Comprehensive Evaluation of a Two-Dimensional Configurable Array

0. Menzilcioglu and H. T. Kung

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

This paper presents the evaluation of a highly configurable
architecture for two-dimensional (2D) arrays of powerful
processors. The evaluation is based on an array of Warp
cells, a powerful processor developed at Carnegie Mellon and
manufactured by General Electric, and uses real application
programs. The evaluation covers the areas of configurability,
array survivability, and performance degradation. The
software and algorithms developed for the evaluation are also
discussed. The results based on simulations of small and
medium size arrays (up to 16x16), show that a high degree of
configurability, and array survivability can be achieved with
little impact on program performance.

1. Introduction

We have proposed a general architecture which provides a
high degree of configurability for 2D processor arrays of
powerful processors [S]. In this paper, we evaluate this ar-
chitecture.

Many configurable, two-dimensional (2D) processor arrays
have been proposed in the literature [4,9, 11]. However,
most 2D configurable array architectures have been con-
sidered for arrays of simple processors with VLSI/WSI im-
plementations to improve the yield in fabrication [7, 10] and
do not provide sufficient configurability. The architecture
evaluated in this paper targets arrays of powerful processors,
such as the Warp array [1] which uses programmable proces-
sors with 10 MFLOPS computation power each. The ar-
chitecture intends to provide a high degree of configurability
for efficient utilization of the processors, and can be used to
provide increased array survivability in mission-oriented ap-
plications.

Our evaluation of the architecture is based on an array of
Warp cells and uses real application programs and extensive
simulation. We have shown that high configurability and
survivability can be achieved with a modestly complex switch
design. We also found very little degradation in performance
of the simulated programs over the lifetime of small and
medium size arrays.

The research was supported in part by Defense Advanced Research
Projects Agency (DOD), monitored by U. S. Amy Engineer
Topographic Laboratories under Contract DACA76-86-C-0023.

0731-3071/89/0000/0093$01.00 © 1989 IEEE

S. W. Song

Institute of Statistics and Mathematics
University of Sao Paulo
Sao Paulo, Brazil

Section 2 gives an overview of the architecture. Section 3
discusses the evaluation procedure and gives an overview of
the software and the sample programs used for this purpose.
Section 4 presents the results of the evaluation, and Section 5
contains a summary and conclusion.

2. Overview of architecture

Figure 2-1-a shows a representative 4x4 array. The squares
represent the processors which are also called cells, and the
rectangles on the edges represent the I/O buffers. The 1/O
buffers are also connected to a host which transfers data to
and from the array. The circles represent switches which are
connected to cells or I/O buffers with bidirectional lines
called physical channels. A switch has six ports, four con-
nected to neighboring switches or I/O buffers and two con-
nected to the local cell, and can establish any commection
pattern between its ports.

CJoJC JL 1

Figure 2-1: A representative 4x4 physical array

The structure of Figure 2-1-a can be applied to implement
any 2D processor array, although our intention for this ar-
chitecture is to focus on arrays of ‘‘powerful’’ processors, for
which processor utilization and configurability are more criti-
cal. In specific, this architecture was considered for building
a configurable and fault-tolerant 2D Warp array. We will
give an overview of the Warp cell in the next section.

The array of Figure 2-1-a would have very limited con-

figurability if each physical channel were used to implement
only one logical connection required by the program. As the
components of the array fails, mapping the logical connec-
tions of the program onto the physical array would require
multiple channels between neighboring switches. However,
providing as many physical channels between neighboring
switches as might be needed is a wasteful alternative and can
be difficult to implement, especially for large arrays. The
other alternative is to multiplex the use of a physical channel
among multiple logical connections. This is a more attractive
solution since it would provide high configurability with
graceful degradation in the array performance. Although
multiplexing the use of physical connections has the potential
to cause communication bottlenecks, the premise is that for an
array of powerful cells with large local memories the load in
logical connections of most programs would be sufficiently
low so that a modest degree of multiplexing in physical con-
nections would not lead to a significant performance
degradation. Based on this idea, we have proposed an inter-
connection architecture for 2D processor amrays with
capabilities similar to the virtual circuits used in computer
networks [6].

