. and Wu, I-C. Architecture Inde-
pendent Image Proeessiug: Petformauce of Apply ou Diverse Ar-
chiteetutes. Third International Couferrmce ou SUpmphg, h-

tetnatienal Supe-rcomputiug Institute. Inc.. Boston. MA, May, 1988,
pp.25-34.

339