Figure 2-2: The virtual array implemented
by the physical array of Figure 2-1

Consider that a physical channel in Figure 2-1-a can imple-
ment a number of virtual channels in each direction. For
example, Figure 2-2 shows the virtual array implemented by
the physical array of Figure 2-1-a, assuming the number of
virtual channels implementable by a physical channel is four,
two in each direction. A switch can connect an incoming
virtual channel to one or more outgoing virtual channels.
There is a dedicated queue for each incoming virtual channel,
which makes it possible to schedule data transfers across the
switch locally, independent from other switches. The data
transfers across the switch and the use of a physical channel
between neighboring switches is scheduled dynamically, by a
round robin among logical connections having transferable
data, in order to utilize the physical connections efficiently.
Details of the switch architecture and issues in dealing with
multiplexed channels have been discussed in an earlier
paper [5]. Each logical connection required by the program is
mapped onto a dedicated virtual path that begins and ends at

cells or 1/O buffers, and consists of a chain of virtual channels
connected by switches. The data transfers in one virtual path
are totally independent from data transfers in all other virtual
paths; therefore, for the program a dedicated virtual path is no
different than a dedicated physical path.

2.1. Warp cell

The Warp cell is a 10 MFLOPS processor developed for the
Warp computer {1]. The cell communicates with other cells
via two I/O paths (X and Y) where each path can transfer up
to a total of 40 Mbytes data per second to and from the cell’s
neighbors, and has a 512-word input queue to buffer incoming
data. Multiple functional units, high internal and external
data bandwidth, and large local data memory (32K words)
make the Warp cell a powerful computation engine and dis-
tinguish it from most processors used in systolic arrays. Each
Warp cell is equipped with its own program memory (8K
instructions) and microsequencer with wide instructions of
272 bits. Since each cell can be programmed independently, a
heterogeneous program model where cells in the array ex-
ecute different programs can be supported. The cells are
programmed in a high-level language called W2 and code is
generated by a highly optimizing compiler [2]. The Warp cell
is implemented on a 15”%17” board with over 250 chips.

3. Evaluation procedure

There are several significant questions about the architec-
ture which need to be answered for a comprehensive evalua-
tion. How many virtual channels per physical channel are
needed to ensure a successful mapping of the logical array
onto a faulty physical array, and whether this varies with
array size, with the amount of redundancy, or with switch/cell
reliability ratio? How much more reliable the switch must be
compared to the cell so that the impact of added complexity
on array survivability is acceptable? What is the impact of
the interconnection mechanism on program performance? Do
multiplexing the use of physical channels and routing data
across the switches cause communication bottlenecks and a
degradation in performance?

To answer these questions realistically, the architecture was
evaluated through extensive simulation for arrays of Warp
cells and using real application programs developed for the
Warp array. In this paper, we present some of the results of
this evaluation.

3.1. Simulation and mapping

It is assumed that all components of the array can fail,
including cells, switches, 1/O buffers, and physical channels.
A fault generator is used for simulation, using an exponential
fault model for each array component. It takes as inputs a
physical array description along with the MTBF of each com-
ponent type, and generates a sequence of component failures
over time for the array. Let T, T, Tp, and T, represent
respectively the MTBFs of cell, switch, 1/O buffer, and physi-
cal channel. Absolute values of MTBFs used for each com-
ponent type are not relevant for the evaluation, rather their
values relative to each other are significant since they affect
the distribution of faults among various types of components

| A

in the array. Let R=T¢/T represent the ratio of switch vs.
cell MTBFs. The following two assumptions are made about
the relationships between the MTBFs of components:

o Te=Tp. For simplicity, the I/O buffers are as-
sumed to have the same MTBF as the cells.
Indeed, in the case of a 2D Warp array an I/O
buffer would have comparable hardware com-
plexity to the cell.

o T, =5T;. The physical channel is estimated to be

five times more reliable than the switch. This

estimation is based on our switch architecture and

design. For this purpose, a switch port is treated

as part of the physical channel it is attached to,

since the functionality of the port is more closely

coupled with the physical channel than with the

internal switch.
Based on these two relationships, for a given value of R, Ts
TL, and TB can be specified in terms of TC. Therefore, to
characterize the set of MTBFs used in a simulation, only the
value of R is specified.

Starting with a non-faulty array, the logical array used by
the program is mapped onto the physical array after each fault
until a mapping can not be found. The mapping of the logical
array onto the physical array is done by a mapping program.
The mapping program supports a general graph model for
both the logical and the physical arrays and uses a graph to
graph mapping algorithm. Therefore, programs using various
logical array structures can be mapped onto the same physical
array. Since it is assumed that all components of the physical
array can fail, the physical array is also modeled as a graph.
Although the logical and physical arrays need not be rectan-
gular, the arrays used in the evaluations described in this
paper are restricted to square arrays for simplicity and unifor-
mity. The mapping algorithm can use several evaluation
criteria to determine the quality of a mapping, such as max-
imum load on a physical channel, longest path, or total path
length, which are referred to as evaluation metrics. In the
evaluations presented in this paper, the primary objective was
to find mappings which would minimize the maximum num-
ber of virtual channels used per physical channel. In the next
section, we present the mapping algorithm; a detailed discus-
sion of the mapping algorithm will be the subject of another
paper.

Given a mapping of the logical array onto the physical
array, the execution of the program on the physical array for
that mapping is simulated using a performance simulator.
Performance degradation of the program over the lifetime of a
physical array is determined by a sequence of performance
simulations corresponding to the sequence of mappings used
during the lifetime of the physical array.

3.2. Mapping algorithm

For simplicity of explanation, assume that the logical array
and the physical array consist of only cells and there are no
I/O buffers. Let m and n be the number of cells in the logical
array and the physical array respectively, where n2m. Let [,
represent a node in the logical array graph, and p; represent a
node in the physical array graph, in general.

95

The logical nodes are placed onto the physical nodes using
the following ordering. The logical node with the greatest
number of descendants in the logical array graph is selected as
the starting node. Let the starting node be /. Once [, is
selected, the order to place the remaining logical nodes is
determined by a breadth-first traversal from 1+ all the neigh-
bors of /| are placed first, followed by their neighbors, and so
on. Assume that this ordering corresponds to I, I, ..., 1 .

All possible placements of the logical nodes onto the physi-
cal nodes form a placement tree, which represents the search
space of the mapping algorithm. The starting logical node I,
can be placed onto any of the n physical nodes PPy Py
For each placement of I, 1, can in tun be placed onto any of
the remaining n—1 physical nodes, and so forth. The total
number of leaf nodes in the placement tree is n!/(n-m)!. Each
path from the root of the placement tree to one leaf node
corresponds to one possible placement of the logical array
onto the physical array. The placement tree is traversed in the
following order to search for mappings.

For each logical node I, the physical nodes are ordered
starting with the most promising candidates for the placement
of I, referred to as the candidate list of I; and denoted by C,.
The ordering of candidates is based on the similarity of inter-
connection properties between [, and each of the physical
nodes p,. The algorithm used for forming the candidate lists
is described later in the section. The ordering of candidate
lists is dynamically updated as the mapping proceeds. When
the logical node /; is to be placed, the most promising can-
didate physical node in C; is tried first, then the next, and so
on.

Let I; be a logical node currently being placed on physical
node p,, and let /; be a logical node connected to /. Once /; is
placed on physical node p , the following actions are taken.

o If I] has already been placed, say, on p_, then the
shortest routing path between p_and p_is as-
signed as the connection between /; and I, Ifa
path can not be found, then a mapping is not
possible, and that search branch of the placement
tree is abandoned. Moreover, the evaluation
metric is computed and used to decide if search
should continue in that search branch further.
For example, if the current evaluation metric for
that branch becomes worse than a previously
found mapping, a better mapping can not be
found by searching that branch further, and that
branch should be discarded. Efficient pruning of
non-promising branches is thus achieved.

If lj has not been placed, then its candidate Jist C,
is reordered as follows: since /; is a neighbor of [;
which has been placed on p , the physical nodes
closest to p, become the most promising can-
didates for l}

Due to the immensity of the placement tree for even
moderate size graphs, a traversal of the entire tree is impos-
sible for practical reasons. How far the placement tree is
searched for a mapping depends largely on the desired quality
of the mapping. Several stopping criteria have been incor-
porated into the mapping program for terminating a search.

They include stopping after the first mapping is found, after a
mapping satisfying a quality constraint is found, or after a
specified number of branches have been searched.

3.2.1. Candidate list algorithm
Let v be a node in a graph, and let D, . represent the set of
nodes in the graph at a distance j from v. Let:

n, : number of nodes in D, .

v,) oJ
e, j numberof edges between D, ;and D, o
d, ¥ difference €, ;=M.

where j varies from 1 to k, & being the distance of the farthest
node from v.

The connectivity matrix M, for node v is defined as:

M, =m]
where:
m =e,;
M=)
J=%.
forj=1,....k

Let L; and P,, respectively, refer to the connectivity matrix
of anode in the logical array graph, and a node in the physical
array graph. Consider a logical node & of the logical array
with connectivity matrix Lu = [I‘.'. Ji=1,2,3and j=1,... %
The "goodness" of a physical node v with connectivity matrix
P,= [p‘.' i]' is measured by the number of times the following
condition is satisfied.

Ljspjfor i=1,23 and j=1,...,k

The candidate list C, of a logical node u is formed by
computing the goodness of each physical node for u, and
ordering the physical nodes in a decreasing order of their
goodness. Since the physical nodes of the best mapping
appear mostly at the beginning of the candidate lists, during
the search for a mapping, most promising branches of the
placement tree are searched first. Therefore, good mappings
are obtained although a very small portion of the placement
tree is searched.

3.3. Sample programs

The programs used in this evaluation were image process-
ing programs developed for a vision research library at Car-
negie Mellon [8].

Figure 3-1: Representative 6x6 logical array
Thirty-four programs were selected from this library which

vary in complexity from simple thresholding to sophisticated
edge detection operators. One of the edge detection programs
using the Frei and Chen operator (EGFC) is used as a specific
example in this paper. The programs were written in an
architecture-independent image processing language called
Apply [3] which can be compiled for 1D and 2D Warp arrays
of various sizes. For 2D Warp arrays, the programs use the
mesh-connected logical array structure shown in Figure 3-1,
where the inputs flow from top to bottom and outputs flow
from left to right. The dimensions of the logical array can be
varied at compile time.

4. Results

4.1. Array survivability

This section presents simulation results on how two critical
parameters of the architecture, number of virtual channels
available and switch/cell reliability ratio (R), affect the array
survivability.

Variation with number of virtual channels available. A
physical array survives as long as a mapping can be found to
implement the logical array of the program on the physical
array. Therefore, in addition to the condition of the physical
array, whether a physical array survives or not depends on the
success of the mapping program in finding a mapping. One
premise for using virtual channels was that finding a mapping
would be easy and successful in most cases provided that
there are sufficiently large number of channels between
switches. Let V represent the number of virtual channels
available in each direction in a physical channel. Figure 4-1-a
shows how the success of mapping an 8x8 logical array onto
a 9x9 physical array depends on V. For these simulations it is
assumed that the switch is 10 times more reliable than the cell
(R=10). Using the same sequence of faults in each case, the
graph shows the number of arrays survived vs. time in 200
lifetime simulations for V= 1, 2, 3 and 4. As can be seen, the
success of mapping is very low for V=1, which means one
virtual channel in each direction per physical channel, and
improves significantly for V=2. As can be expected, very
small number of virtual channels makes finding a mapping
difficult. Figure 4-1-a shows that V=3 provides sufficient
number of virtual channels for successful mapping. The
curve for V=3 comes close to the analytically calculated
curve where it is assumed that mapping is always successful
as long as there are sufficient functional components left in
the array, i. e. routing is never a problem. Although not
clearly observable in Figure 4-1-a, V=4 provides only a slight
improvement over V=3, and it was found that V > 4 provides
no further improvement. An important observation from
Figure 4-1-a is that a moderate size array such as 9x9 requires
a relatively small switch supporting 3 or 4 incoming virtual
channels per switch port. Since there is a dedicated queue in
the switch for each incoming virtual channel, the hardware
complexity of the switch is highly dependent on V.

Variation with switch/cell reliability ratio. A serial
reliability relationship exists between a cell and the switch it
is attached to. The ratio of switch MTBF over cell MTBF
was defined as R. If R is large, then the combined reliability

of a cell-switch pair is not significantly worse than that of the
cell. If R is small however, then the benefit of using a
complex switch may be questionable since the reliability of a
cell-switch pair would be significantly less than the cell alone.
Moreover, a higher percentage of switch failures requires a
larger number of virtual channels per physical channel for
successful mapping, since routing becomes more difficult. If
the virtual charmels supported by the switch is not sufficiently
large, this has a more detrimental effect on array survivability
for small R than for large R. Figure 4-1-b shows the results of
200 lifetime simulations for mapping the 8x8 logical array
onto the 9x9 physical array for several values of R where
V=4. It can be seen from the figure that the curve for R=10 is
close to the curve for R=100, i.e., having a much more reli-
able switch than the cell does not improve the array sur-
vivability significantly. The mean array lifetime for R=100 is
0.241, and for R=10 it is 0.228 (in terms of cell MTBF). Note
that the curve for R=10 also comes reasonably close to the
curve representing the ideal case where interconnections
never fail (R =c¢). The mean array lifetime for R=10 is 8.2%
less than what it would be for the ideal case. Therefore, it is
probably sufficient to have a switch that is approximately 10
times more reliable than the cell, if the switch supports suf-
ficient number of virtual channels. In Figure 4-1-a, it was
shown that a switch supporting 3 virtual channels in each
direction (V=3) was sufficient for mapping of the 8x8 array
onto the 9x9 array for R=10. According to Figure 4-1-b, a
ratio of R =35 may also be acceptable.

Arrays

025 030 035 040
Time (cell MTBF)
a) Variation with V (R=10)

005 010 0.5 020

il
200

g 180

5 160 sy Re 2
140 seset R=5
120 o R = 10

SR B o
0.00 0.05 0.10 015 020 025 030 035 040 045 0.50
Time (cell MTBF)
b) Variation with R (V=4)
Figure 4-1: Number of arrays survived vs. time in mapping
an 8x8 array onto a 9x9 array for
various values of V and R

4.2. Number of virtual channels used

This section presents some results on the maximum number
of virtual channels used in a physical channel for mapping,
and how this varies with array size, amount of redundancy,
and switch/cell reliability ratio.

97

Variation with array size. Let U represent the maximum
number of virtual channels used in a physical channel in a
mapping. Note that U < 2V, since a total of 2V virtual chan-
nels are available per physical channel. Also, let U,
represent the maximum value of U in all mappings used
during the lifetime of a physical array. Figure 4-2 depicts
how U, varies with the array size. Figure 4-2 consists of four
graphs showing the values of U, in mapping 6x6, 8x8,
12x12, and 16x16 logical arrays respectively onto 7x7, 9x9,
13x13, and 17x17 physical arrays (R=10 for all cases).

E s
SEE]
6
s
4
3
2
1
0 : il
0 20 40 6 8 100 120 140 160 180 200
Arrays
a) 6x6 array onto a 7x7 array
E s
D7
6
s
4
3
2
1
0

O NWALON®

8
7
6
5
4
3
2
1
0

180 200

Arrays
d) 16x16 array onto a 17x17 array

Figure 4-2: Maximum number of virtual channels used per
physical channel in array lifetime
in mapping different size 2D-mesh arrays (R=10)

As can be seen, on the average more virtual channels are used
per physical channel as the array size increases. For the 7x7
array, 99% of array lifetimes use up to 4 virtual channels per
physical channel. The percentage drops to 97%, 86%, and
51% respectively for the 9x9, 13x13, and 17x17 arrays.
However, the highest values of U, do not vary significantly
for different size arrays; both the 9x9 array and the 17x17
array use up to 6 virtual channels. Both the number of cells in
the logical array to be mapped and the number of faults to be
tolerated increase with array size. On the other hand, the total

number of channels available for routing also increases with
array size. This may explain why U, does not increase
significantly as the physical array size is increased from 7x7
to 17x17. This is a significant result, since it shows that a
switch supporting a modest number of virtual channels can be
used for implementing nxn logical arrays on (n+1)x(n+1)
physical arrays for various array sizes up to n=16.

Variation with redundancy. Another factor to investigate is
whether the number of virtual channels needed varies with the
amount of redundancy in a physical array. Figure 4-3 shows
two graphs depicting the values of U, in 200 lifetime simula-
tions of a 7x7 logical array and a 6x6 logical array mapped
onto a 9x9 physical array. The graph for the 8x8 logical array
mapped onto a 9x9 physical array is already shown in Figure
4-2-b. The amount of redundancy relative to the logical array
in implementing 8x8, 7x7, and 6x6 logical arrays on a 9x9
physical array is respectively 26%, 65%, and 125%.
However, as can be seen from the figures, the increase in
redundancy does not have a significant impact on the value of
U, This is not an obvious result since there are two oppos-
ing factors which affect the difficulty of mapping. A smaller
logical array means fewer nodes have to be mapped thus
mapping would be easier. On the other hand, a smaller
logical array also means there will be more faults in the
physical array which makes mapping more difficult. The
observation that U, does not change significantly with the
amount of redundancy may be explained as the cancellation
of these opposing effects.

E s
IS
6
s
4 m il ‘; il
7S i il L
2 A e ;;‘“w il ‘Hm;
nlid | Il | I
P LA L LA
0 20 40 60 80 100 120 140 160 180 200
Arrays
a) 7x7 array onto a 9x9 array
£ s
S 7
6
s
4 ” |
3 }1‘ “i "\;‘“‘ b
24l I ‘M 'M! \ il
i ‘ i o ibilid
‘1, I J‘ st \ ; ;“ ml‘“ i] Hw“ ‘ H\‘i ‘ ‘x‘ﬂ ‘
0 20 40 60 80 100 120 140 160 180 200
Arrays

b) 6x6 array onto a 9x9 array

Figure 4-3: Maximum number of virtual channels used per
physical channel in 200 array lifetimes, mapping
7x7 and 6x6 arrays onto a 9x9 array (R=10)

Variation with switch/cell reliability ratio. The switch/cell
reliability ratio (R) also affects the number of virtual channels
used in a physical channel. Figure 4-4 shows four graphs
depicting how U, varies for several values of R, for mapping
an 8x8 logical array onto a 9x9 physical array. As expected,
a higher ratio of faulty switches (smaller R) requires the use
of more virtual channels per physical channel. It can be seen
that for the ideal case, where switches and channels are as-
sumed not to fail (R=e<), up to 4 virtual channels are used.

98

For R=10, although 5 or 6 virtual channels are used in several
array lifetimes, up to 4 virtual channels are used in 97% of the
array lifetimes. The results are similar for R=5, in which case
up to 4 virtual channels are used in 95% of the array lifetimes.
This shows that in mapping an 8x8 logical array onto a 9x9
physical array, up to 4 virtual channels will be used in
general, if the switch is moderately more reliable than the cell
(5 times or more). Note that for R=2, the percentage of array
lifetimes using up to 4 virtual channels drops to 61%.

5

8
7
6
5
4
3
2
1
0

Il ' ;Iﬂ

100 120 140

Um

O NWH LG N0

it
I s{?m H\.

20 40 60 80 140

b) R=5

Um

OmNWALO 0

, 1 I 1
i *“"‘H‘ “l il \““ ‘ Ll
il \ \I\ (AR 1 m“miw Lt :H|H.\i.|ni
0 20 40 60 80 100 120 140 160 180 200

Arrays
c) R=10

Um

O = WA O o

ll:\ W Mlhl\ I \H \l“M\‘ llf"i \IL

20 40 6 80 100 120 140 160 180
Arrays

0

d) R=eo
Figure 4-4: Maximum number of virtual channels used per
physical channel in 200 array lifetimes, mapping
a 8x8 array onto a 9x9 array for various R

4.3, Performance degradation

Implementing multiple logical connections on a physical
channel and routing data across switches have the potential to
cause communication bottlenecks and lead to a degradation in
the performance of programs as the physical array
deteriorates. However, it was observed that there is little or
no performance degradation for the sample programs running
on small and medium size arrays (< 13x13). This is
primarily due to the fact that the I/O to computation ratio of
most programs for arrays of this size is sufficiently low so

that the modest degree of multiplexing in physical channels
(4-5) does not cause communication bottlenecks. Moreover,
the dynamic scheduling mechanism used for routing data
across the switch prevents the switch from becoming a bot-
tleneck on its own.

Figure 4-5-a shows an accumulated plot of execution times
for EGFC (an edge detection program) using an 8x8 logical
array in 25 lifetimes of a 9x9 physical array. The horizontal
axis represents time which is normalized to the lifetime of the
array so that all lifetime simulations map to the same range.
For each mapping in the lifetime of an array, a dot is placed at
the beginning and at the end of the time during which the
mapping is in effect, corresponding to the execution time of
the program for that mapping. As can be seen, there is no
significant performance degradation for EGFC in the 25
lifetimes of a 9x9 physical array.

16000 ~
14000 -4
12000 -4
10000 -
8000 -

6000 -4

4000 ~

2000

]

Execution time (cycles)

T T U U LJ U L ¥ U 1
00 01 02 03 04 05 06 07 08 09 1.0

Time (array lifetime)

a) 8x8 array mapped onto 9x9 array

14000 -
12000
10000 =4
8000
6000 =
4000
2000 -
0

Execution time (cycles)

Average

U ¥ T U U U 1 U 1 1
00 01 02 03 04 05 06 07 08 09 1.0
Time (array lifetime)
b) 12x12 array mapped onto 13x13 array

Figure 4-5: Execution times for EGFC in 25 lifetimes
of a 9x9 and a 13x13 array

Let the load of a logical connection be defined as the
number of data words transferred over the logical connection
divided by the execution time of the program on a perfect
logical array. In general, the load in logical connections and
the amount of multiplexing in physical channels determine the
performance degradation of a program. If the amount of data
to be transferred across a physical channel exceeds the
bandwidth of the channel, then a degradation is expected in
the throughput of the program. For example, EGFC has only
two types of logical connections, input and output, with
respective loads of 0.20 and 0.18 for an 8x8 logical array.
Since the maximum number of virtual channels used per
physical channel (U) does not exceed 5 in any of the map-
pings used in 25 array lifetimes, there is no significant perfor-
mance degradation.

As an example of the case where performance degradation
occurs, consider the graph in Figure 4-5-b, which shows the
performance of EGFC, in this case using a 12x12 logical
array, in 25 lifetimes of a 13x13 physical array. The input
and output loads of EGFC for a 12x12 array are 0.27 and
0.23. Although U does not exceed 5 in these mappings,
because of the increased load in logical connections, some
performance degradation is observed, especially toward the
ends of the array lifetimes as U increases with increased
difficulty in mapping. A curve representing the average ex-
ecution time was plotted to give an idea of the distribution of
dots and the expected performance.

Figure 4-6 summarizes the estimates for performance
degradation of the sample Apply programs for nxn logical
arrays implemented on (n+1)x(n+1) physical arrays for
n=6,8,12. Let D=T /T, represent the potential performance
degradation of a program, where T, is the execution time of
the program at the end of the array lifetime and T, is the
execution time of the program at the beginning of the array
lifetime. The figure shows the expected values of D for 34
Apply programs. The expected value of D for a program is
calculated by averaging the values of T, for 200 lifetime
simulations. Since T, normally corresponds to the worst
performance of the program during the array lifetime, the
values of D shown in Figure 4-6 can be considered as the
average of the worst-case performances.

200 D
1.80
1.60 = D .
1.40
1.20 =
1.00
0.80
0.60
0.40
0.20 o
0.00 ik

0 5 10 15 20 25 30 35

Programs

Figure 4-6: Expected lifetime performance degradation of
34 Apply programs for three different size arrays

Figure 4-6 shows that D = 1.0, i. e. there is no performance
degradation, for most of the sample programs and less than
2.0 for all the programs for n<12. However, even those
programs which show some performance degradation at the
end of array lifetime are likely to show little or no perfor-
mance degradation for a significant portion of the array
lifetime. The loads in logical connections of the majority of
Apply programs are sufficiently low such that there would be
little degradation in the performance of these programs for
mappings with U<3, which normally constitute more than
50% of all mappings used during an array lifetime. In
general, if the problem size does not change, mapping a
program to a larger logical array increases the loads in the
logical connections of the program. This is because the
amount of computation per cell decreases proportionally to
the number of cells in the array, while the I/O per cell
decreases proportionally to the array dimensions. Therefore,

there is a higher potential for performance degradation if a
program uses a larger array.

5. Summary and conclusion

We have proposed a highly configurable array architecture
for arrays of powerful processors. The architecture uses a 2D
switch network where physical connections are multiplexed to
implement multiple logical connections using the virtual
channels mechanism. To evaluate the architecture we have
developed simulation tools and an efficient and general map-
ping program. The architecture was evaluated assuming an
array of Warp cells and using a number of image processing
programs developed for the Warp array.

Based on our evaluation, it can be said that the architecture
provides a high degree of configurability and allows efficient
utilization of redundant processors in the array. To imple-
ment a near-optimal architecture for a moderate size array,
such as 9x9, the number of virtual channels supported by a
physical channel in each direction can be as small as 3 or 4,
and as a result, the switch can be fairly small and reliable.
However, the switch does not need to be extremely reliable
compared to the cell, and a switch/cell reliability ratio of as
low as 5 can be acceptable. Moreover, the number of virtual
channels used per physical channel to ensure a successful
mapping does not seem to vary significantly with array size or
the amount of redundancy. Therefore, the switch can be used
as a building block to construct various size configurable
arrays with as many redundant processors as may be needed
for the application.

The potential for performance degradation of a program
increases with the array size as the I/O to computation ratio of
a program increases when mapped to larger arrays. However,
for small and medium size arrays, the modest degree of mul-
tiplexing in physical connections does not pose a problem for
the performance of most programs, since the /O to computa-
tion ratjos of most programs are sufficiently low. Little or no
performance degradation was observed for a number of image
processing programs running on physical arrays up to 13x13.
Therefore, the performance implications of the architecture
appears to be acceptable for programs using small and
medium size logical arrays, such as 8x8 or10x10, which are
commonly considered for arrays of powerful processors.

It is becoming relatively easy to implement powerful
processors and switching elements due to the rapidly increas-
ing logic densities provided by the VLSI technology.
However, the capacities of off-chip and off-board intercon-
nections do not increase proportionally. Therefore, it may not
be feasible to implement many redundant physical connec-
tions to provide a high degree of configurability in 2D proces-
sor arrays where a processor is implemented by one or more
chips. The approach taken in this architecture was to use a
moderately complex switching element to implement multiple
logical connections by multiplexing a physical connection.
Our evaluation of the architecture suggests that this approach
would be effective in building 2D configurable arrays of
powerful processors in general, if the processors have large
local memory and do not require tightly synchronized com-

munications. A modest degree of multiplexing in physical
connections is sufficient to provide a high degree of con-
figurability, and this would not pose a significant problem for
program performance with highly powerful processors.

References

1. Annaratone, M., Amould, E., Gross, T., Kung, H. T., Lam, M.,
Menzilcioglu, O. and Webb, J. A. "The Warp Computer: Architec-
ture, Implementation and Performance”. /EEE Transactions on Com-
puters C-36, 12 (December 1987), 1523-1538.

2. Gross, T. and Lam, M. Compilation for a High-performance
Systolic Array. Proceedings of the SIGPLAN 86 Symposium on
Compiler Construction, ACM SIGPLAN, June, 1986, pp. 27-38.

3. Hamey, L. G. C., Webb, J. A., and Wu, I. C. Low-level Vision on
Warp and the Apply Programming Model. In Parallel Computation
and Computers for Artificial Intelligence, Kluwer Academic
Publishers, 1987, pp. 185-199. Edited by J. Kowalik.

4. Hwang, J.H. and Raghavendra, C.S. VLSI Implementation of
Fault-Tolerant Systolic Arrays. Proc. Intemnational Conference on
Computer Design, Oct., 1986, pp. 110-113.

5. Kung, H.T. and Menzilcioglu, O. A General Switch Architecture
for Fault-Tolerant VLSI Processor Arrays. Proceedings of SPIE,
August, 1987, pp. 37-44.

6. Kung, H.T and Menzilcioglu, O. Virtual Channels for Fault-
Tolerant Programmable Two-dimensional Processor Arrays. Tech.
Rept. CMU-CS-87-171, Camegie Mellon University, December,
1986.

7. Negrini, R., Sami, M.G., Stefanelli, R. Fault Tolerance Ap-
proaches for VLSI/WSI Arrays. Proc. IEEE Phoenix Conf. on Comp.
and Comm., 1985, pp. 460-468.

8. Ribas, H. and Webb, J. User's Guide to WEB. Department of
Ci Sci Carnegie Mellon University.

9. Sami, M. and Stefanelli, R. Reconfigurable Architectures for
VLSI Processing Arrays. Proc. of 1983 National Computer Con-
ferenece, 1983, pp. 565-577.

10. Singh, A.D. An Area Efficient Redundancy Scheme for Wafer
Scale Processor Arrays. Proceedings of Intl. Conf. on Computer
Design, October, 1985, pp. 505-509.

11. Snyder, L. "Introduction to the Configurable, Highly Parallel
Computer”. Computer 15, 1 (January 1982), 47-56.

